El-Sayed Salama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6437103/publications.pdf Version: 2024-02-01

FL-SAVED SALAMA

#	Article	IF	CITATIONS
1	Applications of chitin and chitosan as natural biopolymer: potential sources, pretreatments, and degradation pathways. Biomass Conversion and Biorefinery, 2024, 14, 4567-4581.	4.6	12
2	Microalgal growth coupled with wastewater treatment in open and closed systems for advanced biofuel generation. Biomass Conversion and Biorefinery, 2022, 12, 1939-1958.	4.6	26
3	Isolation and screening of Tetradesmus dimorphus and Desmodesmus asymmetricus from natural habitats in Northwestern China for clean fuel production and N, P removal. Biomass Conversion and Biorefinery, 2022, 12, 1503-1512.	4.6	8
4	Biomethane enhancement via plastic carriers in anaerobic co-digestion of agricultural wastes. Biomass Conversion and Biorefinery, 2022, 12, 2553-2565.	4.6	9
5	Role of microalgae and cyanobacteria in wastewater treatment: genetic engineering and omics approaches. International Journal of Environmental Science and Technology, 2022, 19, 2173-2194.	3.5	21
6	Protein biomethanation: insight into the microbial nexus. Trends in Microbiology, 2022, 30, 69-78.	7.7	15
7	Two-stage microbial fuel cell (MFC) and membrane bioreactor (MBR) system for enhancing wastewater treatment and resource recovery based on MFC as a biosensor. Environmental Research, 2022, 204, 112089.	7.5	25
8	Utilization of waste biomass of Poa pratensis for green synthesis of n-doped carbon dots and its application in detection of Mn2+ and Fe3+. Chemosphere, 2022, 286, 131764.	8.2	114
9	Dietary application of Lactococcus lactis alleviates toxicity and regulates gut microbiota in Cyprinus carpio on exposure to heavy metals mixture. Fish and Shellfish Immunology, 2022, 120, 190-201.	3.6	16
10	Feed-additive Limosilactobacillus fermentum GR-3 reduces arsenic accumulation in Procambarus clarkii. Ecotoxicology and Environmental Safety, 2022, 231, 113216.	6.0	4
11	Efficient utilization and management of seaweed biomass for biogas production. Materials Today Sustainability, 2022, 18, 100120.	4.1	12
12	Microbial β-oxidation of synthetic long-chain fatty acids to improve lipid biomethanation. Water Research, 2022, 213, 118164.	11.3	22
13	Cultivation of FreshwaterÂMicroalgae in Wastewater Under High Salinity for Biomass, Nutrients Removal, and Fatty Acids/Biodiesel Production. Waste and Biomass Valorization, 2022, 13, 3245-3254.	3.4	11
14	Extensive investigation and beyond the removal of micro-polyvinyl chloride by microalgae to promote environmental health. Chemosphere, 2022, 300, 134530.	8.2	9
15	Potential applications of protein-rich waste: Progress in energy management and material recovery. Resources, Conservation and Recycling, 2022, 182, 106315.	10.8	12
16	Algae: a frontline photosynthetic organism in the microplastic catastrophe. Trends in Plant Science, 2022, 27, 1159-1172.	8.8	14
17	Co-fermentation of immobilized yeasts boosted bioethanol production from pretreated cotton stalk lignocellulosic biomass: Long-term investigation. Industrial Crops and Products, 2021, 159, 113122.	5.2	34
18	A complete characterization of microalgal biomass through FTIR/TGA/CHNS analysis: An approach for biofuel generation and nutrients removal. Renewable Energy, 2021, 163, 1973-1982.	8.9	78

