
## **Pascale Serror**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6437573/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                              | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The unforeseen intracellular lifestyle of <i>Enterococcus faecalis</i> in hepatocytes. Gut Microbes, 2022, 14, 2058851.                                                                                                                              | 9.8 | 6         |
| 2  | Increasing incidence of Enterococcus-associated diseases in poultry in France over the past 15 years.<br>Veterinary Microbiology, 2022, 269, 109426.                                                                                                 | 1.9 | 18        |
| 3  | Adaptation of the gut pathobiont Enterococcus faecalis to deoxycholate and taurocholate bile acids.<br>Scientific Reports, 2022, 12, 8485.                                                                                                           | 3.3 | 4         |
| 4  | Commensal bacteria augment Staphylococcus aureus infection by inactivation of phagocyte-derived reactive oxygen species. PLoS Pathogens, 2021, 17, e1009880.                                                                                         | 4.7 | 8         |
| 5  | An Immunomodulatory Transcriptional Signature Associated With Persistent Listeria Infection in Hepatocytes. Frontiers in Cellular and Infection Microbiology, 2021, 11, 761945.                                                                      | 3.9 | 2         |
| 6  | Dynamic insights on transcription initiation and RNA processing during bacterial adaptation. Rna, 2020, 26, 382-395.                                                                                                                                 | 3.5 | 4         |
| 7  | Complete Structure of the Enterococcal Polysaccharide Antigen (EPA) of Vancomycin-Resistant<br>Enterococcus faecalis V583 Reveals that EPA Decorations Are Teichoic Acids Covalently Linked to a<br>Rhamnopolysaccharide Backbone. MBio, 2020, 11, . | 4.1 | 33        |
| 8  | Fitness Restoration of a Genetically Tractable Enterococcus faecalis V583 Derivative To Study<br>Decoration-Related Phenotypes of the Enterococcal Polysaccharide Antigen. MSphere, 2019, 4, .                                                       | 2.9 | 6         |
| 9  | Enterococcus faecalis Countermeasures Defeat a Virulent Picovirinae Bacteriophage. Viruses, 2019, 11,<br>48.                                                                                                                                         | 3.3 | 39        |
| 10 | Intestinal translocation of enterococci requires a threshold level of enterococcal overgrowth in the lumen. Scientific Reports, 2019, 9, 8926.                                                                                                       | 3.3 | 43        |
| 11 | Binding activity to intestinal cells and transient colonization in mice of two Lactobacillus paracasei<br>subsp. paracasei strains with high aggregation potential. World Journal of Microbiology and<br>Biotechnology, 2019, 35, 85.                | 3.6 | 4         |
| 12 | Decoration of the enterococcal polysaccharide antigen EPA is essential for virulence, cell surface charge and interaction with effectors of the innate immune system. PLoS Pathogens, 2019, 15, e1007730.                                            | 4.7 | 31        |
| 13 | Bacteria isolated from lung as biotherapeutics in asthma. , 2019, , .                                                                                                                                                                                |     | 0         |
| 14 | Exploration of the role of the virulence factor ElrA during Enterococcus faecalis cell infection.<br>Scientific Reports, 2018, 8, 1749.                                                                                                              | 3.3 | 13        |
| 15 | Lactobacillus paracasei CNCM I-3689 reduces vancomycin-resistant Enterococcus persistence and promotes Bacteroidetes resilience in the gut following antibiotic challenge. Scientific Reports, 2018, 8, 5098.                                        | 3.3 | 37        |
| 16 | Surfaceome and Proteosurfaceome in Parietal Monoderm Bacteria: Focus on Protein Cell-Surface<br>Display. Frontiers in Microbiology, 2018, 9, 100.                                                                                                    | 3.5 | 30        |
| 17 | Three glycosylated serineâ€rich repeat proteins play a pivotal role in adhesion and colonization of the pioneer commensal bacterium, <i>Streptococcus salivarius</i> . Environmental Microbiology, 2017, 19, 3579-3594.                              | 3.8 | 49        |
| 18 | The Enterococcus faecalis virulence factor ElrA interacts with the human Four-and-a-Half LIM<br>Domains Protein 2. Scientific Reports, 2017, 7, 4581.                                                                                                | 3.3 | 9         |

