Yuji Ohashi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6440048/publications.pdf

Version: 2024-02-01

		430874	501196
196	1,690	18	28
papers	citations	h-index	g-index
196	196	196	743
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Temperature Characteristics of Resonance Frequency for Double-Layered Thickness-Shear Resonator. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2022, 69, 870-877.	3.0	3
2	Influence of reflected waves at the bonded boundary in double-layered thickness-shear resonator using \hat{l}_{\pm} -quartz. Japanese Journal of Applied Physics, 2022, 61, SG1055.	1.5	1
3	Growth of Tb-doped BaCl2/NaCl/KCl ternary eutectic and its luminescence properties. Journal of Growth and scintillation properties of Ce doped <mml:math< td=""><td>1.5</td><td>3</td></mml:math<>	1.5	3
4	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e270" altimg="si3.svg"> <mml:msup><mml:mrow></mml:mrow><mml:mrow></mml:mrow></mml:msup> LiBr/LaBr <mml:math altimg="si13.svg" display="inline" id="d1e278" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mrow< td=""><td>1.6</td><td>8</td></mml:mrow<></mml:msub></mml:math>	1.6	8
5	arting= \$113.svg > mml:msub > mml:mrow / mml:mrow > (mml:mrow > (mml:msub > mml:mrow > (mml:msub > mml:msub > (mml:msub > mml:msub > (mml:msub > (mml:	1.5	6
6	Growth and scintillation properties of directionally solidified Ce:LaCl3/AECl2 (AE = Mg, Ca, Sr) eutectic Scintillators. Journal of Crystal Growth, 2022, 584, 126549.	1.5	1
7	Growth and scintillation properties of LiBr/CeBr ₃ eutectic scintillator for neutron detection. Japanese Journal of Applied Physics, 2022, 61, SC1028.	1.5	6
8	Growth of thallium-doped CsI/CsCl/KCl eutectics and their scintillation properties. Optical Materials: X, 2022, , 100159.	0.8	0
9	Optimum measurement condition for V(x) method using the line-focus-beam ultrasonic-material-characterization system. Japanese Journal of Applied Physics, 2021, 60, 078002.	1.5	O
10	Crystal growth of La2Zr2O7 by micro-pulling-down method using Mo and W crucibles. Journal of Crystal Growth, 2021, 575, 126357.	1.5	2
11	Crystal growth and optical properties of Ce-doped (La,Y)2Si2O7 single crystal. Journal of Crystal Growth, 2021, 572, 126252.	1.5	1
12	Growth and scintillation properties of Tl-doped CsI/KI/KCl ternary eutectics. Journal of Crystal Growth, 2021, 573, 126287.	1.5	3
13	Growth and scintillation properties of Tl-doped CsI/CsCl/NaCl ternary eutectic scintillators. Japanese Journal of Applied Physics, 2021, 60, SBBK01.	1.5	8
14	Novel Method of Search for Transparent Optical Materials with Extremely High Melting Point. Crystal Growth and Design, 2021, 21, 572-578.	3.0	1
15	Relationship Between Li/Ce Concentration and the Luminescence Properties of Codoped Gd 3 (Ga, Al) 5 O 12 :Ce. Physica Status Solidi (B): Basic Research, 2020, 257, 1900504.	1.5	4
16	Crystal growth and optical properties of a Ce2Si2O7 single crystal. Optical Materials, 2020, 109, 110210.	3.6	4
17	Microstructure and Mechanical Properties of Platinum Fiber Fabricated by Unidirectional Solidification. Crystals, 2020, 10, 216.	2.2	3
18	Single-crystal growth, structure and luminescence properties of Cs2HfCl3Br3. Optical Materials, 2020, 106, 109942.	3.6	5

#	Article	IF	CITATIONS
19	Development of double layered thickness-shear resonator using langasite-type piezoelectric single crystal. Japanese Journal of Applied Physics, 2020, 59, SKKC03.	1.5	7
20	Growth and Scintillation Properties of a New Red-Emitting Scintillator Rbâ,,Hflâ,† for the Fiber-Reading Radiation Monitor. IEEE Transactions on Nuclear Science, 2020, 67, 1055-1062.	2.0	7
21	Growth and Scintillation Properties of Directionally Solidified Ce:LaBr3/AEBr2 (AE = Mg, Ca, Sr, Ba) Eutectic System. Crystals, 2020, 10, 584.	2.2	7
22	Tungsten co-doping effects on Ce:Gd3Ga3Al2O12 scintillator grown by the micro-pulling down method. Journal of Crystal Growth, 2020, 539, 125513.	1.5	7
