List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6439107/publications.pdf Version: 2024-02-01

RELA DALZS

#	Article	IF	CITATIONS
1	The environmental release and ecosystem risks of illicit drugs during Glastonbury Festival Environmental Research, 2022, 204, 112061.	7.5	5
2	Mre11 exonuclease activity removes the chain-terminating nucleoside analog gemcitabine from the nascent strand during DNA replication. Science Advances, 2020, 6, eaaz4126.	10.3	8
3	Alexander George Harrison (1931–2018). Journal of the American Society for Mass Spectrometry, 2019, 30, 2183-2184.	2.8	0
4	Rearrangement chemistry of a ions probed by IR spectroscopy. International Journal of Mass Spectrometry, 2015, 377, 172-178.	1.5	21
5	A divide-and-conquer approach to compute collision cross sections in the projection approximation method. International Journal of Mass Spectrometry, 2015, 378, 360-363.	1.5	19
6	Zundel-Type H-Bonding in Biomolecular Ions. Journal of the American Society for Mass Spectrometry, 2014, 25, 1511-1514.	2.8	5
7	IR Spectroscopy of b ₄ Fragment Ions of Protonated Pentapeptides in the X–H (X = C, N, O) Region. Journal of Physical Chemistry A, 2013, 117, 2508-2516.	2.5	16
8	Using Gas-Phase Guest–Host Chemistry to Probe the Structures of <i>b</i>/i> Ions of Peptides. Journal of the American Society for Mass Spectrometry, 2012, 23, 2055-2058.	2.8	12
9	Assigning Structures to Gas-Phase Peptide Cations and Cation-Radicals. An Infrared Multiphoton Dissociation, Ion Mobility, Electron Transfer, and Computational Study of a Histidine Peptide Ion. Journal of Physical Chemistry B, 2012, 116, 3445-3456.	2.6	47
10	Rearrangement Pathways of the a 4 Ion of Protonated YGGFL Characterized by IR Spectroscopy and Modeling. Journal of the American Society for Mass Spectrometry, 2012, 23, 664-675.	2.8	29
11	23rd Sanibel Conference on Mass Spectrometry: From Fragmentation Mechanisms to Sequencing: Tandem Mass Spectrometry Based Peptide and Protein Identification. Journal of the American Society for Mass Spectrometry, 2012, 23, 575-576.	2.8	2
12	Conformation-Specific Spectroscopy of Peptide Fragment Ions in a Low-Temperature Ion Trap. Journal of the American Society for Mass Spectrometry, 2012, 23, 1029-1045.	2.8	32
13	Towards Understanding the Tandem Mass Spectra of Protonated Oligopeptides. 2: The Proline Effect in Collision-Induced Dissociation of Protonated Ala-Ala-Xxx-Pro-Ala (Xxx = Ala, Ser, Leu, Val, Phe, and) Tj ETQq1 1).78 £3 814 rg	gBT5 ¦D verloc
14	Competing gas-phase fragmentation pathways of asparagine-, glutamine-, and lysine-containing protonated dipeptides. Theoretical Chemistry Accounts, 2010, 125, 387-396.	1.4	16
15	Effect of the his residue on the cyclization of <i>b</i> ions. Journal of the American Society for Mass Spectrometry, 2010, 21, 1352-1363.	2.8	40
16	The Histidine Effect. Electron Transfer and Capture Cause Different Dissociations and Rearrangements of Histidine Peptide Cation-Radicals. Journal of the American Chemical Society, 2010, 132, 10728-10740.	13.7	55
17	Structure of [M + H â^' H ₂ O] ⁺ from Protonated Tetraglycine Revealed by Tandem Mass Spectrometry and IRMPD Spectroscopy. Journal of Physical Chemistry A, 2010, 114, 5076-5082.	2.5	30
18	Cyclization and Rearrangement Reactions ofanFragment Ions of Protonated Peptides. Journal of the American Chemical Society, 2010, 132, 14766-14779.	13.7	84

