
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6437540/publications.pdf Version: 2024-02-01

VINCHUA IIN

#	Article	IF	CITATIONS
1	Porous Pyrene Organic Cage with Unusual Absorption Bathochromic-Shift Enables Visible Light Photocatalysis. CCS Chemistry, 2022, 4, 2588-2596.	7.8	18
2	Advances and challenges in user-friendly alkyne metathesis catalysts. Trends in Chemistry, 2022, 4, 540-553.	8.5	8
3	Synthesis of Î ³ -graphyne using dynamic covalent chemistry. , 2022, 1, 449-454.		106
4	Cage-Confinement Induced Emission Enhancement. Journal of Physical Chemistry Letters, 2022, 13, 6604-6611.	4.6	7
5	Covalent organic framework based lithium-ion battery: Fundamental, design and characterization. EnergyChem, 2021, 3, 100048.	19.1	94
6	Malleable and recyclable imide–imine hybrid thermosets: influence of imide structure on material property. Materials Advances, 2021, 2, 4333-4338.	5.4	9
7	Post-synthetic modification of porous organic cages. Chemical Society Reviews, 2021, 50, 8874-8886.	38.1	98
8	Truxene-based covalent organic polyhedrons constructed through alkyne metathesis. Organic Chemistry Frontiers, 2021, 8, 4723-4729.	4.5	8
9	A pillar[5]arene-based covalent organic framework with pre-encoded selective host–guest recognition. Chemical Science, 2021, 12, 13316-13320.	7.4	32
10	By-design molecular architectures <i>via</i> alkyne metathesis. Chemical Science, 2021, 12, 9591-9606.	7.4	46
11	Highly active alkyne metathesis catalysts operating under open air condition. Nature Communications, 2021, 12, 1136.	12.8	28
12	Malleable and Recyclable Vitrimer–Graphene Aerogel Composite with High Electrical Conductivity. ACS Applied Electronic Materials, 2021, 3, 1178-1183.	4.3	21
13	Single crystals of mechanically entwined helical covalent polymers. Nature Chemistry, 2021, 13, 660-665.	13.6	82
14	Mechanics of vitrimer particle compression and fusion under heat press. International Journal of Mechanical Sciences, 2021, 201, 106466.	6.7	11
15	Controlled Synthesis of Palladium Nanoparticles with Size-Dependent Catalytic Activities Enabled by Organic Molecular Cages. Inorganic Chemistry, 2021, 60, 12517-12525.	4.0	11
16	Helical Covalent Polymers with Unidirectional Ion Channels as Single Lithium-Ion Conducting Electrolytes. CCS Chemistry, 2021, 3, 2762-2770.	7.8	23
17	Readily useable bulk phenoxazine-based covalent organic framework cathode materials with superior kinetics and high redox potentials. Journal of Materials Chemistry A, 2021, 9, 10661-10665.	10.3	20
18	Controlled growth of ultrafine metal nanoparticles mediated by solid supports. Nanoscale Advances, 2021, 3, 1865-1886.	4.6	18