EL-SAYED SALAMA

#	Article	IF	CITATIONS
19	Facilitated lignocellulosic biomass digestibility in anaerobic digestion for biomethane production: microbial communities' structure and interactions. Journal of Chemical Technology and Biotechnology, 2021, 96, 1798-1817.	3.2	8
20	Using Aspergillus niger whole-cell biocatalyst mycelial aerobic granular sludge to treat pharmaceutical wastewater containing Î ² -lactam antibiotics. Chemical Engineering Journal, 2021, 412, 128665.	12.7	30
21	Biomethanation and microbial community response during agricultural biomass and shrimp chaff digestion. Environmental Pollution, 2021, 278, 116801.	7.5	17
22	Water condition in biotrickling filtration for the efficient removal of gaseous contaminants. Critical Reviews in Biotechnology, 2021, 41, 1279-1296.	9.0	9
23	World eutrophic pollution of lake and river: Biotreatment potential and future perspectives. Environmental Technology and Innovation, 2021, 23, 101604.	6.1	36
24	Explication of structural variations in the bacterial and archaeal community of anaerobic digestion sludges: An insight through metagenomics. Journal of Environmental Chemical Engineering, 2021, 9, 105910.	6.7	39
25	Synergistic ammonia and fatty acids inhibition of microbial communities during slaughterhouse waste digestion for biogas production. Bioresource Technology, 2021, 337, 125383.	9.6	36
26	Identification and characterization of marine seaweeds for biocompounds production. Environmental Technology and Innovation, 2021, 24, 101848.	6.1	40
27	Improved digestibility and biogas production from lignocellulosic biomass: Biochar addition and microbial response. Industrial Crops and Products, 2021, 171, 113851.	5.2	16
28	Evaluation of various waste cooking oils for biodiesel production: A comprehensive analysis of feedstock. Waste Management, 2021, 136, 219-229.	7.4	33
29	Development of an innovative MFC-biosensor for real-time monitoring of anaerobic digestion for biogas production: Controlled substrate feeding strategy. Journal of Environmental Chemical Engineering, 2021, 9, 106703.	6.7	6
30	A novel biosensor for zinc detection based on microbial fuel cell system. Biosensors and Bioelectronics, 2020, 147, 111763.	10.1	38
31	Enhanced anaerobic co-digestion of fat, oil, and grease by calcium addition: Boost of biomethane production and microbial community shift. Bioresource Technology, 2020, 296, 122353.	9.6	53
32	Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: Role of lipidomics. Bioresource Technology, 2020, 298, 122299.	9.6	44
33	Enhanced ethanol production by Saccharomyces cerevisiae fermentation post acidic and alkali chemical pretreatments of cotton stalk lignocellulose. International Biodeterioration and Biodegradation, 2020, 147, 104869.	3.9	44
34	Metabolic pathways for microalgal biohydrogen production: Current progress and future prospectives. Bioresource Technology, 2020, 318, 124253.	9.6	48
35	Anaerobic digestion of cabbage and cauliflower biowaste: Impact of iron oxide nanoparticles (IONPs) on biomethane and microbial communities alteration. Bioresource Technology Reports, 2020, 12, 100567.	2.7	14
36	Determination of the inhibitory concentration level of fat, oil, and grease (FOG) towards bacterial and archaeal communities in anaerobic digestion. Renewable and Sustainable Energy Reviews, 2020, 131, 110032.	16.4	44

EL-SAYED SALAMA

#	Article	IF	CITATIONS
37	Long-term exposure of high concentration heavy metals induced toxicity, fatality, and gut microbial dysbiosis in common carp, Cyprinus carpio. Environmental Pollution, 2020, 266, 115293.	7.5	51
38	Tibet plateau probiotic mitigates chromate toxicity in mice by alleviating oxidative stress in gut microbiota. Communications Biology, 2020, 3, 242.	4.4	28
39	Biocomponent-based microalgal transformations into biofuels during the pretreatment and fermentation process. Bioresource Technology, 2020, 302, 122809.	9.6	33
40	Energy-efficient pretreatments for the enhanced conversion of microalgal biomass to biofuels. Bioresource Technology, 2020, 309, 123333.	9.6	36
41	Microbial Symbiosis: A Network towards Biomethanation. Trends in Microbiology, 2020, 28, 968-984.	7.7	83
42	Microalgae Isolation for Nutrient Removal Assessment and Biodiesel Production. Bioenergy Research, 2020, 13, 1247-1259.	3.9	24
43	Evaluation of animal- and plant-based lipidic waste in anaerobic digestion: kinetics of long-chain fatty acids degradation. Critical Reviews in Biotechnology, 2020, 40, 733-749.	9.0	22
44	Can Omics Approaches Improve Microalgal Biofuels under Abiotic Stress?. Trends in Plant Science, 2019, 24, 611-624.	8.8	38
45	Algae as a green technology for heavy metals removal from various wastewater. World Journal of Microbiology and Biotechnology, 2019, 35, 75.	3.6	124
46	Occurrence and Characterization of Paraffin Wax Formed in Developing Wells and Pipelines. Energies, 2019, 12, 967.	3.1	54
47	Micro-aeration in anode chamber promotes p-nitrophenol degradation and electricity generation in microbial fuel cell. Bioresource Technology, 2019, 285, 121291.	9.6	28
48	Whole conversion of microalgal biomass into biofuels through successive high-throughput fermentation. Chemical Engineering Journal, 2019, 360, 797-805.	12.7	74
49	Perspective on anaerobic digestion for biomethanation in cold environments. Renewable and Sustainable Energy Reviews, 2019, 103, 85-95.	16.4	73
50	Acetoclastic methanogenesis led by Methanosarcina in anaerobic co-digestion of fats, oil and grease for enhanced production of methane. Bioresource Technology, 2019, 272, 351-359.	9.6	191
51	Microbial acclimatization to lipidic-waste facilitates the efficacy of acidogenic fermentation. Chemical Engineering Journal, 2019, 358, 188-196.	12.7	56
52	Recent trends in anaerobic co-digestion: Fat, oil, and grease (FOG) for enhanced biomethanation. Progress in Energy and Combustion Science, 2019, 70, 22-42.	31.2	137
53	Enhancement of microalgal growth and biocomponent-based transformations for improved biofuel recovery: A review. Bioresource Technology, 2018, 258, 365-375.	9.6	49
54	Improvement of acidogenic fermentation using an acclimatized microbiome. International Journal of Hydrogen Energy, 2018, 43, 22126-22134.	7.1	26