23	Fiber-read radiation monitoring system using an optical fiber and red-emitting scintillator for ultra-high-dose conditions. Applied Physics Express, 2020, 13, 047002.	2.4	14
24	Phase diagram of Bal2-Lul3 system and growth of Bal2/Lul3 eutectic scintillator. Journal of Crystal Growth, 2020, 536, 125573.	1.5	3
25	Control of Microstructure for Co-Cr-Mo Fibers Fabricated by Unidirectional Solidification. Crystals, 2020, 10, 11.	2.2	3
26	Bulk Single Crystal Growth of W Co-Doped Ce:Gdâ,fGaâ,fAlâ,,Oâ,â,, by Czochralski Method. IEEE Transactions on Nuclear Science, 2020, 67, 1045-1048.	2.0	5
27	Development of Gamma-Ray Detector Arrays Consisting of Diced Eu-Doped Srl2 Scintillator Arrays and TSV-MPPC Arrays. IEEE Transactions on Nuclear Science, 2020, 67, 999-1002.	2.0	O
28	Fast Scanning Method for Measuring Material Homogeneity using the Line-Focus-Beam Ultrasonic-Material-Characterization System. , 2020, , .		1
29	Crystal growth and scintillation properties of tube shape-controlled Ce-doped Y ₃ Al ₅ O ₁₂ single crystals grown by micro-pulling-down method. Applied Physics Express, 2020, 13, 125503.	2.4	5
30	Crystal Growth and Scintillation Properties of Carbazole for Neutron Detection. IEEE Transactions on Nuclear Science, 2020, 67, 1027-1031.	2.0	4
31	Effect of Thickness Ratio of Double Layered Thickness-Shear Resonator on Temperature Characteristics of Resonance Frequency. , 2020, , .		O
32	Al-doping effects on mechanical, optical and scintillation properties of Ce:(La,Gd)2Si2O7 single crystals. Optical Materials, 2019, 87, 11-15.	3.6	4
33	Single crystal growth and luminescent properties of Tb doped GdTaO4 by the $\hat{l}^{1}\!\!/\!\!4$ -pulling down method. Optical Materials, 2019, 87, 94-97.	3.6	11
34	Evaluation of SiO2 Thin films on piezoelectric substrates using line-focus-beam ultrasonic material characterization system. Japanese Journal of Applied Physics, 2019, 58, SGGA05.	1.5	6
35	Al concentration dependence of crystal structure for Ca3Ta(Ga,Al)3Si2O14 piezoelectric single crystals. Journal of Solid State Chemistry, 2019, 277, 195-200.	2.9	4
36	Crystal growth and scintillation properties of Eu-doped Ca(BrxI1–x)2 crystals. Radiation Measurements, 2019, 127, 106139.	1.4	2

#	Article	IF	CITATIONS
37	Crystal growth and luminescence properties of organic crystal scintillators for α-rays detection. Optical Materials, 2019, 94, 58-63.	3.6	14
38	Development of a novel red-emitting cesium hafnium iodide scintillator. Radiation Measurements, 2019, 124, 54-58.	1.4	17
39	Thermoelectric Properties of Nb-Doped SrTiO3/TiO2 Eutectic Solids Fabricated by Unidirectional Solidification. Journal of Electronic Materials, 2019, 48, 1827-1832.	2.2	7
40	Crystal growth and scintillation properties of Pr-doped Srl2 single crystals. Journal of Crystal Growth, 2018, 487, 126-130.	1.5	3
41	Melt growth of zinc aluminate spinel single crystal by the micro-pulling down method under atmospheric pressure. Journal of Crystal Growth, 2018, 492, 67-70.	1.5	5
42	Growth and characterization of directionally solidified eutectic systems for scintillator applications. Journal of Crystal Growth, 2018, 498, 170-178.	1.5	15
43	Crystal structure of Ce-doped (La,Gd)2Si2O7 grown by the Czochralski process. Journal of Alloys and Compounds, 2018, 748, 404-410.	5.5	5
44	Growth and luminescent properties of Ce and Eu doped Cesium Hafnium Iodide single crystalline scintillators. Journal of Crystal Growth, 2018, 492, 1-5.	1.5	16
45	Fabrication of flexible Ir and Ir-Rh wires and application for thermocouple. Journal of Crystal Growth, 2018, 487, 72-77.	1.5	16
46	Crystal growth and temperature dependence of light output of Ce-doped (Gd, La, Y)2Si2O7 single crystals. Journal of Crystal Growth, 2018, 486, 173-177.	1.5	3
47	Crystal growth and piezoelectric properties of Ca3Ta(Ga0.9Sc0.1)3Si2O14 bulk single crystal. Journal of Crystal Growth, 2018, 485, 69-72.	1.5	2
48	Crystal Growth and Optical Properties of Organic Crystals for Neutron Scintillators. Plasma and Fusion Research, 2018, 13, 2405011-2405011.	0.7	4
