Ruth Lehmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6441292/publications.pdf

Version: 2024-02-01

		6233	1	.0424
174	21,549	80		139
papers	citations	h-index		g-index
			_	
100	100	100		10740
188	188	188		12749
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	oskar organizes the germ plasm and directs localization of the posterior determinant nanos. Cell, 1991, 66, 37-50.	13.5	768
2	Targeted mRNA degradation by double-stranded RNA in vitro. Genes and Development, 1999, 13, 3191-3197.	2.7	714
3	Determination of anteroposterior polarity in Drosophila. Science, 1987, 238, 1675-1681.	6.0	671
4	Induction of germ cell formation by oskar. Nature, 1992, 358, 387-392.	13.7	598
5	Regulation of zygotic gene expression in Drosophila primordial germ cells. Current Biology, 1998, 8, 243-246.	1.8	592
6	The Transgenic RNAi Project at Harvard Medical School: Resources and Validation. Genetics, 2015, 201, 843-852.	1.2	502
7	Nanos is the localized posterior determinant in Drosophila. Cell, 1991, 66, 637-647.	13.5	478
8	Abdominal segmentation, pole cell formation, and embryonic polarity require the localized activity of oskar, a maternal gene in drosophila. Cell, 1986, 47, 141-152.	13.5	459
9	On the phenotype and development of mutants of early neurogenesis inDrosophila melanogaster. Wilhelm Roux's Archives of Developmental Biology, 1983, 192, 62-74.	1.4	453
10	Mechanisms guiding primordial germ cell migration: strategies from different organisms. Nature Reviews Molecular Cell Biology, 2010, 11, 37-49.	16.1	450
11	Finger protein of novel structure encoded by hunchback, a second member of the gap class of Drosophila segmentation genes. Nature, 1987, 327, 383-389.	13.7	426
12	Nanos and Pumilio have critical roles in the development and function of <i>Drosophila</i> germline stem cells. Development (Cambridge), 1998, 125, 679-690.	1,2	420
13	Translational regulation in development. Cell, 1995, 81, 171-178.	13.5	400
14	The chemokine SDF1/CXCL12 and its receptor CXCR4 regulate mouse germ cell migration and survival. Development (Cambridge), 2003, 130, 4279-4286.	1.2	399
15	Localization of nanos RNA controls embryonic polarity. Cell, 1992, 71, 301-313.	13.5	373
16	The maternal gene <i>nanos</i> has a central role in posterior pattern formation of the <i>Drosophila</i> embryo. Development (Cambridge), 1991, 112, 679-691.	1.2	315
17	hunchback, a gene required for segmentation of an anterior and posterior region of the Drosophila embryo. Developmental Biology, 1987, 119, 402-417.	0.9	306
18	Lifespan Extension by Preserving Proliferative Homeostasis in Drosophila. PLoS Genetics, 2010, 6, e1001159.	1.5	303

#	Article	IF	CITATIONS
19	The Drosophila posterior-group gene nanos functions by repressing hunchback activity. Nature, 1989, 338, 646-648.	13.7	297
20	Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science, 2022, 375, eabk2432.	6.0	295
21	Translational regulation of nanos by RNA localization. Nature, 1994, 369, 315-318.	13.7	286
22	The Pumilio protein binds RNA through a conserved domain that defines a new class of RNA-binding proteins. Rna, 1997, 3, 1421-33.	1.6	270
23	<i>Drosophila</i> germ-line modulation of insulin signaling and lifespan. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6368-6373.	3.3	260
24	The function of PS integrins during Drosophila embryogenesis. Cell, 1989, 56, 401-408.	13.5	248
25	Genetics of nanos localization in Drosophila. Developmental Dynamics, 1994, 199, 103-115.	0.8	229
26	GERM CELL DEVELOPMENT INDROSOPHILA. Annual Review of Cell and Developmental Biology, 1996, 12, 365-391.	4.0	221
27	A gap gene, hunchback, regulates the spatial expression of Ultrabithorax. Cell, 1986, 47, 311-321.	13.5	216
28	Redox regulation of cell migration and adhesion. Trends in Cell Biology, 2012, 22, 107-115.	3.6	204
29	Regulation of Ribosome Biogenesis and Protein Synthesis Controls Germline Stem Cell Differentiation. Cell Stem Cell, 2016, 18, 276-290.	5.2	199
30	Chapter 30 In Situ Hybridization to RNA. Methods in Cell Biology, 1994, 44, 575-598.	0.5	198
31	piRNA Production Requires Heterochromatin Formation in Drosophila. Current Biology, 2011, 21, 1373-1379.	1.8	195
32	Localization of <i>oskar</i> RNA regulates <i>oskar</i> translation and requires Oskar protein. Development (Cambridge), 1995, 121, 2737-2746.	1.2	193
33	Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development (Cambridge), 1998, 125, 679-90.	1.2	192
34	An Egalitarian-BicaudalD complex is essential for oocyte specification and axis determination in Drosophila Genes and Development, 1997, 11, 423-435.	2.7	190
35	Segmental organisation of the head in the embryo of Drosophila melanogaster. Roux's Archives of Developmental Biology, 1986, 195, 359-377.	1.2	183
36	Pumilio is essential for function but not for distribution of the Drosophila abdominal determinant Nanos Genes and Development, 1992, 6, 2312-2326.	2.7	183

