Yingying Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6438263/publications.pdf Version: 2024-02-01

VINCVING ZHANG

#	Article	lF	CITATIONS
1	Carbothermal shock enabled facile and fast growth of carbon nanotubes in a second. Nano Research, 2022, 15, 2576-2581.	10.4	11
2	Modulusâ€Tailorable, Stretchable, and Biocompatible Carbonene Fiber for Adaptive Neural Electrode. Advanced Functional Materials, 2022, 32, 2107360.	14.9	15
3	Highly Regulatable Heat Conductance of Graphene–Sericin Hybrid for Responsive Textiles. Advanced Functional Materials, 2022, 32, .	14.9	21
4	Superior Unidirectional Water Transport and Mechanically Stable 3D Orthogonal Woven Fabric for Human Body Moisture and Thermal Management. Small, 2022, 18, e2107150.	10.0	54
5	Silkworm Silk Fibers with Multiple Reinforced Properties Obtained through Feeding Ag Nanowires. Advanced Fiber Materials, 2022, 4, 547-555.	16.1	15
6	A Oneâ€Step Fabricated Sheathâ€Core Stretchable Fiber Based on Liquid Metal with Superior Electric Conductivity for Wearable Sensors and Heaters. Advanced Materials Technologies, 2022, 7, .	5.8	36
7	Superior Unidirectional Water Transport and Mechanically Stable 3D Orthogonal Woven Fabric for Human Body Moisture and Thermal Management (Small 10/2022). Small, 2022, 18, .	10.0	2
8	Mechanically Reinforced Silkworm Silk Fiber by Hot Stretching. Research, 2022, 2022, 9854063.	5.7	5
9	Hydrophilic, Breathable, and Washable Graphene Decorated Textile Assisted by Silk Sericin for Integrated Multimodal Smart Wearables. Advanced Functional Materials, 2022, 32, .	14.9	54
10	Morphology engineering processed nanofibrous membranes with secondary structure for high-performance air filtration. Separation and Purification Technology, 2022, 294, 121093.	7.9	80
11	Extensible and self-recoverable proteinaceous materials derived from scallop byssal thread. Nature Communications, 2022, 13, 2731.	12.8	8
12	Biomimetic Mechanically Enhanced Carbon Nanotube Fibers by Silk Fibroin Infiltration. Small, 2021, 17, e2100066.	10.0	21
13	Display textiles: illuminating the way we live. Science China Chemistry, 2021, 64, 1115-1116.	8.2	5
14	Liquidâ€Crystalâ€Elastomerâ€Actuated Reconfigurable Microscale Kirigami Metastructures. Advanced Materials, 2021, 33, e2008605.	21.0	48
15	Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording. Advanced Healthcare Materials, 2021, 10, e2100646.	7.6	62
16	Biomassâ€Derived Carbon Materials: Controllable Preparation and Versatile Applications. Small, 2021, 17, e2008079.	10.0	105
17	Electronic fibers and textiles: Recent progress and perspective. IScience, 2021, 24, 102716.	4.1	60
18	Kirigami Metastructures: Liquidâ€Crystalâ€Elastomerâ€Actuated Reconfigurable Microscale Kirigami Metastructures (Adv. Mater. 25/2021). Advanced Materials, 2021, 33, 2170195.	21.0	0

#	Article	IF	CITATIONS
19	Smart Fibers and Textiles for Personal Health Management. ACS Nano, 2021, 15, 12497-12508.	14.6	124
20	Vitrimer-based soft actuators with multiple responsiveness and self-healing ability triggered by multiple stimuli. Matter, 2021, 4, 3354-3365.	10.0	38
21	Sustainable Silkâ€Derived Multimode Carbon Dots. Small, 2021, 17, e2103623.	10.0	21
22	H ₂ Oâ€Etchantâ€Promoted Synthesis of Highâ€Quality Graphene on Glass and Its Application in Seeâ€Through Thermochromic Displays. Small, 2020, 16, e1905485.	10.0	20
23	Physical sensors for skinâ€inspired electronics. InformaÄnÃ-Materiály, 2020, 2, 184-211.	17.3	159
24	Observations of 3 nm Silk Nanofibrils Exfoliated from Natural Silkworm Silk Fibers. , 2020, 2, 153-160.		37
25	Electrochemically Enabled Embedded Three-Dimensional Printing of Freestanding Gallium Wire-like Structures. ACS Applied Materials & Interfaces, 2020, 12, 53966-53972.	8.0	30
