Jorick Sandor Vink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6436830/publications.pdf

Version: 2024-02-01

197 papers 12,441 citations

23567 58 h-index 27406 106 g-index

200 all docs

200 docs citations

times ranked

200

5605 citing authors

#	Article	IF	Citations
1	Mass-loss predictions for O and B stars as a function of metallicity. Astronomy and Astrophysics, 2001, 369, 574-588.	5.1	1,240
2	Rotating massive main-sequence stars. Astronomy and Astrophysics, 2011, 530, A115.	5.1	624
3	ON THE MAXIMUM MASS OF STELLAR BLACK HOLES. Astrophysical Journal, 2010, 714, 1217-1226.	4.5	485
4	Mass loss from hot massive stars. Astronomy and Astrophysics Review, 2008, 16, 209-325.	25.5	422
5	The INT Photometric HÂ Survey of the Northern Galactic Plane (IPHAS). Monthly Notices of the Royal Astronomical Society, 2005, 362, 753-776.	4.4	395
6	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2013, 550, A107.	5.1	368
7	On the metallicity dependence of Wolf-Rayet winds. Astronomy and Astrophysics, 2005, 442, 587-596.	5.1	359
8	Sub-surface convection zones in hot massive stars and their observable consequences. Astronomy and Astrophysics, 2009, 499, 279-290.	5.1	248
9	The empirical metallicity dependence of the mass-loss rate of O- and early B-type stars. Astronomy and Astrophysics, 2007, 473, 603-614.	5.1	229
10	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2011, 530, A108.	5.1	217
11	The VST Photometric HÂ Survey of the Southern Galactic Plane and Bulge (VPHAS+). Monthly Notices of the Royal Astronomical Society, 2014, 440, 2036-3058.	4.4	197
12	The MiMeS survey of magnetism in massive stars: introduction and overview. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2-22.	4.4	174
13	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2013, 560, A29.	5.1	169
14	An excess of massive stars in the local 30 Doradus starburst. Science, 2018, 359, 69-71.	12.6	164
15	The R136 star cluster dissected with <i>Hubble Space Telescope</i> /STIS. I. Far-ultraviolet spectroscopic census and the origin of He ii λ1640 in young star clusters. Monthly Notices of the Royal Astronomical Society, 2016, 458, 624-659.	4.4	150
16	Wind modelling of very massive stars up to 300 solar masses. Astronomy and Astrophysics, 2011, 531, A132.	5.1	149
17	The Missing Luminous Blue Variables and the Bistability Jump. Astrophysical Journal, 2004, 615, 475-484.	4.5	145
18	Stellar envelope inflation near the Eddington limit. Astronomy and Astrophysics, 2012, 538, A40.	5.1	134

#	Article	lF	CITATIONS
19	The second data release of the INT Photometric Hα Survey of the Northern Galactic Plane (IPHAS DR2). Monthly Notices of the Royal Astronomical Society, 2014, 444, 3230-3257.	4.4	131
20	Predictions for mass-loss rates and terminal wind velocities of massive O-type stars. Astronomy and Astrophysics, 2012, 537, A37.	5.1	127
21	Luminous blue variables as the progenitors of supernovae with quasi-periodic radio modulations. Astronomy and Astrophysics, 2006, 460, L5-L8.	5.1	126
22	Probing the circumstellar structure of Herbig Ae/Be stars. Monthly Notices of the Royal Astronomical Society, 2002, 337, 356-368.	4.4	120
23	The Eddington factor as the key to understand the winds of the most massive stars. Astronomy and Astrophysics, 2011, 535, A56.	5.1	120
24	The evolution of rotating very massive stars with LMC composition. Astronomy and Astrophysics, 2015, 573, A71.	5.1	119
25	Pair creation supernovae at low and high redshift. Astronomy and Astrophysics, 2007, 475, L19-L23.	5.1	115
26	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2013, 558, A134.	5.1	108
27	The VLT-FLAMES survey of massive stars: wind properties and evolution of hot massive stars in the Large Magellanic Cloud. Astronomy and Astrophysics, 2007, 465, 1003-1019.	5.1	102
28	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2014, 570, A38.	5.1	101
29	LUMINOUS BLUE VARIABLES AND SUPERLUMINOUS SUPERNOVAE FROM BINARY MERGERS. Astrophysical Journal, 2014, 796, 121.	4.5	100
30	Implications of the metallicity dependence of Wolf-Rayet winds. Astronomy and Astrophysics, 2006, 452, 295-301.	5.1	97
31	The Tarantula Massive Binary Monitoring. Astronomy and Astrophysics, 2017, 598, A84.	5.1	95
32	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2013, 550, A109.	5.1	94
33	SN 2005 gj: evidence for LBV supernovae progenitors?. Astronomy and Astrophysics, 2008, 483, L47-L50.	5.1	93
34	Predictions of variable mass loss for Luminous Blue Variables. Astronomy and Astrophysics, 2002, 393, 543-553.	5.1	90
35	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2014, 564, A63.	5.1	90
36	A 3D extinction map of the northern Galactic plane based on IPHAS photometry. Monthly Notices of the Royal Astronomical Society, 2014, 443, 2907-2922.	4.4	88