#	Article	IF	Citations
37	Egalitarian binds dynein light chain to establish oocyte polarity and maintain oocyte fate. Nature Cell Biology, 2004, 6, 427-435.	4.6	178
38	The <i>fat facets</i> gene is required for <i>Drosophila</i> eye and embryo development. Development (Cambridge), 1992, 116, 985-1000.	1.2	177
39	Germ Cell Specification and Migration in Drosophila and beyond. Current Biology, 2004, 14, R578-R589.	1.8	175
40	Germ Versus Soma Decisions: Lessons from Flies and Worms. Science, 2007, 316, 392-393.	6.0	174
41	A germline-specific gap junction protein required for survival of differentiating early germ cells. Development (Cambridge), 2002, 129, 2529-2539.	1.2	172
42	HMG-CoA reductase guides migrating primordial germ cells. Nature, 1998, 396, 466-469.	13.7	170
43	Cross-regulatory interactions among the gap genes of Drosophila. Nature, 1986, 324, 668-670.	13.7	169
44	A conserved 90 nucleotide element mediates translational repression of <i>nanos</i> RNA. Development (Cambridge), 1996, 122, 2791-2800.	1.2	161
45	Mitochondrial fragmentation drives selective removal of deleterious mtDNA in the germline. Nature, 2019, 570, 380-384.	13.7	159
46	An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO Journal, 2003, 22, 5863-5874.	3.5	157
47	Moving towards the next generation. Mechanisms of Development, 2001, 105, 5-18.	1.7	155
48	Drosophila germ granules are structured and contain homotypic mRNA clusters. Nature Communications, 2015, 6, 7962.	5.8	151
49	Spatially restricted activity of a <i>Drosophila</i> lipid phosphatase guides migrating germ cells. Development (Cambridge), 2001, 128, 983-991.	1.2	148
50	Involvement of the pumilio gene in the transport of an abdominal signal in the Drosophila embryo. Nature, 1987, 329, 167-170.	13.7	138
51	A Noncoding RNA Is Required for the Repression of RNApollI-Dependent Transcription in Primordial Germ Cells. Current Biology, 2004, 14, 159-165.	1.8	137
52	Regulated synthesis, transport and assembly of the Drosophila germ plasm. Trends in Genetics, 1996, 12, 102-109.	2.9	131
53	Repression of Primordial Germ Cell Differentiation Parallels Germ Line Stem Cell Maintenance. Current Biology, 2004, 14, 981-986.	1.8	128
54	Identification of genes controlling germ cell migration and embryonic gonad formation in <i>Drosophila</i> . Development (Cambridge), 1998, 125, 667-678.	1.2	127