26	Micro/nano processing of natural silk fibers with near-field enhanced ultrafast laser. Science China Materials, 2020, 63, 1300-1309.	6.3	13
27	Microribbons composed of directionally self-assembled nanoflakes as highly stretchable ionic neural electrodes. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14667-14675.	7.1	48
28	Ionic Sensing Hydrogels: Ultrasensitive, Lowâ€Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications (Adv. Funct. Mater. 12/2020). Advanced Functional Materials, 2020, 30, 2070080.	14.9	1
29	Electricity-Triggered Self-Healing of Conductive and Thermostable Vitrimer Enabled by Paving Aligned Carbon Nanotubes. ACS Applied Materials & Interfaces, 2020, 12, 14315-14322.	8.0	60
30	Smart semiliquid metal fibers with designed mechanical properties for room temperature stimulus response and liquid welding. Applied Materials Today, 2020, 20, 100738.	4.3	26
31	Stable and Biocompatible Carbon Nanotube Ink Mediated by Silk Protein for Printed Electronics. Advanced Materials, 2020, 32, e2000165.	21.0	184
32	Spontaneous Alignment of Graphene Oxide in Hydrogel during 3D Printing for Multistimuliâ€Responsive Actuation. Advanced Science, 2020, 7, 1903048.	11.2	51
33	Natural Biopolymers for Flexible Sensing and Energy Devices. Chinese Journal of Polymer Science (English Edition), 2020, 38, 459-490.	3.8	69
34	Molybdenum Disulfide Nanosheets Aligned Vertically on Carbonized Silk Fabric as Smart Textile for Wearable Pressure-Sensing and Energy Devices. ACS Applied Materials & Interfaces, 2020, 12, 11825-11832.	8.0	67
35	Laser Writing of Janus Graphene/Kevlar Textile for Intelligent Protective Clothing. ACS Nano, 2020, 14, 3219-3226.	14.6	159
36	Superelastic EGaIn Composite Fibers Sustaining 500% Tensile Strain with Superior Electrical Conductivity for Wearable Electronics. ACS Applied Materials & Interfaces, 2020, 12, 6112-6118.	8.0	113

#	Article	IF	CITATIONS
37	Ultrasensitive, Lowâ€Voltage Operational, and Asymmetric Ionic Sensing Hydrogel for Multipurpose Applications. Advanced Functional Materials, 2020, 30, 1909616.	14.9	29
38	Seamless Graphene-Seal-Wrap as a Removable Protective Cover for Two-Dimensional Materials. , 2020, 2, 215-219.		6
39	Scratching of Graphene-Coated Cu Substrates Leads to Hardened Cu Interfaces with Enhanced Lubricity. ACS Applied Nano Materials, 2020, 3, 1992-1998.	5.0	6
40	Bioinspired Fluffy Fabric with In Situ Grown Carbon Nanotubes for Ultrasensitive Wearable Airflow Sensor. Advanced Materials, 2020, 32, e1908214.	21.0	146
41	Semiliquid Metal Enabled Highly Conductive Wearable Electronics for Smart Fabrics. ACS Applied Materials & Interfaces, 2019, 11, 30019-30027.	8.0	65
42	Carbonized Chinese Art Paper-Based High-Performance Wearable Strain Sensor for Human Activity Monitoring. ACS Applied Electronic Materials, 2019, 1, 2415-2421.	4.3	38
43	Integrated textile sensor patch for real-time and multiplex sweat analysis. Science Advances, 2019, 5, eaax0649.	10.3	345
44	Silk-Based Advanced Materials for Soft Electronics. Accounts of Chemical Research, 2019, 52, 2916-2927.	15.6	232
45	Silkâ€Derived 2D Porous Carbon Nanosheets with Atomicallyâ€Dispersed Feâ€N <i>_x</i> â€C Sites for Highly Efficient Oxygen Reaction Catalysts. Small, 2019, 15, e1804966.	10.0	64
46	Hollow core–sheath nanocarbon spheres grown on carbonized silk fabrics for self-supported and nonenzymatic glucose sensing. Nanoscale, 2019, 11, 11856-11863.	5.6	33
47	Calcium Gluconate Derived Carbon Nanosheet Intrinsically Decorated with Nanopapillae for Multifunctional Printed Flexible Electronics. ACS Applied Materials & Interfaces, 2019, 11, 20272-20280.	8.0	25
48	Blue rose-inspired approach towards highly graphitic carbons for efficient electrocatalytic water splitting. Carbon, 2019, 150, 21-26.	10.3	30
49	Transfer-Medium-Free Nanofiber-Reinforced Graphene Film and Applications in Wearable Transparent Pressure Sensors. ACS Nano, 2019, 13, 5541-5548.	14.6	96