49	Fabrication of Metallic Fibers with High Melting Point and Poor Workability by Unidirectional Solidification. Advanced Engineering Materials, 2018, 20, 1700506.	3.5	19
50	Li $+$, Na $+$ and K $+$ co-doping effects on scintillation properties of Ce:Gd 3 Ga 3 Al 2 O 12 single crystals. Journal of Crystal Growth, 2018, 491, 1-5.	1.5	12
51	Mg,Ce co-doped Lu ₂ Gd ₁ (Ga,Al) ₅ O ₁₂ by micro-pulling down method and their luminescence properties. Japanese Journal of Applied Physics, 2018, 57, 04FJ06.	1.5	2
52	Single crystal growth of submillimeter diameter sapphire tube by the micro-pulling down method. Journal of Crystal Growth, 2018, 492, 45-49.	1.5	9
53	Effects of Ca/Sr ratio control on optical and scintillation properties of Eu-doped Li(Ca,Sr)AlF 6 single crystals. Journal of Crystal Growth, 2018, 490, 71-76.	1.5	4
54	High-temperature electrical resistivity and loss tangent of langasite-family Ca ₃ Nb(Ga,Al) ₃ Si ₂ O ₁₄ single crystals. Japanese Journal of Applied Physics, 2018, 57, 11UD04.	1.5	3

#	Article	IF	CITATIONS
55	Development and evaluation of ultrasound-facilitated drug delivery device. Japanese Journal of Applied Physics, 2018, 57, 11UD07.	1.5	1
56	Evaluation of Piezoelectric Ta <inf>2</inf> O <inf>5</inf> Thin Films Using Line-Focus-Beam Ultrasonic Material Characterization System. , 2018, , .		0
57	Propagation properties of leaky surface acoustic wave on water-loaded piezoelectric substrate. Japanese Journal of Applied Physics, 2018, 57, 07LC10.	1.5	9
58	Investigation of Material Constants of CaTiO3 Doped (K,Na)NbO3 Film by MEMS-Based Test Elements. Micromachines, 2018, 9, 558.	2.9	1
59	Phase formation and crystal growth of Ca3TaAl3Si2O14 piezoelectric single crystal. Japanese Journal of Applied Physics, 2018, 57, 11UD11.	1.5	2
60	Growth and Scintillation Properties of Two-Inch-Diameter SrI2(Eu) Single Crystals. Crystal Growth and Design, 2018, 18, 3747-3752.	3.0	9
61	Growth and Luminescent Properties of Cs ₂ HfCl ₆ Scintillators Doped With Alkaline Earth Metals. IEEE Transactions on Nuclear Science, 2018, 65, 2169-2173.	2.0	8
62	Crystal growth, optical properties, and scintillation responses of Pr-doped CeBr ₃ single crystals. Japanese Journal of Applied Physics, 2018, 57, 070312.	1.5	2
63	Comprehensive Study on Ce-Doped (Gd, La) < sub > 2 < / sub > 2 < / sub > 0 < sub > 7 < / sub > Scintillator. IEEE Transactions on Nuclear Science, 2018, 65, 2136-2139.	2.0	7
64	Optimization of Dopants and Scintillation Fibers' Diameter of GdAlO ₃ /\$alpha\$-Al ₂ O ₃ Eutectic for High-Resolution X-Ray Imaging. IEEE Transactions on Nuclear Science, 2018, 65, 2036-2040.	2.0	13
65	Effects of Na co-doping on optical and scintillation properties of Eu:LiCaAlF6 scintillator single crystals. Journal of Crystal Growth, 2017, 468, 399-402.	1.5	6
66	Improvement of dopant distribution in radial direction of single crystals grown by micro-pulling-down method. Journal of Crystal Growth, 2017, 474, 178-182.	1.5	7
67	Temperature dependence of Ce-doped (Gd 0.6 La 0.4) 2 Si 2 O 7 scintillators. Optical Materials, 2017, 65, 56-59.	3.6	6
68	Relationships among chemical composition, lattice constants, and acoustic properties for Ca3Ta(Ga1â^'Al)3Si2O14 single crystals. Journal of Crystal Growth, 2017, 468, 376-381.	1.5	3
69	Growth of platinum fibers using the micro-pulling-down method. Journal of Crystal Growth, 2017, 468, 403-406.	1.5	5
70	Mg co-doping effects on Ce doped Y3(Ga,Al)5O12 scintillator. IOP Conference Series: Materials Science and Engineering, 2017, 169, 012013.	0.6	3
71	Growth and scintillation properties of Eu doped LiSrl3/Lil eutectics. Optical Materials, 2017, 68, 70-74.	3.6	23
72	Growth of LiF/LiBaF3 eutectic scintillator crystals and their optical properties. Journal of Materials Science, 2017, 52, 5531-5536.	3.7	6

#	Article	IF	CITATIONS
73	Development of the growth technique on cerium bromide single crystal by Halideâ€microâ€pullingâ€down method. Crystal Research and Technology, 2017, 52, 1600401.	1.3	1
