Arcadi Santamaria

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6439728/publications.pdf

Version: 2024-02-01

147801 144013 3,294 77 31 57 citations h-index g-index papers 77 77 77 3669 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Dark matter from a complex scalar singlet: the role of dark CP and other discrete symmetries. Journal of High Energy Physics, 2021, 2021, 1.	4.7	12
2	Composite Higgs bosons from neutrino condensates in an inverted seesaw scenario. Physical Review D, 2020, 101, .	4.7	2
3	Can measurements of 2HDM parameters provide hints for high scale supersymmetry?. Physical Review D, 2018, 97, .	4.7	3
4	Fitting flavour symmetries: the case of two-zero neutrino mass textures. Journal of High Energy Physics, 2018, 2018, 1.	4.7	19
5	LHC signals of radiatively-induced neutrino masses and implications for the Zee–Babu model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2018, 779, 107-116.	4.1	14
6	A model of neutrino mass and dark matter with large neutrinoless double beta decay. Journal of High Energy Physics, 2017, 2017, 1.	4.7	9
7	Testing the Zee-Babu model via neutrino data, lepton flavour violation and direct searches at the LHC. Nuclear and Particle Physics Proceedings, 2016, 273-275, 1678-1684.	0.5	3
8	Higgs lepton flavour violation: UV completions and connection to neutrino masses. Journal of High Energy Physics, 2016, 2016, 1.	4.7	36
9	Updated scalar sector constraints in the Higgs triplet model. Physical Review D, 2016, 94, .	4.7	33
10	The Zee–Babu model revisited in the light of new data. Nuclear Physics B, 2014, 885, 542-570.	2.5	65
11	Discriminating between lepton number violating scalars using events with four and three charged leptons at the LHC. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2013, 725, 310-315.	4.1	30
12	Lepton Number Violation and Scalar Searches at the LHC. Acta Physica Polonica B, 2013, 44, 2139.	0.8	5
13	Implications of new generations on neutrino masses. Journal of Physics: Conference Series, 2013, 408, 012030.	0.4	O
14	Distinguishing between lepton number violating scalars at the LHC. EPJ Web of Conferences, 2013, 60, 17002.	0.3	7
15	Neutrinoless double b decay with small neutrino masses. , 2013, , .		O
16	A realistic model of neutrino masses with a large neutrinoless double beta decay rate. Journal of High Energy Physics, 2012, 2012, 1.	4.7	27
17	Effective Lagrangian approach to neutrinoless double beta decay and neutrino masses. Journal of High Energy Physics, 2012, 2012, 1.	4.7	60
18	On the nature of the fourth generation neutrino and its implications. Journal of High Energy Physics, 2012, 2012, 1.	4.7	5

#	Article	lF	CITATIONS
19	Neutrino masses from new generations. Journal of High Energy Physics, 2011, 2011, 1.	4.7	6
20	Right-handed neutrino magnetic moments. Journal of Physics: Conference Series, 2010, 259, 012089.	0.4	0
21	A model for right-handed neutrino magnetic moments. Journal of Physics G: Nuclear and Particle Physics, 2010, 37, 075012.	3.6	9
22	Right-handed neutrino magnetic moments. Physical Review D, 2009, 80, .	4.7	80
23	Prospects for the Zee-Babu model at the CERN LHC and low energy experiments. Physical Review D, 2008, 77, .	4.7	90
24	From transition magnetic moments to Majorana neutrino masses. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 2005, 626, 151-160.	4.1	43
25	Power corrections in models with extra dimensions. European Physical Journal C, 2004, 33, s911-s913.	3.9	3
26	B physics and extra dimensions. Nuclear Physics, Section B, Proceedings Supplements, 2003, 120, 210-215.	0.4	3
27	Bounds on models with one latticized extra dimension. Physical Review D, 2003, 68, .	4.7	1
28	Can power corrections be reliably computed in models with extra dimensions?. Physical Review D, 2003, 67, .	4.7	23
29	Universal extra dimensions andZ→bbÂ⁻. Physical Review D, 2003, 67, .	4.7	81
30	Present and future bounds on non-standard neutrino interactions. Journal of High Energy Physics, 2003, 2003, 011-011.	4.7	266
31	Neutrino masses from operator mixing. Physical Review D, 2002, 65, .	4.7	13
32	Bounds on the tau magnetic moments: standard model and beyond. Nuclear Physics, Section B, Proceedings Supplements, 2001, 98, 133-140.	0.4	3
33	IMPROVED BOUNDS ON THE TAU MAGNETIC MOMENTS. International Journal of Modern Physics A, 2001, 16, 545-547.	1.5	3
34	Chiral fermions and gauge fixing in five-dimensional theories. Physical Review D, 2001, 63, .	4.7	26
35	Extra dimensions at the one loop level:Z→bbÂ ⁻ andBâ^'BÂ ⁻ mixing. Physical Review D, 2000, 63, .	4.7	21
36	Model independent bounds on the tau lepton electromagnetic and weak magnetic moments. Nuclear Physics B, 2000, 582, 3-18.	2.5	55