50	Printable Smart Pattern for Multifunctional Energy-Management E-Textile. Matter, 2019, 1, 168-179.	10.0	172
51	Selfâ€Healable Multifunctional Electronic Tattoos Based on Silk and Graphene. Advanced Functional Materials, 2019, 29, 1808695.	14.9	236
52	Sweat-Driven Silk-yarn Switches Enabled by Highly Aligned Gaps for Air-conditioning Textiles. Advanced Fiber Materials, 2019, 1, 197-204.	16.1	33
53	Silk-Derived Highly Active Oxygen Electrocatalysts for Flexible and Rechargeable Zn–Air Batteries. Chemistry of Materials, 2019, 31, 1023-1029.	6.7	84
54	Advanced Carbon for Flexible and Wearable Electronics. Advanced Materials, 2019, 31, e1801072.	21.0	779

#	Article	IF	CITATIONS
55	Epidermis Microstructure Inspired Graphene Pressure Sensor with Random Distributed Spinosum for High Sensitivity and Large Linearity. ACS Nano, 2018, 12, 2346-2354.	14.6	579
56	Integration of Stiff Graphene and Tough Silk for the Design and Fabrication of Versatile Electronic Materials. Advanced Functional Materials, 2018, 28, 1705291.	14.9	148
57	Mineralâ€Templated 3D Graphene Architectures for Energyâ€Efficient Electrodes. Small, 2018, 14, e1801009.	10.0	21
58	Superelastic wire-shaped supercapacitor sustaining 850% tensile strain based on carbon nanotube@graphene fiber. Nano Research, 2018, 11, 2347-2356.	10.4	70
59	A novel cell-scale bio-nanogenerator based on electron–ion interaction for fast light power conversion. Nanoscale, 2018, 10, 526-532.	5.6	10
60	CVD growth of fingerprint-like patterned 3D graphene film for an ultrasensitive pressure sensor. Nano Research, 2018, 11, 1124-1134.	10.4	185
61	Splash-Resistant and Light-Weight Silk-Sheathed Wires for Textile Electronics. Nano Letters, 2018, 18, 7085-7091.	9.1	98
62	Multilayer Graphene Epidermal Electronic Skin. ACS Nano, 2018, 12, 8839-8846.	14.6	257
63	"Snowing―Graphene using Microwave Ovens. Advanced Materials, 2018, 30, e1803189.	21.0	47
64	Graphene Textile Strain Sensor with Negative Resistance Variation for Human Motion Detection. ACS Nano, 2018, 12, 9134-9141.	14.6	455
65	Carbonized Silk Nanofiber Membrane for Transparent and Sensitive Electronic Skin. Advanced Functional Materials, 2017, 27, 1605657.	14.9	413
66	Flexible and Highly Sensitive Pressure Sensors Based on Bionic Hierarchical Structures. Advanced Functional Materials, 2017, 27, 1606066.	14.9	522
67	Electrospun polyetherimide electret nonwoven for bi-functional smart face mask. Nano Energy, 2017, 34, 562-569.	16.0	119
68	Controlled Synthesis of Ultralong Carbon Nanotubes with Perfect Structures and Extraordinary Properties. Accounts of Chemical Research, 2017, 50, 179-189.	15.6	83
69	Horizontally aligned carbon nanotube arrays: growth mechanism, controlled synthesis, characterization, properties and applications. Chemical Society Reviews, 2017, 46, 3661-3715.	38.1	153
70	Intrinsically Stretchable and Conductive Textile by a Scalable Process for Elastic Wearable Electronics. ACS Applied Materials & Interfaces, 2017, 9, 13331-13338.	8.0	111
71	An All-Silk-Derived Dual-Mode E-skin for Simultaneous Temperature–Pressure Detection. ACS Applied Materials & Interfaces, 2017, 9, 39484-39492.	8.0	210
72	Wearable Electronics: Weftâ€Knitted Fabric for a Highly Stretchable and Lowâ€Voltage Wearable Heater (Adv. Electron. Mater. 9/2017). Advanced Electronic Materials, 2017, 3, .	5.1	0

#	Article	IF	CITATIONS
73	Oneâ€Step Growth of Graphene/Carbon Nanotube Hybrid Films on Sodaâ€Lime Glass for Transparent Conducting Applications. Advanced Electronic Materials, 2017, 3, 1700212.	5.1	17
74	Advanced carbon materials for flexible and wearable sensors. Science China Materials, 2017, 60, 1026-1062.	6.3	170