74	Development and melt growth of novel scintillating halide crystals. Optical Materials, 2017, 74, 109-119.	3.6	4
75	Single crystal growth and scintillation properties of Ca(Cl, Br, I)2 single crystal. Ceramics International, 2017, 43, S423-S427.	4.8	11
76	Cesium hafnium chloride scintillator coupled with an avalanche photodiode photodetector. Journal of Instrumentation, 2017, 12, C02042-C02042.	1.2	13
77	Development of a real-time dose monitor with Cr-doped Gd3Ga5O12 infrared scintillator. Radiation Measurements, 2017, 106, 187-191.	1.4	8
78	The divalent ion codoping effect on Ce-doped (Gd, La)2Si2O7 single crystals. Optical Materials, 2017, 68, 42-46.	3.6	2
79	Effects of dopant distribution improvement on optical and scintillation properties for Ce-doped garnet-type single crystals. Journal of Materials Science: Materials in Electronics, 2017, 28, 7151-7156.	2.2	8
80	Development of Eu:Srl2 Scintillator Array for Gamma-Ray Imaging Applications. IEEE Transactions on Nuclear Science, 2017, 64, 1647-1651.	2.0	4
81	Effect of Mg co-doping on scintillation properties of Ce:Gd3(Ga, Al)5O12 single crystals with various Ga/Al ratios. Journal of Crystal Growth, 2017, 468, 420-423.	1.5	14
82	Temperature dependence of acoustic property of Ca ₃ Ta(Ga,Al) ₃ Si ₂ O ₁₄ single crystals. Japanese Journal of Applied Physics, 2017, 56, 07JB03.	1.5	11
83	Growth and scintillation properties of Eu and Ce doped LiSrI3 single crystals. Journal of Materials Science: Materials in Electronics, 2017, 28, 13157-13160.	2.2	0
84	Crystal growth and piezoelectric properties of Ca3Ta(Ga1â^x Scx)3Si2O14 single crystals. Ceramics International, 2017, 43, S136-S139.	4.8	2
85	Single crystal growth of Ce:Gd3(Ga,Al)5O12 with various Mg concentration and their scintillation properties. Journal of Crystal Growth, 2017, 468, 407-410.	1.5	15
86	Development of novel growth methods for halide single crystals. Optical Materials, 2017, 65, 46-51.	3.6	22
87	2 inch size Czochralski growth and scintillation properties of Li + co-doped Ce:Gd 3 Ga 3 Al 2 O 12. Optical Materials, 2017, 65, 52-55.	3.6	18
88	Effects of Al substitution for Ca3Ta(Ga1â^'Al)3Si2O14 piezoelectric single crystals. Journal of Crystal Growth, 2017, 468, 321-325.	1.5	14
89	Crystal growth and optical properties of Gd admixed Ce-doepd Lu2Si2O7 single crystals. Journal of Crystal Growth, 2017, 468, 391-394.	1.5	2
90	Crystal growth and optical properties of indium doped LiCaAlF 6 scintillator single crystals. Optical Materials, 2017, 65, 69-72.	3.6	3

#	Article	IF	CITATIONS
91	Effects of Mg-codoping on luminescence and scintillation properties of Ce doped Lu 3 (Ga,Al) 5 O 12 single crystals. Optical Materials, 2017, 65, 60-65.	3.6	10
92	Engineering of Eu dopant segregation in colquiriite-type fluoride single crystal scintillators. AIP Advances, $2017, 7, \ldots$	1.3	2
93	Ultrasonic microspectroscopy characterization of chemically tempered glass. Japanese Journal of Applied Physics, 2017, 56, 016601.	1.5	1
94	Temperature Dependence of Luminescence Properties for Zr Codoped Ce:(Gd,â€La)2Si2O7 Scintillator. , 2016, , .		1
95	Evaluation of Acoustic Properties for Ca ₃ Nb(Ga _{0.75} Al _{0.25}) ₃ Si ₂ O ₁₄ Sin Crystal Using the Ultrasonic Microspectroscopy System. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2016. 63. 1575-1580.	glę 3.0	5
96	Dependence of acoustic property on Al substitution for Ca ₃ Ta(Ga _{1â^'}) Tj ETQq0 0 0 rgl Journal of Applied Physics, 2016, 55, 07KB06.	BT /Overlo 1.5	ock 10 Tf 50 16
97	High velocity lamb waves in LiTaO3 thin plate for high frequency filters. , 2016, , .		1
98	A <inf>1</inf> mode Lamb wave on thin LiTaO <inf>3</inf> for high frequency acoustic devices. , 2016, , .		0
99	Growth and scintillation properties of 3 in. diameter Ce doped Gd3Ga3Al2O12 scintillation single crystal. Journal of Crystal Growth, 2016, 452, 81-84.	1.5	37