#	Article	lF	CITATIONS
37	Dimensionally regularized box and phase-space integrals involving gluons and massive quarks. Journal of Physics G: Nuclear and Particle Physics, 1999, 25, 1593-1606.	3.6	11
38	mb(mZ)from jet production at theZpeak in the Cambridge algorithm. Physical Review D, 1999, 60, .	4.7	7
39	Heavy quark mass effects in e+eâ^' into three jets. Nuclear Physics, Section B, Proceedings Supplements, 1999, 74, 53-56.	0.4	2
40	Quark-mass effects for jet production in e+e \hat{a} ° collisions at the next-to-leading order: results and applications. Nuclear Physics B, 1999, 554, 257-297.	2.5	30
41	An effective field theory approach to the electroweak corrections at LEP energies. Nuclear Physics B, 1999, 563, 82-96.	2.5	2
42	μ–e conversion in nuclei versus : an effective field theory point of view. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 421, 250-258.	4.1	78
43	αs(mZ) from Ï,, decays with matching conditions at three loops. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 424, 367-374.	4.1	65
44	The running of the b-quark mass from LEP data. Nuclear Physics, Section B, Proceedings Supplements, 1998, 64, 380-386.	0.4	0
45	New constraints on R-parity violation from Î⅓–e conversion in nuclei. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1998, 430, 355-362.	4.1	50
46	HardmtCorrections as a Probe of the Symmetry Breaking Sector. Physical Review Letters, 1997, 78, 2902-2905.	7.8	9
47	Do the Quark Masses Run? ExtractingmÂ ⁻ b(mZ)from CERN LEP Data. Physical Review Letters, 1997, 79, 193-196.	7.8	90
48	Three-jet production at LEP and the bottom quark mass. Nuclear Physics B, 1995, 439, 505-535.	2.5	30
49	An effective field theory approach to the QCD corrections to the vertex. Nuclear Physics B, 1995, 445, 252-269.	2.5	7
50	Bounding effective operators at the one-loop level: the case of four-fermion neutrino interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1994, 336, 91-99.	4.1	19
51	One-loop effective lagrangian for an extension of the standard model with a heavy charged scalar singlet. Nuclear Physics B, 1994, 420, 47-93.	2.5	81
52	QCD matching conditions at thresholds. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 313, 441-446.	4.1	63
53	Masses, mixings, Yukawa couplings and their symmetries. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 305, 90-97.	4.1	37
54	Invisible width of the Z-boson and "secret―ν-ν interactions. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1993, 301, 287-291.	4.1	33

#	Article	IF	CITATIONS
55	Top quark mass from radiative corrections to the decay. Nuclear Physics B, 1991, 363, 326-344.	2.5	107
56	The strong CP problem and the solar neutrino puzzle: Are they related?. Nuclear Physics B, 1991, 357, 222-240.	2.5	14
57	17 keV neutrino in a singlet-triplet majoron model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1991, 267, 504-508.	4.1	62
58	Ϊ,, Decays to pions. Zeitschrift FÃ $\frac{1}{4}$ r Physik C-Particles and Fields, 1990, 48, 445-452.	1.5	254
59	Majorons and supernova cooling. Physical Review D, 1990, 42, 293-306.	4.7	82
60	Production mechanisms and signatures of isosinglet neutral heavy leptons in ZO decays. Nuclear Physics B, 1990, 332, 1-19.	2.5	110
61	Isosinglet-neutral heavy-lepton production in Z-decays and neutrino mass. Nuclear Physics B, 1990, 342, 108-126.	2.5	73
62	Solar-neutrino-oscillation parameters and the broken-R-parity Majoron. Physical Review D, 1989, 39, 1780-1783.	4.7	55
63	Hyperchargeless triplet Majoron model. Physical Review D, 1989, 39, 2715-2722.	4.7	10
64	Astrophysical bound on the majoron-Higgs-boson coupling. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1989, 220, 597-601.	4.1	8
65	Majoron effects in rare kaon decays. Nuclear Physics B, 1989, 315, 558-576.	2.5	12
66	î"(Z → b): A signature of hard mass terms for a heavy top. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1988, 200, 569-574.	4.1	135
67	Stability of the VEV hierarchy and Higgs boson invisibility in majoron models. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1988, 213, 487-492.	4.1	11
68	The doublet majoron model and solar neutrino oscillations. Nuclear Physics B, 1988, 310, 714-742.	2.5	50
69	Supersymmetric majoron signatures and solar neutrino oscillations. Physical Review Letters, 1988, 60, 397-400.	7.8	93
70	Neutrino masses, Majorons, and muon decay. Physical Review D, 1987, 36, 1408-1412.	4.7	6
71	Spontaneous R parity violation in supersymmetry: A model for solar neutrino oscillations. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 195, 423-428.	4.1	132
72	Lepton flavour violating decay of the ZO in the scalar triplet model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 197, 418-422.	4.1	27

#	Article	IF	CITATIONS
73	Lepton flavour non-conservation at high energies in a superstring inspired standard model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1987, 187, 303-308.	4.1	306
74	CP phases in the charged current and Higgs sectors for Majorana neutrinos. Zeitschrift FÃ $\frac{1}{4}$ r Physik C-Particles and Fields, 1986, 30, 213-220.	1.5	13
75	CPNonconservation at the ZOP eak. Physical Review Letters, 1986, 57, 1514-1517.	7.8	37
76	Single-Majoron emission inνdecay. Physical Review D, 1985, 32, 2461-2463.	4.7	1
77	μâ^'→eâ^'+γ decay in the scalar triplet model. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 1984, 148, 229-233.	4.1	26