#	Article	IF	CITATIONS
19	Rapid Fabrication of Fiber-Reinforced Polyimine Composites with Reprocessability, Repairability, and Recyclability. ACS Applied Polymer Materials, 2021, 3, 5808-5817.	4.4	23
20	Covalent organic framework-supported platinum nanoparticles as efficient electrocatalysts for water reduction. Nanoscale, 2020, 12, 2596-2602.	5.6	41
21	Desymmetrized Vertex Design toward a Molecular Cage with Unusual Topology. Angewandte Chemie - International Edition, 2020, 59, 20846-20851.	13.8	44
22	A Truxenoneâ€based Covalent Organic Framework as an Allâ€5olidâ€5tate Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie, 2020, 132, 20565-20569.	2.0	5
23	Porous organic polymer material supported palladium nanoparticles. Journal of Materials Chemistry A, 2020, 8, 17360-17391.	10.3	93
24	A Truxenoneâ€based Covalent Organic Framework as an Allâ€Solidâ€State Lithiumâ€Ion Battery Cathode with High Capacity. Angewandte Chemie - International Edition, 2020, 59, 20385-20389.	13.8	110
25	Desymmetrized Vertex Design toward a Molecular Cage with Unusual Topology. Angewandte Chemie, 2020, 132, 21032-21037.	2.0	7
26	Highly C2/C1-Selective Covalent Organic Frameworks Substituted with Azo Groups. ACS Applied Materials & Interfaces, 2020, 12, 51517-51522.	8.0	20
27	Production and closed-loop recycling of biomass-based malleable materials. Science China Materials, 2020, 63, 2071-2078.	6.3	17
28	Confined growth of ordered organic frameworks at an interface. Chemical Society Reviews, 2020, 49, 4637-4666.	38.1	104
29	Robust, high-barrier, and fully recyclable cellulose-based plastic replacement enabled by a dynamic imine polymer. Journal of Materials Chemistry A, 2020, 8, 14082-14090.	10.3	57
30	Broad‣cope Ultrafine Nanoparticles: Phosphineâ€Based Covalent Organic Framework for the Controlled Synthesis of Broad‣cope Ultrafine Nanoparticles (Small 8/2020). Small, 2020, 16, 2070042.	10.0	0
31	Phosphineâ€Based Covalent Organic Framework for the Controlled Synthesis of Broad cope Ultrafine Nanoparticles. Small, 2020, 16, e1906005.	10.0	82
32	Malleable and Recyclable Conductive MWCNT-Vitrimer Composite for Flexible Electronics. ACS Applied Nano Materials, 2020, 3, 4845-4850.	5.0	34
33	Crystalline, Few-layer 2D Materials via Surfactant-monolayer-assisted Interfacial Synthesis. Chemical Research in Chinese Universities, 2019, 35, 955-956.	2.6	3
34	Rapid Fabrication of Malleable Fiber Reinforced Composites with Vitrimer Powder. ACS Applied Polymer Materials, 2019, 1, 2535-2542.	4.4	39
35	Covalent organic framework-supported Fe–TiO ₂ nanoparticles as ambient-light-active photocatalysts. Journal of Materials Chemistry A, 2019, 7, 16364-16371.	10.3	103
36	Crystalline Lithium Imidazolate Covalent Organic Frameworks with High Li-Ion Conductivity. Journal of the American Chemical Society, 2019, 141, 7518-7525.	13.7	261

#	Article	IF	CITATIONS
37	Malleable and Recyclable Thermosets: The Next Generation of Plastics. Matter, 2019, 1, 1456-1493.	10.0	200
38	Highly CO ₂ selective pillar[n]arene-based supramolecular organic frameworks. Supramolecular Chemistry, 2018, 30, 648-654.	1.2	23
39	Surfaceâ€Confined Dynamic Covalent System Driven by Olefin Metathesis. Angewandte Chemie - International Edition, 2018, 57, 1869-1873.	13.8	27
40	Surfaceâ€Confined Dynamic Covalent System Driven by Olefin Metathesis. Angewandte Chemie, 2018, 130, 1887-1891.	2.0	6
41	Cage-templated synthesis of highly stable palladium nanoparticles and their catalytic activities in Suzuki–Miyaura coupling. Chemical Science, 2018, 9, 676-680.	7.4	105
42	Highly Fluoro-Substituted Covalent Organic Framework and Its Application in Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 42233-42240.	8.0	127
43	SNAr stands corrected. Nature Chemistry, 2018, 10, 996-998.	13.6	2
44	Pillar[6]areneâ€based Molecular Trap with Unusual Conformation and Topology. Israel Journal of Chemistry, 2018, 58, 1261-1264.	2.3	3
45	Separation of Arylenevinylene Macrocycles with a Surfaceâ€Confined Twoâ€Dimensional Covalent Organic Framework. Angewandte Chemie - International Edition, 2018, 57, 8984-8988.	13.8	46
46	Separation of Arylenevinylene Macrocycles with a Surfaceâ€Confined Twoâ€Dimensional Covalent Organic Framework. Angewandte Chemie, 2018, 130, 9122-9126.	2.0	6
47	Synthesis of Small-Molecule/DNA Hybrids through On-Bead Amide-Coupling Approach. Journal of Organic Chemistry, 2017, 82, 10803-10811.	3.2	8
48	Aromatic-rich hydrocarbon porous networks through alkyne metathesis. Materials Chemistry Frontiers, 2017, 1, 1369-1372.	5.9	16
49	A titanium-based porous coordination polymer as a catalyst for chemical fixation of CO ₂ . Journal of Materials Chemistry A, 2017, 5, 9163-9168.	10.3	43
50	Pillar[n]arene-based supramolecular organic frameworks with high hydrocarbon storage and selectivity. Chemical Communications, 2017, 53, 6409-6412.	4.1	54
51	Synthesis of Ultrafine and Highly Dispersed Metal Nanoparticles Confined in a Thioether-Containing Covalent Organic Framework and Their Catalytic Applications. Journal of the American Chemical Society, 2017, 139, 17082-17088.	13.7	506
52	Tuning the physical properties of malleable and recyclable polyimine thermosets: the effect of solvent and monomer concentration. RSC Advances, 2017, 7, 48303-48307.	3.6	32
53	Rehealable imide–imine hybrid polymers with full recyclability. Journal of Materials Chemistry A, 2017, 5, 21140-21145.	10.3	84
54	Recent development of efficient electrocatalysts derived from porous organic polymers for oxygen reduction reaction. Science China Chemistry, 2017, 60, 999-1006.	8.2	37