#	Article	IF	Citations
55	Soma–germline interactions coordinate homeostasis and growth in the Drosophila gonad. Nature, 2006, 443, 97-100.	13.7	121
56	Germ Cells Are Forever. Cell, 2008, 132, 559-562.	13.5	121
57	Identification ofcis-Acting Sequences That ControlnanosRNA Localization. Developmental Biology, 1996, 176, 36-50.	0.9	119
58	Preprints for the life sciences. Science, 2016, 352, 899-901.	6.0	119
59	Structural basis for methylarginine-dependent recognition of Aubergine by Tudor. Genes and Development, 2010, 24, 1876-1881.	2.7	117
60	Tre1, a G Protein-Coupled Receptor, Directs Transepithelial Migration of Drosophila Germ Cells. PLoS Biology, 2003, 1, e80.	2.6	116
61	The role of Tudor domains in germline development and polar granule architecture. Development (Cambridge), 2006, 133, 4053-4062.	1.2	116
62	A role of polycomb group genes in the regulation of gap gene expression in Drosophila Genetics, 1994, 136, 1341-1353.	1.2	114
63	In Vivo Migration: A Germ Cell Perspective. Annual Review of Cell and Developmental Biology, 2006, 22, 237-265.	4.0	112
64	The maternal gene nanos has a central role in posterior pattern formation of the Drosophila embryo. Development (Cambridge), 1991, 112, 679-91.	1.2	109
65	Mutations of early neurogenesis inDrosophila. Wilhelm Roux's Archives of Developmental Biology, 1981, 190, 226-229.	1.4	108
66	A CCHC metal-binding domain in Nanos is essential for translational regulation. EMBO Journal, 1997, 16, 834-843.	3.5	108
67	<i>zfh-1</i> is required for germ cell migration and gonadal mesoderm development in <i>Drosophila</i> . Development (Cambridge), 1998, 125, 655-666.	1.2	107
68	Vreteno, a gonad-specific protein, is essential for germline development and primary piRNA biogenesis in Drosophila. Development (Cambridge), 2011, 138, 4039-4050.	1.2	104
69	Germ Plasm Biogenesis—An Oskar-Centric Perspective. Current Topics in Developmental Biology, 2016, 116, 679-707.	1.0	104
70	piRNA-mediated regulation of transposon alternative splicing in the soma and germ line. Nature, 2017, 552, 268-272.	13.7	103
71	Control of lateral migration and germ cell elimination by the Drosophila melanogaster lipid phosphate phosphatases Wunen and Wunen 2. Journal of Cell Biology, 2005, 171, 675-683.	2.3	102
72	ATP synthase promotes germ cell differentiation independent of oxidative phosphorylation. Nature Cell Biology, 2015, 17, 689-696.	4.6	99

#	Article	IF	Citations
73	Temporal and Spatial Control of Germ-Plasm RNAs. Current Biology, 2009, 19, 72-77.	1.8	98
74	Germline Stem Cells: Origin and Destiny. Cell Stem Cell, 2012, 10, 729-739.	5.2	98
75	Isolation of new polar granule components in Drosophila reveals P body and ER associated proteins. Mechanisms of Development, 2008, 125, 865-873.	1.7	97
76	Germ line stem cell differentiation in Drosophila requires gap junctions and proceeds via an intermediate state. Development (Cambridge), 2003, 130, 6625-6634.	1.2	95
77	Isoprenoids Control Germ Cell Migration Downstream of HMGCoA Reductase. Developmental Cell, 2004, 6, 283-293.	3.1	95
78	<i>nanos</i> is an evolutionarily conserved organizer of anterior-posterior polarity. Development (Cambridge), 1995, 121, 1899-1910.	1.2	94
79	An ABC Transporter Controls Export of a <i>Drosophila</i> Germ Cell Attractant. Science, 2009, 323, 943-946.	6.0	93
80	mRNA quantification using single-molecule FISH in Drosophila embryos. Nature Protocols, 2017, 12, 1326-1348.	5.5	92
81	Germ granules in <i>Drosophila</i> . Traffic, 2019, 20, 650-660.	1.3	91
82	The PUMILIOâ^'RNA Interaction:  A Single RNA-Binding Domain Monomer Recognizes a Bipartite Target Sequence. Biochemistry, 1999, 38, 596-604.	1.2	86
83	How different is Venus from Mars? The genetics of germ-line stem cells in Drosophila females and males. Development (Cambridge), 2004, 131, 4895-4905.	1.2	86
84	Poly(A)-independent regulation of maternal hunchback translation in the Drosophila embryo. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 11359-11364.	3.3	85
85	Soma-Germ Line Competition for Lipid Phosphate Uptake Regulates Germ Cell Migration and Survival. Science, 2004, 305, 1963-1966.	6.0	84
86	Translational control in germline stem cell development. Journal of Cell Biology, 2014, 207, 13-21.	2.3	84
87	Human organoids: a new dimension in cell biology. Molecular Biology of the Cell, 2019, 30, 1129-1137.	0.9	83
88	fear of intimacy encodes a novel transmembrane protein required for gonad morphogenesis in Drosophila. Development (Cambridge), 2003, 130, 2355-2364.	1.2	82
89	Tre1 GPCR initiates germ cell transepithelial migration by regulating <i>Drosophila melanogaster</i> E-cadherin. Journal of Cell Biology, 2008, 183, 157-168.	2.3	81
90	A germline-specific gap junction protein required for survival of differentiating early germ cells. Development (Cambridge), 2002, 129, 2529-39.	1.2	79