#	Article	IF	CITATIONS
19	Gas-Phase Structure and Fragmentation Pathways of Singly Protonated Peptides with N-Terminal Arginine. Journal of Physical Chemistry B, 2010, 114, 15092-15105.	2.6	65
20	Infrared Spectroscopy of Fragments from Doubly Protonated Tryptic Peptides. ChemPhysChem, 2009, 10, 883-885.	2.1	74
21	What is the structure of <i>b</i> ₂ ions generated from doubly protonated tryptic peptides?. Journal of the American Society for Mass Spectrometry, 2009, 20, 618-624.	2.8	65
22	Fragmentation of doubly-protonated Pro-His-Xaa tripeptides: Formation of <i>b</i> _{<i>2</i>} ^{<i>2</i>+} ions. Journal of the American Society for Mass Spectrometry, 2009, 20, 2135-2143.	2.8	25
23	Proton-Driven Amide Bond-Cleavage Pathways of Gas-Phase Peptide Ions Lacking Mobile Protons. Journal of the American Chemical Society, 2009, 131, 14057-14065.	13.7	84
24	Infrared Spectroscopy of Fragments of Protonated Peptides: Direct Evidence for Macrocyclic Structures of <i>b</i> ₅ Ions. Journal of the American Chemical Society, 2009, 131, 11503-11508.	13.7	92
25	Carboxyl-Catalyzed Prototropic Rearrangements in Histidine Peptide Radicals upon Electron Transfer: Effects of Peptide Sequence and Conformation. Journal of the American Chemical Society, 2009, 131, 16472-16487.	13.7	26
26	Focus issue on peptide fragmentation. Journal of the American Society for Mass Spectrometry, 2008, 19, 1717-1718.	2.8	8
27	Structure and Reactivity of an and an Peptide Fragments Investigated Using Isotope Labeling, Tandem Mass Spectrometry, and Density Functional Theory CalculationsâŽ. Journal of the American Society for Mass Spectrometry, 2008, 19, 1788-1798.	2.8	31
28	Why are <i>a</i> ₃ ions rarely observed?. Journal of the American Society for Mass Spectrometry, 2008, 19, 1764-1770.	2.8	39
29	Vibrational Spectroscopy and Conformational Structure of Protonated Polyalanine Peptides Isolated in the Gas Phase. Journal of Physical Chemistry A, 2008, 112, 4608-4616.	2.5	66
30	Sequence-Scrambling Fragmentation Pathways of Protonated Peptides. Journal of the American Chemical Society, 2008, 130, 17774-17789.	13.7	145
31	On the Dynamics of Fragment Isomerization in Collision-Induced Dissociation of Peptides. Journal of Physical Chemistry A, 2008, 112, 1286-1293.	2.5	82
32	Hidden Histidine Radical Rearrangements upon Electron Transfer to Gas-Phase Peptide Ions. Experimental Evidence and Theoretical Analysis. Journal of the American Chemical Society, 2008, 130, 14584-14596.	13.7	64
33	Stepwise Solvation of an Amino Acid:  The Appearance of Zwitterionic Structures. Journal of Physical Chemistry A, 2007, 111, 7309-7316.	2.5	123
34	Infrared Spectroscopy and Theoretical Studies on Gas-Phase Protonated Leu-enkephalin and Its Fragments:Â Direct Experimental Evidence for the Mobile Proton. Journal of the American Chemical Society, 2007, 129, 5887-5897.	13.7	208
35	Backbone cleavages and sequential loss of carbon monoxide and ammonia from protonated AGG: A combined tandem mass spectrometry, isotope labeling, and theoretical study. Journal of the American Society for Mass Spectrometry, 2007, 18, 1291-1303.	2.8	40
36	Unimolecular chemistry of metal ion-coordinated α-dipeptide radicals. International Journal of Mass Spectrometry, 2007, 265, 251-260.	1.5	16

#	Article	IF	CITATIONS
37	Scrambling of Sequence Information in Collision-Induced Dissociation of Peptides. Journal of the American Chemical Society, 2006, 128, 10364-10365.	13.7	180
38	Revising the proton affinity scale of the naturally occurring α-amino acids. Journal of the American Society for Mass Spectrometry, 2006, 17, 1275-1281.	2.8	129
39	Isotope labeling and theoretical study of the formation of a3* ions from protonated tetraglycine. Journal of the American Society for Mass Spectrometry, 2006, 17, 1654-1664.	2.8	36
40	Fragmentation pathways of protonated peptides. Mass Spectrometry Reviews, 2005, 24, 508-548.	5.4	993
41	Infrared Fingerprint Spectroscopy and Theoretical Studies of Potassium Ion Tagged Amino Acids and Peptides in the Gas Phase. Journal of the American Chemical Society, 2005, 127, 8571-8579.	13.7	141
42	Spectroscopic and Theoretical Evidence for Oxazolone Ring Formation in Collision-Induced Dissociation of Peptides. Journal of the American Chemical Society, 2005, 127, 17154-17155.	13.7	150
43	Formation of iminium ions by fragmentation of a2 ions. Rapid Communications in Mass Spectrometry, 2004, 18, 1635-1640.	1.5	21
44	Modeling of the gas-phase ion chemistry of protonated arginine. Journal of Mass Spectrometry, 2004, 39, 1025-1035.	1.6	38
45	Extraribosomal cyclic tetradepsipeptides beauverolides: profiling and modeling the fragmentation pathways. Journal of Mass Spectrometry, 2004, 39, 949-960.	1.6	23
46	Towards understanding the tandem mass spectra of protonated oligopeptides. 1: Mechanism of amide bond cleavage. Journal of the American Society for Mass Spectrometry, 2004, 15, 103-113.	2.8	151
47	Intramolecular condensation reactions in protonated dipeptides: Carbon monoxide, water, and ammonia losses in competition. Journal of the American Society for Mass Spectrometry, 2004, 15, 1025-1038.	2.8	30
48	Cleavage of the amide bond of protonated dipeptides. Physical Chemistry Chemical Physics, 2004, 6, 2691-2699.	2.8	36
49	Experimental and theoretical investigation of the main fragmentation pathways of protonated H-Gly-Gly-Sar-OH and H-Gly-Sar-Sar-OH. Journal of the American Society for Mass Spectrometry, 2003, 14, 1454-1469.	2.8	35
50	The Effect of the Initial Water of Hydration on the Energetics, Structures, and H/D Exchange Mechanism of a Family of Pentapeptides:Â An Experimental and Theoretical Study. Journal of the American Chemical Society, 2003, 125, 13768-13775.	13.7	88
51	Ab initio and MS/MS studies on protonated peptides containing basic and acidic amino acid residues. International Journal of Mass Spectrometry, 2002, 219, 203-232.	1.5	50
52	Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. II. Formation of b2, y1, and y2 ions. Rapid Communications in Mass Spectrometry, 2002, 16, 375-389.	1.5	120
53	Towards understanding some ion intensity relationships for the tandem mass spectra of protonated peptides. Rapid Communications in Mass Spectrometry, 2002, 16, 1699-1702.	1.5	40
54	Newtonian molecular dynamics in general curvilinear internal coordinates. Chemical Physics Letters, 2002, 353, 400-406.	2.6	12