#	Article	IF	CITATIONS
55	Tessellated multiporous two-dimensional covalent organic frameworks. Nature Reviews Chemistry, 2017, 1, .	30.2	319
56	Poly(aryleneethynylene)s: Properties, Applications and Synthesis Through Alkyne Metathesis. Topics in Current Chemistry, 2017, 375, 69.	5.8	20
57	Highly Active Multidentate Ligandâ€Based Alkyne Metathesis Catalysts. Chemistry - A European Journal, 2016, 22, 7959-7963.	3.3	47
58	Synthesis of a Twoâ€Dimensional Covalent Organic Monolayer through Dynamic Imine Chemistry at the Air/Water Interface. Angewandte Chemie - International Edition, 2016, 55, 213-217.	13.8	276
59	Phenylene vinylene macrocycles as artificial transmembrane transporters. Chemical Communications, 2016, 52, 5848-5851.	4.1	12
60	Re-healable polyimine thermosets: polymer composition and moisture sensitivity. Polymer Chemistry, 2016, 7, 7052-7056.	3.9	108
61	Ionic Covalent Organic Frameworks with Spiroborate Linkage. Angewandte Chemie, 2016, 128, 1769-1773.	2.0	88
62	Ionic Covalent Organic Frameworks with Spiroborate Linkage. Angewandte Chemie - International Edition, 2016, 55, 1737-1741.	13.8	503
63	Synthesis of Cyclic Porphyrin Trimers through Alkyne Metathesis Cyclooligomerization and Their Host–Guest Binding Study. Organic Letters, 2016, 18, 2946-2949.	4.6	43
64	Repairable Woven Carbon Fiber Composites with Full Recyclability Enabled by Malleable Polyimine Networks. Advanced Materials, 2016, 28, 2904-2909.	21.0	455
65	Iron-rich nanoparticle encapsulated, nitrogen doped porous carbon materials as efficient cathode electrocatalyst for microbial fuel cells. Journal of Power Sources, 2016, 315, 302-307.	7.8	76
66	Dynamic covalent synthesis of aryleneethynylene cages through alkyne metathesis: dimer, tetramer, or interlocked complex?. Chemical Science, 2016, 7, 3370-3376.	7.4	104
67	Synthesis of Phenylene Vinylene Macrocycles through Acyclic Diene Metathesis Macrocyclization and Their Aggregation Behavior. Chemistry - A European Journal, 2015, 21, 16935-16940.	3.3	19
68	Solutionâ€Phase Dynamic Assembly of Permanently Interlocked Aryleneethynylene Cages through Alkyne Metathesis. Angewandte Chemie - International Edition, 2015, 54, 7550-7554.	13.8	117
69	Mesoporous 2D covalent organic frameworks based on shape-persistent arylene-ethynylene macrocycles. Chemical Science, 2015, 6, 4049-4053.	7.4	118
70	Desymmetrized Vertex Design for the Synthesis of Covalent Organic Frameworks with Periodically Heterogeneous Pore Structures. Journal of the American Chemical Society, 2015, 137, 13772-13775.	13.7	148
71	Metallated porphyrin based porous organic polymers as efficient electrocatalysts. Nanoscale, 2015, 7, 18271-18277.	5.6	52
72	Shapeâ€Persistent Arylene Ethynylene Organic Hosts for Fullerenes. Chemical Record, 2015, 15, 97-106.	5.8	31