#	Article	IF	Citations
91	Finding their way: themes in germ cell migration. Current Opinion in Cell Biology, 2016, 42, 128-137.	2.6	76
92	Phase transitioned nuclear Oskar promotes cell division of Drosophila primordial germ cells. ELife, 2018, 7, .	2.8	75
93	twin, a CCR4 homolog, regulates cyclin poly(A) tail length to permit Drosophila oogenesis. Development (Cambridge), 2005, 132, 1165-1174.	1.2	72
94	Localization of oskar RNA regulates oskar translation and requires Oskar protein. Development (Cambridge), 1995, 121, 2737-46.	1.2	69
95	The fat facets gene is required for Drosophila eye and embryo development. Development (Cambridge), 1992, 116, 985-1000.	1.2	68
96	Cell migration in invertebrates: clues from border and distal tip cells. Current Opinion in Genetics and Development, 2001, 11, 457-463.	1.5	66
97	Gonadal mesoderm and fat body initially follow a common developmental path in <i>Drosophila</i> Development (Cambridge), 1998, 125, 837-844.	1.2	66
98	Long Oskar Controls Mitochondrial Inheritance in Drosophila melanogaster. Developmental Cell, 2016, 39, 560-571.	3.1	65
99	A single-cell atlas of the developing <i>Drosophila</i> ovary identifies follicle stem cell progenitors. Genes and Development, 2020, 34, 239-249.	2.7	62
100	Translational Control during Developmental Transitions. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032987.	2.3	60
101	RhoL controls invasion and Rap1 localization during immune cell transmigration in Drosophila. Nature Cell Biology, 2010, 12, 605-610.	4.6	59
102	Sequence-Independent Self-Assembly of Germ Granule mRNAs into Homotypic Clusters. Molecular Cell, 2020, 78, 941-950.e12.	4.5	58
103	Spatially restricted activity of a Drosophila lipid phosphatase guides migrating germ cells. Development (Cambridge), 2001, 128, 983-91.	1.2	57
104	Drosophila nurse cells produce a posterior signal required for embryonic segmentation and polarity. Nature, 1988, 335, 68-70.	13.7	53
105	Structure of <i>Drosophila</i> Oskar reveals a novel RNA binding protein. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11541-11546.	3.3	52
106	A conserved 90 nucleotide element mediates translational repression of nanos RNA. Development (Cambridge), 1996, 122, 2791-800.	1.2	52
107	A spindle-independent cleavage pathway controls germ cell formation in Drosophila. Nature Cell Biology, 2013, 15, 839-845.	4.6	50
108	Large Drosophila germline piRNA clusters are evolutionarily labile and dispensable for transposon regulation. Molecular Cell, 2021, 81, 3965-3978.e5.	4.5	50