PASCALE SERROR

| #  | Article                                                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Potential use of probiotic and commensal bacteria as non-antibiotic strategies against vancomycin-resistant enterococci. FEMS Microbiology Letters, 2015, 362, fnv012.                                                                                         | 1.8  | 28        |
| 20 | Whole-genome mapping of 5′ RNA ends in bacteria by tagged sequencing: a comprehensive view in <i>Enterococcus faecalis</i> . Rna, 2015, 21, 1018-1030.                                                                                                         | 3.5  | 59        |
| 21 | Overexpression of Enterococcus faecalis elr operon protects from phagocytosis. BMC Microbiology, 2015, 15, 112.                                                                                                                                                | 3.3  | 11        |
| 22 | Regulatory crosstalk between type I and type II toxin-antitoxin systems in the human pathogen<br><i>Enterococcus faecalis</i> . RNA Biology, 2015, 12, 1099-1108.                                                                                              | 3.1  | 49        |
| 23 | The Surface Rhamnopolysaccharide Epa of <i>Enterococcus faecalis</i> Is a Key Determinant of Infectious Diseases, 2015, 211, 62-71.                                                                                                                            | 4.0  | 66        |
| 24 | Zebrafish as a Novel Vertebrate Model To Dissect Enterococcal Pathogenesis. Infection and Immunity, 2013, 81, 4271-4279.                                                                                                                                       | 2.2  | 40        |
| 25 | Enterococcus faecalis Prophage Dynamics and Contributions to Pathogenic Traits. PLoS Genetics, 2013, 9, e1003539.                                                                                                                                              | 3.5  | 191       |
| 26 | Enterococcal Rgg-Like Regulator ElrR Activates Expression of the <i>elrA</i> Operon. Journal of Bacteriology, 2013, 195, 3073-3083.                                                                                                                            | 2.2  | 13        |
| 27 | Identification of Critical Genes for Growth in Olive Brine by Transposon Mutagenesis of<br>Lactobacillus pentosus C11. Applied and Environmental Microbiology, 2013, 79, 4568-4575.                                                                            | 3.1  | 22        |
| 28 | The PavA-like Fibronectin-Binding Protein of Enterococcus faecalis, EfbA, Is Important for Virulence in<br>a Mouse Model of Ascending Urinary Tract Infection. Journal of Infectious Diseases, 2012, 206, 952-960.                                             | 4.0  | 33        |
| 29 | The incongruent gelatinase genotype and phenotype in Enterococcus faecalis are due to shutting off the ability to respond to the gelatinase biosynthesis-activating pheromone (GBAP) quorum-sensing signal. Microbiology (United Kingdom), 2012, 158, 519-528. | 1.8  | 24        |
| 30 | Development of an EfficientIn VivoSystem (Pjunc-TpaselS1223) for Random Transposon Mutagenesis of<br>Lactobacillus casei. Applied and Environmental Microbiology, 2012, 78, 5417-5423.                                                                         | 3.1  | 27        |
| 31 | The prolipoprotein diacylglyceryl transferase (Lgt) of Enterococcus faecalis contributes to virulence. Microbiology (United Kingdom), 2012, 158, 816-825.                                                                                                      | 1.8  | 24        |
| 32 | Incongruence between the cps type 2 genotype and host-related phenotypes of an Enterococcus faecalis food isolate. International Journal of Food Microbiology, 2012, 158, 120-125.                                                                             | 4.7  | 5         |
| 33 | Prevalence and characterization of antibiotic resistant Enterococcus faecalis in French cheeses.<br>Food Microbiology, 2012, 31, 191-198.                                                                                                                      | 4.2  | 94        |
| 34 | A simple and efficient method to search for selected primary transcripts: non-coding and antisense<br>RNAs in the human pathogen Enterococcus faecalis. Nucleic Acids Research, 2011, 39, e46-e46.                                                             | 14.5 | 69        |
| 35 | Large-Scale Screening of a Targeted Enterococcus faecalis Mutant Library Identifies Envelope Fitness<br>Factors. PLoS ONE, 2011, 6, e29023.                                                                                                                    | 2.5  | 46        |
| 36 | Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. Journal of Invertebrate Pathology, 2010, 103, 24-29.                                                           | 3.2  | 78        |