100	Chemical composition characterization of Ca3Ta(Ga0.5Al0.5)3Si2O14 single crystal by the line-focus-beam ultrasonic material characterization system. Journal of Crystal Growth, 2016, 452, 141-145.	1.5	8
101	Crystal growth and luminescence properties of Yb2Si2O7 infra-red emission scintillator. Optical Materials, 2016, 58, 14-17.	3.6	9
102	Large Size Czochralski Growth and Scintillation Properties of. IEEE Transactions on Nuclear Science, 2016, 63, 443-447.	2.0	49
103	Luminescence properties of the Mg co–doped Ce:SrHfO3 ceramics prepared by the Spark Plasma Sintering Method. Radiation Measurements, 2016, 90, 287-291.	1.4	10
104	Growth and scintillation properties of Li and Ce co-doped Lu3Al5O12 scintillator. Journal of Crystal Growth, 2016, 452, 85-88.	1.5	13
105	Growth of N-benzyl-2-methyl-4-nitroaniline (BNA) single crystal fibers by micro-pulling down method. Journal of Crystal Growth, 2016, 452, 162-165.	1.5	8
106	Growth of 2 Inch Eu-doped Srl2 single crystals for scintillator applications. Journal of Crystal Growth, 2016, 452, 73-80.	1.5	13
107	Growth and radioluminescence of metal elements doped LiCaAlF6 single crystals for neutron scintillator. Radiation Measurements, 2016, 90, 170-173.	1.4	3
108	Growth of 1.5-In Eu: Single Crystal and Scintillation Properties. IEEE Transactions on Nuclear Science, 2016, 63, 467-470.	2.0	10

#	Article	IF	Citations
109	Czochralski growth of 2 in. Ce-doped (La,Gd)2Si2O7 for scintillator application. Journal of Crystal Growth, 2016, 452, 57-64.	1.5	6
110	Growth and scintillation properties of Tb doped LiGdF4/LiF eutectic scintillator. Optical Materials, 2016, 61, 134-138.	3.6	16
111	Co-doping effects on luminescence and scintillation properties of Ce doped (Lu,Gd)3(Ga,Al)5O12 scintillator. Optical Materials, 2016, 61, 129-133.	3.6	5
112	Growth and luminescence properties of Eu-doped HfO2/ \hat{l} ±-Al2O3 eutectic scintillator. Journal of Rare Earths, 2016, 34, 796-801.	4.8	10
113	Optical and scintillation properties of Sr3BGa3Si2O14 (B= Nb, Ta) single crystals. Radiation Measurements, 2016, 90, 334-337.	1.4	0
114	Al content dependence of acoustic properties for $Ca<\inf>3<\inf>3<\inf>0<\inf>4<\inf>014<\inf>016$ single crystals., 2016,,.		0
115	Single Crystal Growth of Cerium and Praseodymium Doped Scintillator by Micro-Pulling Down Method. IEEE Transactions on Nuclear Science, 2016, 63, 486-489.	2.0	1
116	Crystal growth and scintillation properties of Lu substituted CeBr3 single crystals. Journal of Crystal Growth, 2016, 452, 65-68.	1.5	4
117	Scintillation properties of Zr co-doped Ce:(Gd, La)2Si2O7 grown by the Czochralski process. Radiation Measurements, 2016, 90, 162-165.	1.4	8
118	Luminescent properties of Cr-doped gallium garnet crystals grown by the micro-pulling-down method. Journal of Crystal Growth, 2016, 452, 95-100.	1.5	8
119	Czochralski growth of 2 in. Ca3Ta(Ga,Al)3Si2O14 single crystals for piezoelectric applications. Journal of Crystal Growth, 2016, 452, 135-140.	1.5	10
120	Effects of Na and K co-doping on growth and scintillation properties of Eu:Srl2 crystals. Radiation Measurements, 2016, 90, 157-161.	1.4	4
121	Growth and scintillation properties of praseodymium doped (Lu,Gd)3(Ga,Al)5O12 single crystals. Journal of Luminescence, 2016, 169, 811-815.	3.1	3
122	LiF/CaF ₂ /LiBaF ₃ ternary fluoride eutectic scintillator. Japanese Journal of Applied Physics, 2015, 54, 04DH04.	1.5	21
123	Evaluation of acoustic properties of (K,Na)NbO <inf>3</inf> film. , 2015, , .		O
124	Growth and scintillation properties of Ce doped Gd2Si2O7/SiO2eutectics. Journal of Physics: Conference Series, 2015, 619, 012036.	0.4	5
125	Single Crystal Growth and Co-doping Effects of Lanthanum Substituted Gadolinium Pyrosilicate Scintillator. Journal of Physics: Conference Series, 2015, 619, 012034.	0.4	1
	Crouth and high temperature characterization of languaite family		

Growth and high-temperature characterization of langasite-family
Ca₃NbGa_{3â^*}<i>_x</i>Al<i>_x</i>Si₂O<sub>14</sub5 single 8 crystals. Japanese Journal of Applied Physics, 2015, 54, 10ND07.

