Veijo Jormalainen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/644098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Global patterns in the impact of marine herbivores on benthic primary producers. Ecology Letters, 2012, 15, 912-922.	6.4	350
2	The Baltic Sea as a time machine for the future coastal ocean. Science Advances, 2018, 4, eaar8195.	10.3	339
3	CONTENTS OF SOLUBLE, CELL-WALL-BOUND AND EXUDED PHLOROTANNINS IN THE BROWN ALGA Fucus vesiculosus, WITH IMPLICATIONS ON THEIR ECOLOGICAL FUNCTIONS. Journal of Chemical Ecology, 2005, 31, 195-212.	1.8	293
4	Precopulatory Mate Guarding in Crustaceans: Male Competitive Strategy and Intersexual Conflict. Quarterly Review of Biology, 1998, 73, 275-304.	0.1	235
5	Optimization of cryptic coloration in heterogeneous habitats. Biological Journal of the Linnean Society, 1999, 67, 151-161.	1.6	192
6	High-performance liquid chromatographic analysis of phlorotannins from the brown algaFucus Vesiculosus. Phytochemical Analysis, 2007, 18, 326-332.	2.4	139
7	Feeding preferences and performance of a marine isopod on seaweed hosts: cost of habitat specialization. Marine Ecology - Progress Series, 2001, 220, 219-230.	1.9	113
8	NUTRIENT ENHANCEMENT INCREASES PERFORMANCE OF A MARINE HERBIVORE VIA QUALITY OF ITS FOOD ALGA. Ecology, 2002, 83, 1052-1064.	3.2	111
9	Stress Ecology in Fucus: Abiotic, Biotic and Genetic Interactions. Advances in Marine Biology, 2011, 59, 37-105.	1.4	95
10	Female resistance and duration of mate-guarding in three aquatic peracarids (Crustacea). Behavioral Ecology and Sociobiology, 1995, 36, 43-48.	1.4	85
11	Induction of phlorotannin production in a brown alga: defense or resource dynamics?. Oikos, 2003, 103, 640-650.	2.7	85
12	Variation in natural selection for growth and phlorotannins in the brown alga <i>Fucus vesiculosus</i> . Journal of Evolutionary Biology, 2004, 17, 807-820.	1.7	81
13	EFFECTS OF NUTRIENTS, HERBIVORY, AND DEPTH ON THE MACROALGAL COMMUNITY IN THE ROCKY SUBLITTORAL. Ecology, 2007, 88, 839-852.	3.2	74
14	Variation of Phlorotannins Among Three Populations of Fucus vesiculosus as Revealed by HPLC and Colorimetric Quantification. Journal of Chemical Ecology, 2008, 34, 57-64.	1.8	74
15	Inducible resistance to herbivory in Fucus vesiculosus—duration, spreading and variation with nutrient availability. Marine Ecology - Progress Series, 2004, 273, 109-120.	1.9	67
16	Genotypic variation in tolerance and resistance to fouling in the brown alga Fucus vesiculosus. Oecologia, 2005, 144, 196-205.	2.0	65
17	Sexual differences in habitat selection and activity of the colour polymorphic isopod Idotea baltica. Animal Behaviour, 1989, 38, 576-585.	1.9	64
18	Is the future as tasty as the present? Elevated temperature and hyposalinity affect the quality of Fucus (Phaeophyceae, Fucales) as food for the isopod Idotea balthica. Marine Biology, 2017, 164, 1.	1.5	64