75	Measurement of specific heat and thermal conductivity of supported and suspended graphene by a comprehensive Raman optothermal method. Nanoscale, 2017, 9, 10784-10793.	5.6	110
76	Weftâ€Knitted Fabric for a Highly Stretchable and Lowâ€Voltage Wearable Heater. Advanced Electronic Materials, 2017, 3, 1700193.	5.1	133
77	Extremely Black Vertically Aligned Carbon Nanotube Arrays for Solar Steam Generation. ACS Applied Materials & Interfaces, 2017, 9, 28596-28603.	8.0	270
78	Carbonized silk georgette as an ultrasensitive wearable strain sensor for full-range human activity monitoring. Journal of Materials Chemistry C, 2017, 5, 7604-7611.	5.5	147
79	Carbonized Cotton Fabric for Highâ€Performance Wearable Strain Sensors. Advanced Functional Materials, 2017, 27, 1604795.	14.9	383
80	Fast Growth and Broad Applications of 25â€Inch Uniform Graphene Glass. Advanced Materials, 2017, 29, 1603428.	21.0	90
81	Investigation on the Formation Mechanism of Double-Layer Vertically Aligned Carbon Nanotube Arrays via Single-Step Chemical Vapour Deposition. Nano-Micro Letters, 2017, 9, 12.	27.0	7
82	Visualization of Graphene on Various Substrates Based on Water Wetting Behavior. Advanced Materials Interfaces, 2016, 3, 1500674.	3.7	14
83	Silk nanofibers as high efficient and lightweight air filter. Nano Research, 2016, 9, 2590-2597.	10.4	181
84	Epitaxial growth and physical properties of ternary nitride thin films by polymer-assisted deposition. Applied Physics Letters, 2016, 109, 081907.	3.3	2
85	Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces. Nano Research, 2016, 9, 2182-2189.	10.4	44
86	Sheath–Core Graphite/Silk Fiber Made by Dry-Meyer-Rod-Coating for Wearable Strain Sensors. ACS Applied Materials & Interfaces, 2016, 8, 20894-20899.	8.0	196
87	Wearable Strain Sensors: Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors (Adv. Mater. 31/2016). Advanced Materials, 2016, 28, 6639-6639.	21.0	17
88	Fast and uniform growth of graphene glass using confined-flow chemical vapor deposition and its unique applications. Nano Research, 2016, 9, 3048-3055.	10.4	32
89	A novel preparation of anti-layered poly(vinylalcohol)–polyacrylonitrile (PVA/PAN) membrane for air filtration by electrospinning. RSC Advances, 2016, 6, 85545-85550.	3.6	19
90	Feeding Single-Walled Carbon Nanotubes or Graphene to Silkworms for Reinforced Silk Fibers. Nano Letters, 2016, 16, 6695-6700.	9.1	171

#	Article	IF	CITATIONS
91	Nanoscale color sensors made on semiconducting multi-wall carbon nanotubes. Nano Research, 2016, 9, 1470-1479.	10.4	6
92	Volatile-nanoparticle-assisted optical visualization of individual carbon nanotubes and other nanomaterials. Nanoscale, 2016, 8, 13437-13444.	5.6	15
93	Carbonized Silk Fabric for Ultrastretchable, Highly Sensitive, and Wearable Strain Sensors. Advanced Materials, 2016, 28, 6640-6648.	21.0	749
94	Interwall Friction and Sliding Behavior of Centimeters Long Double-Walled Carbon Nanotubes. Nano Letters, 2016, 16, 1367-1374.	9.1	36
95	Preloading catalysts in the reactor for repeated growth of horizontally aligned carbon nanotube arrays. Carbon, 2016, 98, 157-161.	10.3	21
96	Synthesis of three-dimensional carbon nanotube/graphene hybrid materials by a two-step chemical vapor deposition process. Carbon, 2015, 86, 358-362.	10.3	50
97	Hierarchical carbon-nanotube/quartz-fiber films with gradient nanostructures for high efficiency and long service life air filters. RSC Advances, 2014, 4, 54115-54121.	3.6	28
98	Synthesis and Properties of Ultralong Carbon Nanotubes. , 2014, , 87-136.		6
99	Air Filtration in the Free Molecular Flow Regime: A Review of Highâ€Efficiency Particulate Air Filters Based on Carbon Nanotubes. Small, 2014, 10, 4543-4561.	10.0	279
100	A high efficiency particulate air filter based on agglomerated carbon nanotube fluidized bed. Carbon, 2014, 79, 424-431.	10.3	25