#	Article	IF	Citations
127	Crystal Growth of Ca3Nb(Ga1â^'xAlx)3Si2O14 Piezoelectric Single Crystals with Various Al Concentrations. Materials, 2015, 8, 5597-5605.	2.9	20
128	Luminescence properties of Pr-doped (La,Gd) ₂ Si ₂ O ₇ grown by the floating zone method. Japanese Journal of Applied Physics, 2015, 54, 052401.	1.5	7
129	Measurements of acoustical physical constants for Ca <inf>3</inf> 0.25335 single crystal using the ultrasonic microspectroscopy system., 2015,,.	i <inf>< td=""><td>t;2(</td></inf><>	t;2(
130	Acoustical physical constants around room temperature for Ca 3 TaGa 1.5 Al 1.5 Si 2 O 14 single crystal. Electronics Letters, 2015, 51, 1957-1958.	1.0	9
131	Growth of Nd doped (Lu, Gd)3(Ga, Al)5O12 single crystal by the micro pulling down method and their scintillation properties. Optical Materials, 2015, 41, 32-35.	3. 6	4
132	Luminescence and scintillation properties of Ce dope SrHfO3 based eutectics. Optical Materials, 2015, 41, 41-44.	3 . 6	14
133	Co-doping effects on luminescence and scintillation properties of Ce doped Lu3Al5O12 scintillator. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 782, 9-12.	1.6	21
134	Luminescence study on Eu or Tb doped lanthanum–gadolinium pyrosilicate crystal. Optical Materials, 2015, 41, 80-83.	3.6	2
135	Scintillation properties of a La, Lu-admix gadolinium pyrosilicate crystal. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 784, 115-118.	1.6	3
136	Nonstochiometry of Lu $<$ sub $>3<$ /sub $>Al<$ sub $>5<$ /sub $>O<$ sub $>12<$ /sub $>$ single crystal and its effects of on luminescence and scintillation properties. Journal of Physics: Conference Series, 2015, 619, 012035.	0.4	1
137	Improvement of scintillation properties on Ce doped Y ₃ Al ₅ O ₁₂ scintillator by divalent cations co-doping. Japanese Journal of Applied Physics, 2015, 54, 04DH17.	1.5	23
138	Growth, Structural Considerations, and Characterization of Ce-Doped (La,Gd) ₂ Si ₂ O ₇ Scintillating Crystals. Crystal Growth and Design, 2015, 15, 1642-1651.	3.0	31
139	Luminescent properties of Gd3(Al,Ga)5O12crystal co-doped with Ce and M4+. Journal of Physics: Conference Series, 2015, 619, 012039.	0.4	2
140	Directionally solidified Eu doped CaF2/Li3AlF6 eutectic scintillator for neutron detection. Optical Materials, 2015, 50, 71-75.	3.6	10
141	Growth and piezoelectric properties of Ca3Nb(Ga1â^'xAlx)3Si2O14(x= 0.25 and 0.50) single crystals. Japanese Journal of Applied Physics, 2015, 54, 10ND13.	1.5	13
142	Crystal growth of Ca <inf>Nb(Ga<inf>0.75</inf>Al<inf>0.25</inf>)<inf>3</inf>C piezoelectric bulk single crystal., 2015,,.</inf>	<inf>< td=""><td>:;14</td></inf><>	:;14
143	Growth and scintillation properties of Eu doped BaCl2/LiF eutectic scintillator. Optical Materials, 2015, 50, 76-80.	3.6	6
144	Control of zero-crossing temperature of coefficient of thermal expansion and reduction of mechanical residual stress for TiO2–SiO2glass optical cavity. Japanese Journal of Applied Physics, 2015, 54, 096702.	1.5	1

#	Article	IF	Citations
145	$\label{lem:cases} Homogeneity evaluation of $$ Ca<\inf>3355614$$ single $$ crystal by the line-focus-beam ultrasonic material characterization system. , 2015, , . $$$		O
146	Alkali earth co-doping effects on luminescence and scintillation properties of Ce doped Gd3Al2Ga3O12 scintillator. Optical Materials, 2015, 41, 63-66.	3.6	114
147	Determination of full material constants of ScAlN thin film from bulk and leaky Lamb waves in MEMS-based samples. , 2014 , , .		14
148	A novel method of evaluating surface properties of tempered glasses by the ultrasonic microspectroscopy technology. , 2014, , .		3
149	Growth of Ca <inf>3</inf> Ta(Ga <inf>0.5</inf> Al <inf>0.5</inf>) <inf>3</inf> Si <inf>2</inf> O <inf>14</inf> piezoelectric single crystal and the piezoelectric properties. , 2014, , .		3
150	Growth and physical properties of Al doped Ca <inf>3</inf> NbGa <inf>3</inf> Si <inf>2</inf> O <inf>14</inf> piezoelectric single crystals. , 2014, , .		0