#	Article	IF	CITATIONS
55	Theoretical study of the main fragmentation pathways for protonated glycylglycine. Rapid Communications in Mass Spectrometry, 2001, 15, 651-663.	1.5	80
56	Proton mobility in protonated glycylglycine andN-formylglycylglycinamide: a combined quantum chemical and RKKM study. Rapid Communications in Mass Spectrometry, 2001, 15, 637-650.	1.5	86
57	Proton mobility and main fragmentation pathways of protonated lysylglycine. Rapid Communications in Mass Spectrometry, 2001, 15, 1457-1472.	1.5	49
58	Combined quantum chemical and RRKM modeling of the main fragmentation pathways of protonated GGG. I.Cis-trans isomerization around protonated amide bonds. Rapid Communications in Mass Spectrometry, 2001, 15, 2307-2323.	1.5	81
59	Intermolecular bond lengths: extrapolation to the basis set limit on uncorrected and BSSE-corrected potential energy hypersurfaces. Journal of Computational Chemistry, 2001, 22, 196-207.	3.3	49
60	On the effect of the BSSE on intermolecular potential energy surfaces. Comparison ofa priori anda posteriori BSSE correction schemes. Journal of Computational Chemistry, 2001, 22, 765-786.	3.3	93
61	Proton mobility in protonated peptides: a joint molecular orbital and RRKM study. , 2000, 14, 417-431.		99
62	Evaluating the formation of salt-bridges: a molecular orbital study. Chemical Physics Letters, 2000, 326, 129-142.	2.6	5
63	Geometry optimization of large biomolecules in redundant internal coordinates. Journal of Chemical Physics, 2000, 113, 6566-6572.	3.0	49
64	Formation of b2+ ions from protonated peptides: anab initio study. Rapid Communications in Mass Spectrometry, 1999, 13, 525-533.	1.5	133
65	Electronic Effects on the Ground-State Rotational Barrier of Polyene Schiff Bases:Â A Molecular Orbital Study. Journal of Physical Chemistry B, 1999, 103, 5388-5395.	2.6	18
66	Role of Isomerization Barriers in the pKaControl of the Retinal Schiff Base:Â A Density Functional Study. Journal of Physical Chemistry B, 1999, 103, 4518-4527.	2.6	52
67	An exploratory study of 1,2-cis- and 1,2-trans-thiocarbamates of glucofuranosyl- and glucopyranosylamine. Computational and Theoretical Chemistry, 1998, 455, 267-274.	1.5	3
68	Comparative study of BSSE correction methods at DFT and MP2 levels of theory. Journal of Computational Chemistry, 1998, 19, 575-584.	3.3	161
69	An efficient direct method for geometry optimization of large molecules in internal coordinates. Journal of Chemical Physics, 1998, 109, 6571-6576.	3.0	47
70	Conformational Effects on the Proton Affinity of the Schiff Base in Bacteriorhodopsin:Â A Density Functional Study. Journal of Physical Chemistry B, 1997, 101, 8021-8028.	2.6	51
71	Extension of SCF and DFT versions of chemical Hamiltonian approach toN interacting subsystems and an algorithm for their efficient implementation. Journal of Computational Chemistry, 1997, 18, 694-701.	3.3	21
72	Coupled perturbed Hartree—Fock equations. An alternative derivation and generalization to non-orthogonal orbitals. Chemical Physics Letters, 1994, 220, 97-101.	2.6	11

#	Article	IF	CITATIONS
73	Various energy minima and corresponding fragmentation processes: Alkylsilanes. Organic Mass Spectrometry, 1993, 28, 1491-1497.	1.3	6
74	Localization maps by orbital partitioning of the electron density. Theoretica Chimica Acta, 1993, 86, 379-389.	0.8	4