PASCALE SERROR

| #  | Article                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Virulence of Enterococcus faecalis dairy strains in an insect model: the role of fsrB and gelE.<br>Microbiology (United Kingdom), 2009, 155, 3564-3571.                                                                  | 1.8 | 59        |
| 38 | <i>ace</i> , Which Encodes an Adhesin in <i>Enterococcus faecalis</i> , Is Regulated by Ers and Is<br>Involved in Virulence. Infection and Immunity, 2009, 77, 2832-2839.                                                | 2.2 | 100       |
| 39 | Highly efficient production of the staphylococcal nuclease reporter in <i>Lactobacillus<br/>bulgaricus</i> governed by the promoter of the <i>hlbA</i> gene. FEMS Microbiology Letters, 2009, 293,<br>232-239.           | 1.8 | 11        |
| 40 | Safety assessment of dairy microorganisms: The Enterococcus genusâ~†. International Journal of Food<br>Microbiology, 2008, 126, 291-301.                                                                                 | 4.7 | 323       |
| 41 | In situ gene expression in cheese matrices: Application to a set of enterococcal genes. Journal of<br>Microbiological Methods, 2008, 75, 485-490.                                                                        | 1.6 | 36        |
| 42 | C-Terminal WxL Domain Mediates Cell Wall Binding in Enterococcus faecalis and Other Gram-Positive<br>Bacteria. Journal of Bacteriology, 2007, 189, 1244-1253.                                                            | 2.2 | 92        |
| 43 | Enterococcal Leucine-Rich Repeat-Containing Protein Involved in Virulence and Host Inflammatory Response. Infection and Immunity, 2007, 75, 4463-4471.                                                                   | 2.2 | 50        |
| 44 | A gene required for nutritional repression of the Bacillus subtilis dipeptide permease operon.<br>Molecular Microbiology, 2006, 15, 689-702.                                                                             | 2.5 | 172       |
| 45 | Comparative Genomic Hybridization Analysis of Enterococcus faecalis : Identification of Genes Absent from Food Strains. Journal of Bacteriology, 2006, 188, 6858-6868.                                                   | 2.2 | 52        |
| 46 | csp-like genes ofLactobacillus delbrueckiissp.bulgaricusand their response to cold shock. FEMS<br>Microbiology Letters, 2003, 226, 323-330.                                                                              | 1.8 | 15        |
| 47 | The <i>Bacillus subtilis</i> transition state regulator AbrB binds to the âÂ^Â'35 promoter region<br>of <i>comK</i> . FEMS Microbiology Letters, 2003, 218, 299-304.                                                     | 1.8 | 46        |
| 48 | Transposition in Lactobacillus delbrueckii subsp. bulgaricus: identification of two thermosensitive replicons and two functional insertion sequences. Microbiology (United Kingdom), 2003, 149, 1503-1511.               | 1.8 | 13        |
| 49 | The Bacillus subtilis transition state regulator AbrB binds to the â~'35 promoter region of comK. FEMS Microbiology Letters, 2003, 218, 299-304.                                                                         | 1.8 | 6         |
| 50 | Electrotransformation of <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> and <i>L.<br/>delbrueckii</i> subsp. <i>lactis</i> with Various Plasmids. Applied and Environmental Microbiology,<br>2002, 68, 46-52. | 3.1 | 90        |
| 51 | Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek, 2002, 82, 187-216.                                                                                                                                    | 1.7 | 598       |
| 52 | Stress responses in lactic acid bacteria. , 2002, , 187-216.                                                                                                                                                             |     | 28        |
| 53 | Pleiotropic transcriptional repressor CodY senses the intracellular pool of branchedâ€chain amino<br>acids in <i>Lactococcus lactis</i> . Molecular Microbiology, 2001, 40, 1227-1239.                                   | 2.5 | 198       |
| 54 | <i>Bacillus subtilis</i> CodY represses early-stationary-phase genes by sensing GTP levels. Genes and Development, 2001, 15, 1093-1103.                                                                                  | 5.9 | 300       |

PASCALE SERROR

| #  | Article                                                                                                                                                                                                                | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 1997, 390, 249-256.                                                                                                             | 27.8 | 3,519     |
| 56 | CodY is required for nutritional repression of Bacillus subtilis genetic competence. Journal of Bacteriology, 1996, 178, 5910-5915.                                                                                    | 2.2  | 150       |
| 57 | Interaction of Cody, a novel <i>Bacillus subtillis</i> DNAâ€binding protein, with the <i>dpp</i> promoter region. Molecular Microbiology, 1996, 20, 843-852.                                                           | 2.5  | 74        |
| 58 | Sequence analysis of the Bacillus subtilis chromosome region between the serA and kdg loci cloned in a yeast artificial chromosome. Microbiology (United Kingdom), 1996, 142, 2005-2016.                               | 1.8  | 32        |
| 59 | Cloning and characterization of the Bacillus subtilis birA gene encoding a repressor of the biotin operon. Journal of Bacteriology, 1995, 177, 2572-2575.                                                              | 2.2  | 56        |
| 60 | Nucleotide sequence of the Bacillus subtilis dnaD gene. Microbiology (United Kingdom), 1995, 141, 321-322.                                                                                                             | 1.8  | 35        |
| 61 | The Bacillus subtilis chromosome region encoding homologues of the Escherichia coli mssA and rpsA gene products. Microbiology (United Kingdom), 1995, 141, 311-319.                                                    | 1.8  | 46        |
| 62 | The transcriptional organization of the <i>Bacillus subtilis</i> 168 chromosome region between the <i>spoVAF and serA</i> genetic loci. Molecular Microbiology, 1993, 10, 397-405.                                     | 2.5  | 32        |
| 63 | The organization of the <i>Bacillus subtilis</i> 168 chromosome region between the <i>spoVA</i> and <i>serA</i> genetic loci, based on sequence data. Molecular Microbiology, 1993, 10, 385-395.                       | 2.5  | 84        |
| 64 | An ordered collection of Bacillus subtilis DNA segments cloned in yeast artificial chromosomes<br>Proceedings of the National Academy of Sciences of the United States of America, 1993, 90, 6047-6051.                | 7.1  | 60        |
| 65 | Physical mapping of stable RNA genes in Bacillus subtilis using polymerase chain reaction<br>amplification from a yeast artificial chromosome library. Journal of Bacteriology, 1993, 175, 4290-4297.                  | 2.2  | 10        |
| 66 | Chloroplast DNA variability in the genus Helianthus: restriction analysis and S1 nuclease mapping of DNA-DNA heteroduplexes. Plant Molecular Biology, 1990, 15, 269-280.                                               | 3.9  | 6         |
| 67 | Physical map and gene localization on sunflower (Helianthus annuus) chloroplast DNA: evidence for<br>an inversion of a 23.5-kbp segment in the large single copy region. Plant Molecular Biology, 1987, 9,<br>485-496. | 3.9  | 17        |