Chao Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6437265/publications.pdf

Version: 2024-02-01

516710 677142 22 771 16 22 citations h-index g-index papers 22 22 22 604 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Influence of silane-hydrolysate coupling agents on bitumen–aggregate interfacial adhesion: An exploration from molecular dynamics simulation. International Journal of Adhesion and Adhesives, 2022, 112, 102993.	2.9	17
2	Investigation on the Mechanical and Thermal Insulation Properties of Hollow Microspheres/Phenolic Syntactic Foams. Advances in Materials Science and Engineering, 2022, 2022, 1-10.	1.8	1
3	Preparation and anti-icing performance of acrylic superhydrophobic asphalt pavement coating with microwave heating function. Construction and Building Materials, 2022, 344, 128289.	7.2	16
4	Effect of Fine Aggregate Particle Characteristics on Mechanical Properties of Fly Ash-Based Geopolymer Mortar. Minerals (Basel, Switzerland), 2021, 11, 897.	2.0	13
5	Enhancing the mechanical and durability properties of fly ash-based geopolymer mortar modified by polyvinyl alcohol fibers and styrene butadiene rubber latex. Materials Express, 2021, 11, 1453-1465.	0.5	4
6	Investigation of anti-icing, anti-skid, and water impermeability performances of an acrylic superhydrophobic coating on asphalt pavement. Construction and Building Materials, 2020, 264, 120702.	7.2	31
7	Foamed geopolymer: The relationship between rheological properties of geopolymer paste and pore-formation mechanism. Journal of Cleaner Production, 2020, 277, 123238.	9.3	62
8	Influence of precast foam on the pore structure and properties of fly ash-based geopolymer foams. Construction and Building Materials, 2020, 256, 119410.	7.2	51
9	The Effect of Waste Engine Oil and Waste Polyethylene on UV Aging Resistance of Asphalt. Polymers, 2020, 12, 602.	4.5	27
10	Effect of a lignin-based polyurethane on adhesion properties of asphalt binder during UV aging process. Construction and Building Materials, 2020, 247, 118547.	7.2	45
11	Effect of silane coupling agent on improving the adhesive properties between asphalt binder and aggregates. Construction and Building Materials, 2018, 169, 591-600.	7.2	72
12	The anti-icing and mechanical properties of a superhydrophobic coating on asphalt pavement. Construction and Building Materials, 2018, 190, 83-94.	7.2	43
13	Using bio-based rejuvenator derived from waste wood to recycle old asphalt. Construction and Building Materials, 2018, 189, 568-575.	7.2	92
14	Preparation and anti-icing properties of a superhydrophobic silicone coating on asphalt mixture. Construction and Building Materials, 2018, 189, 227-235.	7.2	60
15	Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites. Construction and Building Materials, 2017, 150, 179-189.	7.2	101
16	Effects of Functionalized Graphene Nanoplatelets on the Morphology and Properties of Phenolic Resins. Journal of Nanomaterials, 2016, 2016, 1-7.	2.7	20
17	Effects of a sodium chloride deicing additive on the rheological properties of asphalt mastic. Road Materials and Pavement Design, 2016, 17, 382-395.	4.0	14
18	Synthesis and Properties of a Clean and Sustainable Deicing Additive for Asphalt Mixture. PLoS ONE, 2015, 10, e0115721.	2.5	15

CHAO PENG

#	Article	IF	CITATION
19	Effect of Zn/Al Layered Double Hydroxide Containing 2-Hydroxy-4-n-octoxy-benzophenone on UV Aging Resistance of Asphalt. Advances in Materials Science and Engineering, 2015, 2015, 1-13.	1.8	21
20	Effect of 4,4′-stilbenedicarboxylic acid-intercalated layered double hydroxides on UV aging resistance of bitumen. RSC Advances, 2015, 5, 95504-95511.	3.6	22
21	Intercalation of p-methycinnamic acid anion into Zn-Al layered double hydroxide to improve UV aging resistance of asphalt. AIP Advances, 2015, 5, .	1.3	17
22	Calcined Mg-Fe layered double hydroxide as an absorber for the removal of methyl orange. AIP Advances, 2015, 5, .	1.3	27