#	Article	IF	Citations
109	Slow as Molasses is required for polarized membrane growth and germ cell migration in <i> Drosophila < /i > Development (Cambridge), 2002, 129, 3925-3934.</i>	1.2	50
110	Identification of genes controlling germ cell migration and embryonic gonad formation in Drosophila. Development (Cambridge), 1998, 125, 667-78.	1.2	49
111	Cell-cell signaling, microtubules, and the loss of symmetry in the drosophila oocyte. Cell, 1995, 83, 353-356.	13.5	48
112	Peroxiredoxin Stabilization of DE-Cadherin Promotes Primordial Germ Cell Adhesion. Developmental Cell, 2011, 20, 233-243.	3.1	46
113	zfh-1 is required for germ cell migration and gonadal mesoderm development in Drosophila. Development (Cambridge), 1998, 125, 655-66.	1.2	46
114	Angelika Amon (1967–2020). Cell, 2021, 184, 10-14.	13.5	44
115	<i>l(3)malignant brain tumor</i> and Three Novel Genes Are Required for Drosophila Germ-Cell Formation. Genetics, 2003, 165, 1889-1900.	1.2	44
116	Whole genome screen reveals a novel relationship between Wolbachia levels and Drosophila host translation. PLoS Pathogens, 2018, 14, e1007445.	2.1	42
117	The cellular basis of hybrid dysgenesis and Stellate regulation in Drosophila. Current Opinion in Genetics and Development, 2015, 34, 88-94.	1.5	38
118	A single-cell atlas reveals unanticipated cell type complexity in <i>Drosophila</i> ovaries. Genome Research, 2021, 31, 1938-1951.	2.4	38
119	Germ-cell attraction. Nature, 2003, 421, 226-227.	13.7	36
120	Curly Encodes Dual Oxidase, Which Acts with Heme Peroxidase Curly Su to Shape the Adult Drosophila Wing. PLoS Genetics, 2015, 11, e1005625.	1.5	36
121	A Selective Screen Reveals Discrete Functional Domains in Drosophila Nanos. Genetics, 1999, 153, 1825-1838.	1.2	35
122	Lipid phosphate phosphatase activity regulates dispersal and bilateral sorting of embryonic germ cells in <i>Drosophila</i>). Development (Cambridge), 2010, 137, 1815-1823.	1.2	34
123	Differential requirements of a mitotic acetyltransferase in somatic and germ line cells. Developmental Biology, 2008, 323, 197-206.	0.9	33
124	Phenotypic comparison between maternal and zygotic genes controlling the segmental pattern of the <i>Drosophila</i> embryo. Development (Cambridge), 1988, 104, 17-27.	1.2	31
125	Germ-plasm formation and germ-cell determination in Drosophila. Current Opinion in Genetics and Development, 1992, 2, 543-549.	1.5	29
126	Identification and Analysis of Mutations inbob, Doaand Eight New Genes Required for Oocyte Specification and Development inDrosophila melanogaster. Genetics, 2003, 164, 1435-1446.	1.2	29

#	Article	IF	CITATIONS
127	Domain-specific control of germ cell polarity and migration by multifunction Tre1 GPCR. Journal of Cell Biology, 2017, 216, 2945-2958.	2.3	28
128	GCL and CUL3 Control the Switch between Cell Lineages by Mediating Localized Degradation of an RTK. Developmental Cell, 2017, 42, 130-142.e7.	3.1	27
129	nanos is an evolutionarily conserved organizer of anterior-posterior polarity. Development (Cambridge), 1995, 121, 1899-910.	1.2	27
130	Slow as molasses is required for polarized membrane growth and germ cell migration in Drosophila. Development (Cambridge), 2002, 129, 3925-34.	1.2	27
131	Molecular Analysis of Kruppel, a Segmentation Gene of Drosophila melanogaster. Cold Spring Harbor Symposia on Quantitative Biology, 1985, 50, 465-473.	2.0	26
132	Metabolism of sphingosine 1-phosphate and lysophosphatidic acid: a genome wide analysis of gene expression in Drosophila. Mechanisms of Development, 2002, 119, S293-S301.	1.7	25
133	A Maternal Screen for Genes Regulating Drosophila Oocyte Polarity Uncovers New Steps in Meiotic Progression. Genetics, 2007, 176, 1967-1977.	1,2	24
134	<i>Drosophila</i> primordial germ cell migration requires epithelial remodeling of the endoderm. Development (Cambridge), 2012, 139, 2101-2106.	1.2	24
135	Gonadal mesoderm and fat body initially follow a common developmental path in Drosophila. Development (Cambridge), 1998, 125, 837-44.	1,2	23
136	Quantitative Differences in a Single Maternal Factor Determine Survival Probabilities among Drosophila Germ Cells. Current Biology, 2017, 27, 291-297.	1.8	22
137	Germ Plasm Formation and Germ Cell Determination in <i>Drosophila</i> . Novartis Foundation Symposium, 1994, 182, 282-304.	1,2	22
138	Germ plasm assembly and germ cell migration in Drosophila. Cold Spring Harbor Symposia on Quantitative Biology, 1997, 62, 1-11.	2.0	22
139	Drosophila oogenesis: Versatile spn doctors. Current Biology, 1999, 9, R55-R58.	1.8	20
140	Cell migration in Drosophila. Current Opinion in Genetics and Development, 1999, 9, 473-478.	1.5	20
141	Follow the fatty brick road: lipid signaling in cell migration. Current Opinion in Genetics and Development, 2006, 16, 348-354.	1.5	20
142	From screens to genes: prospects for insertional mutagenesis in zebrafish Genes and Development, 1996, 10, 3077-3080.	2.7	19
143	Hedgehog does not guide migrating Drosophila germ cells. Developmental Biology, 2009, 328, 355-362.	0.9	17
144	The Drosophila Actin Regulator ENABLED Regulates Cell Shape and Orientation during Gonad Morphogenesis. PLoS ONE, 2012, 7, e52649.	1.1	17