101	State of the Art of Singleâ€Walled Carbon Nanotube Synthesis on Surfaces. Advanced Materials, 2014, 26, 5898-5922.	21.0	71
102	Graphene/graphite sheet assisted growth of high-areal-density horizontally aligned carbon nanotubes. Chemical Communications, 2014, 50, 11158-11161.	4.1	14
103	Facile manipulation of individual carbon nanotubes assisted by inorganic nanoparticles. Nanoscale, 2013, 5, 6584.	5.6	12
104	Superlubricity in centimetres-long double-walled carbon nanotubes under ambient conditions. Nature Nanotechnology, 2013, 8, 912-916.	31.5	305
105	In situ fabrication of depth-type hierarchical CNT/quartz fiber filters for high efficiency filtration of sub-micron aerosols and high water repellency. Nanoscale, 2013, 5, 3367.	5.6	82
106	The reason for the low density of horizontally aligned ultralong carbon nanotube arrays. Carbon, 2013, 52, 232-238.	10.3	27
107	Growth of high-density parallel arrays of ultralong carbon nanotubes with catalysts pinned by silica nanospheres. Carbon, 2013, 52, 535-540.	10.3	17
108	Optical visualization of individual ultralong carbon nanotubes by chemical vapour deposition of titanium dioxide nanoparticles. Nature Communications, 2013, 4, 1727.	12.8	60

#	Article	IF	CITATIONS
109	Growth of Half-Meter Long Carbon Nanotubes Based on Schulz–Flory Distribution. ACS Nano, 2013, 7, 6156-6161.	14.6	308
110	Aligned carbon nanotubes sandwiched in epitaxial NbC film for enhanced superconductivity. Nanoscale, 2012, 4, 2268.	5.6	11
111	Carbon Nanotubeâ€Enhanced Growth of Silicon Nanowires as an Anode for Highâ€Performance Lithiumâ€Ion Batteries. Advanced Energy Materials, 2012, 2, 87-93.	19.5	90
112	Application of Resonance Raman Spectroscopy in the Characterization of Single-Walled Carbon Nanotubes. Acta Chimica Sinica, 2012, 70, 2293.	1.4	9
113	Epitaxial Superconducting \hat{I}^{-} MoN Films Grown by a Chemical Solution Method. Journal of the American Chemical Society, 2011, 133, 20735-20737.	13.7	48
114	Efficient synthesis of tailored magnetic carbon nanotubesvia a noncovalent chemical route. Nanoscale, 2011, 3, 668-673.	5.6	14
115	Producing superior composites by winding carbon nanotubes onto a mandrel under a poly(vinyl) Tj ETQq1 1 0.78	4314 rgB1 10.3	Overlock 114
116	Polymerâ€Embedded Carbon Nanotube Ribbons for Stretchable Conductors. Advanced Materials, 2010, 22, 3027-3031.	21.0	277
117	Carbon nanotube yarn strain sensors. Nanotechnology, 2010, 21, 305502.	2.6	201
118	Fabrication of metal suspending nanostructures by nanoimprint lithography (NIL) and isotropic reactive ion etching (RIE). Science in China Series D: Earth Sciences, 2009, 52, 1181-1186.	0.9	4
119	A double-layered carbon nanotube array with super-hydrophobicity. Carbon, 2009, 47, 3332-3336.	10.3	16
120	Tailoring the Morphology of Carbon Nanotube Arrays: From Spinnable Forests to Undulating Foams. ACS Nano, 2009, 3, 2157-2162.	14.6	96
121	Strain and friction induced by van der Waals interaction in individual single walled carbon nanotubes. Applied Physics Letters, 2007, 90, 253113.	3.3	22
122	Raman Spectra Variation of Partially Suspended Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 1983-1987.	3.1	51
123	Temperature Coefficients of Raman Frequency of Individual Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 14031-14034.	3.1	44
124	Laser-Heating Effect on Raman Spectra of Individual Suspended Single-Walled Carbon Nanotubes. Journal of Physical Chemistry C, 2007, 111, 1988-1992.	3.1	36
125	Substrate-Induced Raman Frequency Variation for Single-Walled Carbon Nanotubes. Journal of the American Chemical Society, 2005, 127, 17156-17157.	13.7	103
126	Thermochemical Hole Burning on DPA(TCNQ)2 and MEM(TCNQ)2 Charge Transfer Complexes Using a Scanning Tunneling Microscope. Journal of Physical Chemistry B, 2004, 108, 14800-14803.	2.6	10