151	Homogeneity improvement of TiO2-SiO2glass synthesized by the soot method and its evaluation using the ultrasonic measurement system. , 2013, , .		0
152	Surface Acoustic Wave Properties of Amorphous Ta\$_{2}\$O\$_{5}\$ and Nb\$_{2}\$O\$_{5}\$ Thin Films Prepared by Radio Frequency Sputtering. Japanese Journal of Applied Physics, 2012, 51, 07GA01.	1.5	3
153	Measurements of Acoustical Physical Constants of La\$_{3}\$Ta\$_{0.5}\$Ga\$_{5.3}\$Al\$_{0.2}\$O\$_{14}\$ Single Crystals at High Temperatures. Japanese Journal of Applied Physics, 2012, 51, 09LD09.	1.5	7
154	Determination method of acoustical physical constants and their temperature coefficients of La <inf>3</inf> Ta <inf>0.5</inf> Ga <inf>5.3</inf> Al <inf>0.2</inf> O <inf>14</inf> single crystal., 2012, , .		2
155	Measurements of Acoustical Physical Constants of La3Ta0.5Ga5.3Al0.2O14Single Crystals at High Temperatures. Japanese Journal of Applied Physics, 2012, 51, 09LD09.	1.5	6
156	Ultrasonic Microspectroscopy Measurement of Fictive Temperature for Synthetic Silica Glass. Applied Physics Express, 2011, 4, 056601.	2.4	2
157	Development of an ultrasonic system for super-precise measurement of zero-CTE temperature of EUVL-grade TiO 2 -SiO 2 ultra-low-expansion glasses. , 2010, , .		1
158	Ultrasonic Microspectroscopy of ZnO Single Crystals Grown by the Hydrothermal Method. Japanese Journal of Applied Physics, 2010, 49, 026602.	1.5	13
159	Development of a Micro Line-Focus-Beam Ultrasonic Device. Applied Physics Express, 2009, 2, 086501.	2.4	3
160	Evaluation of elastic inhomogeneity in ZnO crystal by means of the micro-LFB ultrasonic material Characterization System., 2009,,.		0
161	Characterization of ZnO polycrystalline films on silica glass by the LFB ultrasonic material characterization system., 2009,,.		0
162	Procedures for determining acoustical physical constants of class <i>6mm</i> single crystals by ultrasonic microspectroscopy technology. Journal of Applied Physics, 2009, 105, .	2.5	6

#	Article	IF	Citations
163	Study on acoustical physical constants of ZnO single crystal using the ultrasonic microspectroscopy technology. , 2008, , .		2
164	Super-Precise Evaluation of EUVL-grade Ultra-Low-Expansion Glasses Using the Line-Focus-Beam Ultrasonic Material Characterization System. Journal of the Japan Society for Precision Engineering, 2008, 74, 673-678.	0.1	0
165	Evaluation and selection of EUVL-grade TiO2-SiO2 ultra-low-expansion glasses using the line-focus-beam ultrasonic material characterization system. , 2007, , .		5
166	Evaluation method of TiO/sub 2/-SiO/sub 2/ ultra-low-expansion glasses with periodic striae using the LFB ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 1627-1636.	3.0	6
167	Accurate Calibration Line for Super-Precise Coefficient of Thermal Expansion Evaluation Technology of TiO2-Doped SiO2Ultra-Low-Expansion Glass Using the Line-Focus-Beam Ultrasonic Material Characterization System. Japanese Journal of Applied Physics, 2006, 45, 4511-4515.	1.5	15
168	Striae evaluation of TiO $_2$ -SiO $_2$ ultra-low expansion glasses using the line-focus-beam ultrasonic material characterization system. , 2006, 6151, 568.		1
169	Experimental Study for Evaluating Striae Structure of TiO2–SiO2Glasses Using the Line-Focus-Beam Ultrasonic Material Characterization System. Japanese Journal of Applied Physics, 2006, 45, 6445-6451.	1.5	10
170	Improvement of Velocity Measurement Accuracy of Leaky Surface Acoustic Waves for Materials with Highly Attenuated Waveform of the $V(z)$ curve by the Line-Focus-Beam Ultrasonic Material Characterization System. Japanese Journal of Applied Physics, 2006, 45, 4505-4510.	1.5	19
171	Accurate Velocity Measurement of Periodic Striae of TiO2–SiO2Glasses by the Line-Focus-Beam Ultrasonic Material-Characterization System. Japanese Journal of Applied Physics, 2006, 45, 8925-8927.	1.5	5
172	Determination of the true congruent composition for LiTaO/sub 3/ single crystals using the LFB ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2006, 53, 385-392.	3.0	23