VEIJO JORMALAINEN

#	Article	IF	CITATIONS
19	Differential predation on sexes affects colour polymorphism of the isopod Idotea baltica (Pallas). Biological Journal of the Linnean Society, 1995, 55, 45-68.	1.6	63
20	Macroalgal Chemical Defenses and Their Roles in Structuring Temperate Marine Communities. , 2008, , 57-89.		62
21	Evolution of sex differences in microhabitat choice and colour polymorphism inIdotea baltica. Animal Behaviour, 1997, 54, 769-778.	1.9	59
22	Within-plant Variation in Phenolic Content and Toughness of the Brown Alga Fucus vesiculosus L Botanica Marina, 1989, 32, .	1.2	56
23	Why does herbivore sex matter? Sexual differences in utilization of Fucus vesiculosus by the isopod Idotea baltica. Oikos, 2001, 93, 77-86.	2.7	56
24	Costs of intersexual conflict in the isopodIdotea baltica. Journal of Evolutionary Biology, 2001, 14, 763-772.	1.7	55
25	Integrating experimental and distribution data to predict future species patterns. Scientific Reports, 2019, 9, 1821.	3.3	51
26	Resistance of the brown alga <i>Fucus vesiculosus</i> to herbivory. Oikos, 2009, 118, 713-722.	2.7	49
27	Optimization of cryptic coloration in heterogeneous habitats. Biological Journal of the Linnean Society, 1999, 67, 151-161.	1.6	47
28	Female Resistance and Precopulatory Guarding in the Isopod Idotea Baltica (Pallas). Behaviour, 1993, 125, 219-231.	0.8	45
29	Responses of growth and phlorotannins in Fucus vesiculosus to nutrient enrichment and herbivory. Aquatic Ecology, 2005, 39, 201-211.	1.5	45
30	Macroalgal Communities Face the Challenge of Changing Biotic Interactions: Review with Focus on the Baltic Sea. Ambio, 2007, 36, 203-211.	5.5	45
31	Delayed Budbreak: A Defensive Response of Mountain Birch to Early-Season Defoliation?. Oikos, 1989, 54, 87.	2.7	41
32	Intersexual conflict over precopula duration in mate guarding crustacea. Behavioural Processes, 1994, 32, 265-283.	1.1	41
33	Male Choice and Maleâ€male Competition in <i>Idotea baitica</i> (Crustacea, Isopoda). Ethology, 1994, 96, 46-57.	1.1	40
34	Different roles of feeding and protection in diel microhabitat choice of sexes in Idotea baltica. Oecologia, 2000, 122, 445-451.	2.0	38
35	Seabird Guano Fertilizes Baltic Sea Littoral Food Webs. PLoS ONE, 2013, 8, e61284.	2.5	38
36	Abundance and dispersal trajectories of floating <scp><i>F</i></scp> <i>ucus vesiculosus</i> in the <scp>N</scp> orthern <scp>B</scp> altic <scp>S</scp> ea. Limnology and Oceanography, 2015, 60, 2173-2184.	3.1	36

VEIJO JORMALAINEN

#	Article	IF	CITATIONS
37	Dynamics of intersexual conflict over precopulatory mate guarding in two populations of the isopod Idotea baltica. Animal Behaviour, 2000, 60, 85-93.	1.9	35
38	Compromised strategy resolves intersexual conflict over pre-copulatory guarding duration. Evolutionary Ecology, 1996, 10, 661-680.	1.2	33
39	Localized Effects of Branch Defoliations on Weight Gain of Female Inflorescences in Betula pubescens. Oikos, 1988, 51, 327.	2.7	32
40	Withinâ€Alga Integration and Compensation: Effects of Simulated Herbivory on Growth and Reproduction of the Brown Alga, Fucus vesiculosus. International Journal of Plant Sciences, 2002, 163, 815-823.	1.3	32
41	Microhabitat segregation and cannibalism in an endangered freshwater isopod, Thermosphaeroma thermophilum. Oecologia, 1997, 111, 271-279.	2.0	31
42	Nutrient availability modifies species abundance and community structure of Fucus-associated littoral benthic fauna. Marine Environmental Research, 2010, 70, 283-292.	2.5	31
43	Female Reproductive Cycle and Sexual Conflict over Precopulatory Mate-guarding in Thermosphaeroma (Crustacea, Isopoda). Ethology, 1999, 105, 233-246.	1.1	30
44	Induced resistance in a brown alga: phlorotannins, genotypic variation and fitness costs for the crustacean herbivore. Oecologia, 2010, 162, 685-695.	2.0	30
45	Polar extracts of the brown alga Fucus vesiculosus (L.) reduce assimilation efficiency but do not deter the herbivorous isopod Idotea baltica (Pallas). Journal of Experimental Marine Biology and Ecology, 2005, 317, 143-157.	1.5	29
46	Fouling mediates grazing: intertwining of resistances to multiple enemies in the brown alga Fucus vesiculosus. Oecologia, 2008, 155, 559-569.	2.0	29
47	Bottom–up and cascading top–down control of macroalgae along a depth gradient. Journal of Experimental Marine Biology and Ecology, 2007, 343, 52-63.	1.5	28
48	Genetic and environmental variation in performance of a marine isopod: effects of eutrophication. Oecologia, 2004, 140, 302-311.	2.0	27
49	Grazing and nutrients reduce recruitment success of Fucus vesiculosus L. (Fucales: Phaeophyceae). Estuarine, Coastal and Shelf Science, 2008, 78, 437-444.	2.1	26
50	Forecast climate change conditions sustain growth and physiology but hamper reproduction in range-margin populations of a foundation rockweed species. Marine Environmental Research, 2018, 141, 205-213.	2.5	23
51	Low abundance of floating marine debris in the northern Baltic Sea. Marine Pollution Bulletin, 2019, 149, 110522.	5.0	22
52	Feeding and growth of the isopod <i>Idotea baltica</i> on the brown alga <i>Fucus vesiculosus</i> : Roles of inter-population and within-plant variation in plant quality. Ecoscience, 2002, 9, 332-338.	1.4	21
53	Divergence in host use ability of a marine herbivore from two habitat types. Journal of Evolutionary Biology, 2009, 22, 1545-1555.	1.7	21
54	Seasonality elicits herbivores' escape from trophic control and favors induced resistance in a temperate macroalga. Ecology, 2014, 95, 3035-3045.	3.2	21