#	Article	IF	CITATIONS
145	Regulating Gene Expression in the Drosophila Germ Line. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 1-8.	2.0	16
146	Oogenesis: Setting one sister above the rest. Current Biology, 2001, 11, R162-R165.	1.8	15
147	Altered dynein-dependent transport in piRNA pathway mutants. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 9691-9696.	3.3	14
148	L(3)mbt and the LINT complex safeguard cellular identity in the Drosophila ovary. Development (Cambridge), 2018, 145, .	1.2	14
149	Germ plasm formation and germ cell determination. Seminars in Developmental Biology, 1993, 4, 149-159.	1.3	13
150	Collectively stabilizing and orienting posterior migratory forces disperses cell clusters in vivo. Nature Communications, 2020, 11, 4477.	5.8	13
151	Structure and domain organization of Drosophila Tudor. Cell Research, 2014, 24, 1146-1149.	5.7	12
152	Establishment of embryonic polarity during Drosophila oogenesis. Seminars in Developmental Biology, 1995, 6, 25-38.	1.3	10
153	Modeling Human Disease. Science, 2012, 337, 269-269.	6.0	10
154	A transitory signaling center controls timing of primordial germ cell differentiation. Developmental Cell, 2021, 56, 1742-1755.e4.	3.1	10
155	A functional antagonism between the pgc germline repressor and torso in the development of somatic cells. EMBO Reports, 2009, 10, 1059-1065.	2.0	9
156	Model organism databases are in jeopardy. Development (Cambridge), 2021, 148, .	1.2	9
157	A Genetic Analysis of Early Neurogenesis in Drosophila. , 1984, , 129-143.		9
158	A role of polycomb group genes in the regulation of gap gene expression in Drosophila. Trends in Genetics, 1994, 10, 264.	2.9	7
159	Drosophila development: Homeodomains and translational control. Current Biology, 1996, 6, 773-775.	1.8	7
160	All about the RNA after all. ELife, 2017, 6, .	2.8	7
161	Tumbling, an Interactive Way to Move Forward. Science's STKE: Signal Transduction Knowledge Environment, 2007, 2007, pe63.	4.1	6
162	Cell migration: Don't tread on me. Current Biology, 1997, 7, R148-R150.	1.8	5

#	Article	lF	CITATIONS
163	Genetic Modifier Screens to Identify Components of a Redox-Regulated Cell Adhesion and Migration Pathway. Methods in Enzymology, 2013, 528, 197-215.	0.4	4
164	Not just Salk. Science, 2017, 357, 1105-1106.	6.0	4
165	DEVELOPMENT: PARallels in Axis Formation. Science, 2000, 288, 1759-1760.	6.0	3
166	Changing Places: A Novel Type of Niche and Stem Cell Coordination in the Drosophila Ovary. Cell Stem Cell, 2007, 1, 239-240.	5.2	3
167	Matchmaking molecule for egg and sperm. Science, 2018, 361, 974-975.	6.0	3
168	Meeting report: mobile genetic elements and genome plasticity 2018. Mobile DNA, 2018, 9, 21.	1.3	3
169	RNA Localization During Oogenesis in Drosophila. Advances in Developmental Biology (1992), 1994, , 115-136.	1.1	0
170	Ruth Lehmann: Germ cells do things differently. Journal of Cell Biology, 2011, 194, 660-661.	2.3	0
171	Transforming Samples into Data – Experimental Design and Sample Preparation for Electron Microscopy. Microscopy and Microanalysis, 2019, 25, 714-715.	0.2	0
172	Preface. Current Topics in Developmental Biology, 2019, 135, xi-xiv.	1.0	0
173	Germ line versus soma: distinction, competition, and interaction. Harvey Lectures, 2005, 101, 21-38.	0.2	0
174	Basic science under threat: Lessons from the Skirball Institute. Cell, 2022, 185, 755-758.	13.5	0