173	A super-precision evaluation method of ultra-low expansion glasses using the line-focus-beam ultrasonic material characterization system. , 2005, , .		0
174	Super-Accurate Velocity Measurement for Evaluating TiO2-SiO2Ultra-Low-Expansion Glass Using the Line-Focus-Beam Ultrasonic Material Characterization System. Japanese Journal of Applied Physics, 2005, 44, L1313-L1315.	1.5	5
175	Ultrasonic microspectroscopy of congruent LiNbO3 crystals. Journal of Applied Physics, 2005, 98, 123507.	2.5	13
176	Evaluation of glass materials by using the line-focus-beam ultrasonic-material-characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2005, 52, 1152-1160.	3.0	10
177	A Super-Precise CTE Evaluation Method for Ultra-Low-Expansion Glasses Using the LFB Ultrasonic Material Characterization System. Japanese Journal of Applied Physics, 2005, 44, 4374-4380.	1.5	26
178	A Promising Evaluation Method of Ultra-Low-Expansion Glasses for the Extreme Ultra-Violet Lithography System by the Line-Focus-Beam Ultrasonic Material Characterization System. Japanese Journal of Applied Physics, 2004, 43, L1455-L1457.	1.5	9
179	Development of an improved calibration method for the LFB ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 686-694.	3.0	15
180	Evaluation of mass-produced commercial LiTaO/sub 3/ single crystals using the LFB ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 748-755.	3.0	4

#	Article	IF	CITATIONS
181	Evaluation of mass-produced commercial LiTaO/sub 3/ single crystals using the LFB ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 748-755.	3.0	1
182	Development of an improved calibration method for the LFB ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2004, 51, 686-94.	3.0	0
183	Calibration of Curie temperatures for LiTaO/sub 3/ single crystals by the LFB ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2003, 50, 544-552.	3.0	8
184	Evaluation and improvement of optical-grade LiTaO/sub 3/ single crystals by the LFB ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 905-914.	3.0	17
185	Standardized evaluation of chemical compositions of LiTaO/sub 3/ single crystals for SAW devices using the LFB ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 454-465.	3.0	17
186	Development of the line-focus-beam ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2002, 49, 99-113.	3.0	78
187	Influence of reflected waves from the back surface of thin solid-plate specimen on velocity measurements by line-focus-beam acoustic microscopy. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47, 274-284.	3.0	17
188	Ultrasonic microspectroscopy characterization of silica glass. Journal of Applied Physics, 2000, 87, 3113-3121.	2.5	40
189	Line-focus-beam acoustic microscopy characterization of optical-grade LiTaO3 single crystals. Journal of Applied Physics, 2000, 87, 4395-4403.	2.5	22
190	Evaluation and selection of LiNbO/sub 3/ and LiTaO/sub 3/ substrates for SAW devices by the LFB ultrasonic material characterization system. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2000, 47, 1068-1076.	3.0	25
191	Correction of Velocity Profiles on Thin Specimens Measured by Line-Focus-Beam Acoustic Microscopy. Japanese Journal of Applied Physics, 1999, 38, L1197-L1200.	1.5	7
192	Theoretical and Experimental Considerations on Line-Focus-Beam Acoustic Microscopy for Thin Specimens. Japanese Journal of Applied Physics, 1999, 38, L342-L344.	1.5	4
193	Precise Velocity Measurements for Thin Specimens by Line-Focus-Beam Acoustic Microscopy. Japanese Journal of Applied Physics, 1999, 38, L89-L91.	1.5	6
194	Ultrasonic Microspectroscopy Characterization of AlN Single Crystals. Applied Physics Express, 0, 1, 077004.	2.4	46
195	A Promising Method of Evaluating ZnO Single Crystals Using the Line-Focus-Beam Ultrasonic Material-Characterization System. Applied Physics Express, 0, 2, 026501.	2.4	11
196	Large size growth of terbium doped BaCl2/NaCl/KCl eutectic for radiation imaging. Japanese Journal of Applied Physics, 0 , , .	1.5	5