Chao Peng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6437265/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mix design and flexural toughness of PVA fiber reinforced fly ash-geopolymer composites. Construction and Building Materials, 2017, 150, 179-189.	7.2	101
2	Using bio-based rejuvenator derived from waste wood to recycle old asphalt. Construction and Building Materials, 2018, 189, 568-575.	7.2	92
3	Effect of silane coupling agent on improving the adhesive properties between asphalt binder and aggregates. Construction and Building Materials, 2018, 169, 591-600.	7.2	72
4	Foamed geopolymer: The relationship between rheological properties of geopolymer paste and pore-formation mechanism. Journal of Cleaner Production, 2020, 277, 123238.	9.3	62
5	Preparation and anti-icing properties of a superhydrophobic silicone coating on asphalt mixture. Construction and Building Materials, 2018, 189, 227-235.	7.2	60
6	Influence of precast foam on the pore structure and properties of fly ash-based geopolymer foams. Construction and Building Materials, 2020, 256, 119410.	7.2	51
7	Effect of a lignin-based polyurethane on adhesion properties of asphalt binder during UV aging process. Construction and Building Materials, 2020, 247, 118547.	7.2	45
8	The anti-icing and mechanical properties of a superhydrophobic coating on asphalt pavement. Construction and Building Materials, 2018, 190, 83-94.	7.2	43
9	Investigation of anti-icing, anti-skid, and water impermeability performances of an acrylic superhydrophobic coating on asphalt pavement. Construction and Building Materials, 2020, 264, 120702.	7.2	31
10	Calcined Mg-Fe layered double hydroxide as an absorber for the removal of methyl orange. AIP Advances, 2015, 5, .	1.3	27
11	The Effect of Waste Engine Oil and Waste Polyethylene on UV Aging Resistance of Asphalt. Polymers, 2020, 12, 602.	4.5	27
12	Effect of 4,4′-stilbenedicarboxylic acid-intercalated layered double hydroxides on UV aging resistance of bitumen. RSC Advances, 2015, 5, 95504-95511.	3.6	22
13	Effect of Zn/Al Layered Double Hydroxide Containing 2-Hydroxy-4-n-octoxy-benzophenone on UV Aging Resistance of Asphalt. Advances in Materials Science and Engineering, 2015, 2015, 1-13.	1.8	21
14	Effects of Functionalized Graphene Nanoplatelets on the Morphology and Properties of Phenolic Resins. Journal of Nanomaterials, 2016, 2016, 1-7.	2.7	20
15	Intercalation of p-methycinnamic acid anion into Zn-Al layered double hydroxide to improve UV aging resistance of asphalt. AlP Advances, 2015, 5, .	1.3	17
16	Influence of silane-hydrolysate coupling agents on bitumen–aggregate interfacial adhesion: An exploration from molecular dynamics simulation. International Journal of Adhesion and Adhesives, 2022, 112, 102993.	2.9	17
17	Preparation and anti-icing performance of acrylic superhydrophobic asphalt pavement coating with microwave heating function. Construction and Building Materials, 2022, 344, 128289.	7.2	16
18	Synthesis and Properties of a Clean and Sustainable Deicing Additive for Asphalt Mixture. PLoS ONE, 2015, 10, e0115721.	2.5	15

Chao Peng

#	Article	IF	CITATIONS
19	Effects of a sodium chloride deicing additive on the rheological properties of asphalt mastic. Road Materials and Pavement Design, 2016, 17, 382-395.	4.0	14
20	Effect of Fine Aggregate Particle Characteristics on Mechanical Properties of Fly Ash-Based Geopolymer Mortar. Minerals (Basel, Switzerland), 2021, 11, 897.	2.0	13
21	Enhancing the mechanical and durability properties of fly ash-based geopolymer mortar modified by polyvinyl alcohol fibers and styrene butadiene rubber latex. Materials Express, 2021, 11, 1453-1465.	0.5	4
22	Investigation on the Mechanical and Thermal Insulation Properties of Hollow Microspheres/Phenolic Syntactic Foams. Advances in Materials Science and Engineering, 2022, 2022, 1-10.	1.8	1