#	Article	IF	CITATIONS
73	Application of alkyne metathesis in polymer synthesis. Journal of Materials Chemistry A, 2014, 2, 5986.	10.3	70
74	Template Synthesis of Gold Nanoparticles with an Organic Molecular Cage. Journal of the American Chemical Society, 2014, 136, 1782-1785.	13.7	189
75	Heat―or Waterâ€Driven Malleability in a Highly Recyclable Covalent Network Polymer. Advanced Materials, 2014, 26, 3938-3942.	21.0	636
76	A Tetrameric Cage with <i>D</i> _{2<i>h</i>} Symmetry through Alkyne Metathesis. Angewandte Chemie - International Edition, 2014, 53, 10663-10667.	13.8	110
77	Dynamic Covalent Chemistry Approaches Toward Macrocycles, Molecular Cages, and Polymers. Accounts of Chemical Research, 2014, 47, 1575-1586.	15.6	406
78	Porous Poly(aryleneethynylene) Networks through Alkyne Metathesis. Chemistry of Materials, 2013, 25, 3718-3723.	6.7	42
79	Highly efficient one-pot synthesis of hetero-sequenced shape-persistent macrocycles through orthogonal dynamic covalent chemistry (ODCC). Chemical Communications, 2013, 49, 4418-4420.	4.1	50
80	Recent advances in dynamic covalent chemistry. Chemical Society Reviews, 2013, 42, 6634.	38.1	1,130
81	Development of organic porous materials through Schiff-base chemistry. CrystEngComm, 2013, 15, 1484-1499.	2.6	153
82	Controlled self-assembly of gold nanoparticles mediated by novel organic molecular cages. Optical Materials Express, 2013, 3, 205.	3.0	12
83	Microwave-assisted syntheses of highly CO ₂ -selective organic cage frameworks (OCFs). Chemical Science, 2012, 3, 874-877.	7.4	78
84	Design Strategies for Shape-Persistent Covalent Organic Polyhedrons (COPs) through Imine Condensation/Metathesis. Journal of Organic Chemistry, 2012, 77, 7392-7400.	3.2	41
85	Highly CO ₂ -Selective Organic Molecular Cages: What Determines the CO ₂ Selectivity. Journal of the American Chemical Society, 2011, 133, 6650-6658.	13.7	241
86	Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature, 2011, 469, 116-120.	27.8	290
87	A Shapeâ€Persistent Organic Molecular Cage with High Selectivity for the Adsorption of CO ₂ over N ₂ . Angewandte Chemie - International Edition, 2010, 49, 6348-6351.	13.8	225
88	Shape-persistent arylenevinylene macrocycles (AVMs) prepared via acyclic diene metathesis macrocyclization (ADMAC). Chemical Communications, 2010, 46, 8258.	4.1	54
89	Enantioselective synthesis of α-terpineol and nephthenol by intramolecular acyloxazolidinone enolate alkylations. Chemical Communications, 2006, , 2902-2904.	4.1	14
90	An unexpected diterpene cyclase from rice: Functional identification of a stemodene synthase. Archives of Biochemistry and Biophysics, 2006, 448, 133-140.	3.0	44

#	Article	IF	CITATIONS
91	Structures, biogenetic relationships, and cytotoxicity of pimarane-derived diterpenes from Petalostigma pubescens. Phytochemistry, 2006, 67, 1708-1715.	2.9	26
92	Taxadiene Synthase-Catalyzed Cyclization of 6-Fluorogeranylgeranyl Diphosphate to 7-Fluoroverticillenes. Journal of the American Chemical Society, 2005, 127, 7834-7842.	13.7	84
93	Identification of Syn-Pimara-7,15-Diene Synthase Reveals Functional Clustering of Terpene Synthases Involved in Rice Phytoalexin/Allelochemical Biosynthesis. Plant Physiology, 2004, 135, 2098-2105.	4.8	195