Veijo Jormalainen

#	Article	IF	CITATIONS
55	Reproductive anatomy, precopulatory mate guarding, and paternity in the socorro isopod,thermosphaeroma thermophilum. Marine and Freshwater Behaviour and Physiology, 1999, 32, 39-56.	0.9	20
56	Reckless males, rational females: Dynamic trade-off between food and shelter in the marine isopod Idotea balthica. Behavioural Processes, 2008, 79, 175-181.	1.1	20
57	Effect of female resistance on size-dependent precopula duration in mate-guarding Crustacea. Animal Behaviour, 1994, 47, 1471-1474.	1.9	19
58	The invasive mud crab enforces a major shift in a rocky littoral invertebrate community of the Baltic Sea. Biological Invasions, 2016, 18, 1409-1419.	2.4	19
59	Tolerance and potential for adaptation of a Baltic Sea rockweed under predicted climate change conditions. Marine Environmental Research, 2018, 134, 76-84.	2.5	19
60	Reproductive ecology of the isopodIdotea baltica(Pallas) in the Northern Baltic. Ophelia, 1989, 30, 213-223.	0.3	18
61	Geographical divergence in host use ability of a marine herbivore in alga–grazer interaction. Evolutionary Ecology, 2008, 22, 545-559.	1.2	18
62	Habitat-specific gut microbiota of the marine herbivore Idotea balthica (Isopoda). Journal of Experimental Marine Biology and Ecology, 2014, 455, 22-28.	1.5	16
63	Defensive role of macroalgal phlorotannins: benefits and trade-offs under natural herbivory. Marine Ecology - Progress Series, 2017, 566, 79-90.	1.9	15
64	Fighting costs stabilize aggressive behavior in intersexual conflicts. Evolutionary Ecology, 1999, 13, 245.	1.2	14
65	Sexual and local divergence in host exploitation in the marine herbivore Idotea baltica (Isopoda). Journal of Experimental Marine Biology and Ecology, 2008, 367, 118-126.	1.5	14
66	Does the Aquatic Isopod Idotea baltica Minimize the Survival Costs of Reproduction?. Oikos, 1988, 52, 245.	2.7	13
67	Selective consumption and facilitation by mesograzers in adult and colonizing macroalgal assemblages. Marine Biology, 2008, 154, 787-794.	1.5	12
68	Variations in tolerance to climate change in a key littoral herbivore. Marine Biology, 2018, 165, 1.	1.5	11
69	Geographic variation in fitnessâ€related traits of the bladderwrack Fucus vesiculosus along the Baltic Seaâ€North Sea salinity gradient. Ecology and Evolution, 2019, 9, 9225-9238.	1.9	11
70	Reproductive effort of short shoots in silver birch (Betula pendula Roth). Experientia, 1988, 44, 540-541.	1.2	10
71	Gene regulatory response to hyposalinity in the brown seaweed Fucus vesiculosus. BMC Genomics, 2020, 21, 42.	2.8	10