EL-SAYED SALAMA

#	Article	IF	CITATIONS
55	Recent progress in microalgal biomass production coupled with wastewater treatment for biofuel generation. Renewable and Sustainable Energy Reviews, 2017, 79, 1189-1211.	16.4	367
56	Interactive effect of indole-3-acetic acid and diethyl aminoethyl hexanoate on the growth and fatty acid content of some microalgae for biodiesel production. Journal of Cleaner Production, 2017, 168, 1017-1024.	9.3	41
57	Effect of flue gas CO ₂ on the growth, carbohydrate and fatty acid composition of a green microalga <i>Scenedesmus obliquus</i> for biofuel production. Environmental Technology (United) Tj ETQq1 I	l 0.7 8.4 314	rg₿₿/Overlo
58	Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review. Energies, 2017, 10, 2110.	3.1	47
59	Cultivation and harvesting of microalgae in photobioreactor for biodiesel production and simultaneous nutrient removal. Energy Conversion and Management, 2016, 117, 54-62.	9.2	101
60	Harvesting of freshwater microalgae Scenedesmus obliquus and Chlorella vulgaris using acid mine drainage as a cost effective flocculant for biofuel production. Energy Conversion and Management, 2016, 121, 105-112.	9.2	20
61	Long-term production of bioethanol in repeated-batch fermentation of microalgal biomass using immobilized Saccharomyces cerevisiae. Bioresource Technology, 2016, 219, 98-105.	9.6	86
62	Microalga, Acutodesmus obliquus KGE 30 as a potential candidate for CO2 mitigation and biodiesel production. Environmental Science and Pollution Research, 2016, 23, 17831-17839.	5.3	15
63	Application of acid mine drainage for coagulation/flocculation of microalgal biomass. Bioresource Technology, 2015, 186, 232-237.	9.6	20
64	The effects of salinity on the growth and biochemical properties of <i>Chlamydomonas mexicana</i> GU732420 cultivated in municipal wastewater. Environmental Technology (United) Tj ETQq0 0 0	rgBT2/Øverl	oc la0 0 Tf 50
65	Effect of mine wastewater on nutrient removal and lipid production by a green microalga Micratinium reisseri from concentrated municipal wastewater. Bioresource Technology, 2014, 157, 84-90.	9.6	52
66	Enhancement of microalgae growth and fatty acid content under the influence of phytohormones. Bioresource Technology, 2014, 172, 97-103.	9.6	154
67	Cultivation of a new microalga, Micractinium reisseri, in municipal wastewater for nutrient removal, biomass, lipid, and fatty acid production. Biotechnology and Bioprocess Engineering, 2014, 19, 510-518.	2.6	61
68	Cultivation of microalgae species in tertiary municipal wastewater supplemented with CO2 for nutrient removal and biomass production. Ecological Engineering, 2013, 58, 142-148.	3.6	195
69	Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess and Biosystems Engineering, 2013, 36, 827-833.	3.4	177
70	Simultaneous nutrients removal and biodiesel production by green microalgae cultivated in Yellow River water. , 0, 212, 234-243.		3
71	A Moringa oleifera seeds-based filter for efficient removal of Congo red from aqueous medium. , 0, 206, 371-384.		7
72	Pig- and vegetable-cooked waste oils as feedstock for biodiesel, biogas, and biopolymer production. Biomass Conversion and Biorefinery, 0, , 1.	4.6	8

#	Article	IF	CITATIONS
73	Potential of Marine Seaweeds for Bioactive Compounds: a Comprehensive Analysis of Padina australisÂBiomass. Thalassas, 0, , 1.	0.5	5