72 Mating Strategies in Isopods. , 2007, , 167-190.

VEIJO JORMALAINEN

#	Article	IF	CITATIONS
73	Cormorant-induced shifts in littoral communities. Marine Ecology - Progress Series, 2015, 541, 15-30.	1.9	10
74	Components of Reproductive Effort in the Aquatic Isopod Idotea baltica. Oikos, 1988, 52, 250.	2.7	9
75	Tolerance to climate change of the clonally reproducing endemic Baltic seaweed, <i>Fucus radicans</i> : is phenotypic plasticity enough?. Journal of Phycology, 2018, 54, 888-898.	2.3	9
76	Living on the edge: Gamete release and subsequent fertilisation in Fucus vesiculosus (Phaeophyceae) are weakened by climate change–forced hyposaline conditions. Phycologia, 2019, 58, 111-114.	1.4	9
77	Growth and reproduction of an estuarine population of the colonial hydroidCordylophora caspia (Pallas) in the northern Baltic Sea. Helgolâ^šA§nder Meeresuntersuchungen, 1994, 48, 407-418.	0.2	8
78	Genetic variation in photosynthetic performance and tolerance to osmotic stress (desiccation,) Tj ETQq0 0 0 rgB	T /Overlock 2.3	10 Tf 50 54 8
79	Nutrient enrichment overwhelms top-down control in algal communities around cormorant colonies. Journal of Experimental Marine Biology and Ecology, 2016, 476, 31-40.	1.5	8
80	It takes two to stay afloat: interplay of morphology and physiological acclimation ensures long-term floating dispersal of the bladderwrack <i>Fucus vesiculosus</i> (Phaeophyceae, Fucales). European Journal of Phycology, 2020, 55, 242-252.	2.0	7
81	Geographic covariation of chemical quality of the host alga Fucus vesiculosus with fitness of the herbivorous isopod Idotea baltica. Marine Biology, 2003, -1, 1-1.	1.5	6
82	Quantifying variation and chemical correlates of bladderwrack quality - herbivore population makes a difference. Functional Ecology, 2011, 25, 900-909.	3.6	6
83	Genetic variation of a foundation rockweed species affects associated communities. Ecology, 2017, 98, 2940-2951.	3.2	6
84	Grazing effects in macroalgal communities depend on timing of patch colonization. Journal of Experimental Marine Biology and Ecology, 2008, 360, 39-46.	1.5	5
85	Climate change driven hyposalinity as a selective agent in the littoral mesoherbivore Idotea balthica. Marine Environmental Research, 2021, 163, 105216.	2.5	3
86	Ignored patterns in studies of local adaptations: When the grass is greener on the allopatric site. Ideas in Ecology and Evolution, 2013, 6, .	0.1	3
87	Double-edged sword of desalination: Decreased growth and increased grazing endanger range-margin Fucus populations. Journal of Experimental Marine Biology and Ecology, 2022, 547, 151666.	1.5	3
88	Waterâ€borne defence induction of a rockweed in the wild. Functional Ecology, 2019, 33, 786-797.	3.6	2
89	White-tailed eagle (Haliaeetus albicilla) and great cormorant (Phalacrocorax carbo) nestlings as spatial sentinels of Baltic acidic sulphate soil associated metal contamination. Science of the Total Environment, 2020, 718, 137424.	8.0	2
90	Eutrophication and the Challenge of Changing Biotic Interactions. , 2016, , 179-194.		1

#	Article	IF	CITATIONS
91	A Comparison of Genetic Variation in Two Endemic Thermal Spring Isopods,Thermosphaeroma thermophilumandT. milleri(Crustacea - Isopoda: Sphaeromatidae). , 0, , .		Ο
92	Cormorants have negligible seascape-scale impacts on benthic vegetation communities. Marine Ecology - Progress Series, 2020, 654, 195-207.	1.9	0