#	Article	IF	Citations
37	Temperaments of young stars: rapid mass accretion rate changes in T Tauri and Herbig Ae stars. Monthly Notices of the Royal Astronomical Society, 2014, 440, 3444-3461.	4.4	87
38	Initial data release from the INT Photometric H Survey of the Northern Galactic Plane (IPHAS). Monthly Notices of the Royal Astronomical Society, 2008, 388, 89-104.	4.4	85
39	THE MASSIVE STAR-FORMING REGION CYGNUS OB2. II. INTEGRATED STELLAR PROPERTIES AND THE STAR FORMATION HISTORY. Astrophysical Journal, 2010, 713, 871-882.	4.5	84
40	On the evolution and fate of super-massive stars. Astronomy and Astrophysics, 2008, 477, 223-237.	5.1	83
41	Multiple major outbursts from a restless luminous blue variable in NGC 3432. Monthly Notices of the Royal Astronomical Society, 0, 408, 181-198.	4.4	83
42	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2011, 530, L14.	5.1	83
43	On the nature and detectability of Type lb/c supernova progenitors. Astronomy and Astrophysics, 2012, 544, L11.	5.1	83
44	Probing the circumstellar structures of T Tauri stars and their relationship to those of Herbig stars. Monthly Notices of the Royal Astronomical Society, 2005, 359, 1049-1064.	4.4	81
45	T Tauri candidates and accretion rates using IPHAS: method and application to ICâ \in f1396. Monthly Notices of the Royal Astronomical Society, 2011, 415, 103-132.	4.4	81
46	The masses, and the mass discrepancy of O-type stars. Astronomy and Astrophysics, 2010, 524, A98.	5.1	78
47	The nature of BÂsupergiants: clues from a steep drop in rotation rates at 22 000 K. Astronomy and Astrophysics, 2010, 512, L7.	5.1	75
48	On the nature of massive helium star winds and Wolf–Rayet-type mass-loss. Monthly Notices of the Royal Astronomical Society, 2020, 499, 873-892.	4.4	74
49	INTEGRAL survey of the Cassiopeia region in hard X rays. Astronomy and Astrophysics, 2006, 451, 587-602.	5.1	71
50	Maximum black hole mass across cosmic time. Monthly Notices of the Royal Astronomical Society, 2021, 504, 146-154.	4.4	71
51	A tale of three cities. Astronomy and Astrophysics, 2017, 604, A22.	5.1	70
52	Predictions of the effect of clumping on the wind properties of O-type stars. Astronomy and Astrophysics, 2011, 526, A32.	5.1	67
53	Winds from stripped low-mass helium stars and Wolf-Rayet stars. Astronomy and Astrophysics, 2017, 607, L8.	5.1	66
54	Why binary interaction does not necessarily dominate the formation of Wolf-Rayet stars at low metallicity. Astronomy and Astrophysics, 2020, 634, A79.	5.1	65

#	Article	IF	CITATIONS
55	Properties of OB starâ 'black hole systems derived from detailed binary evolution models. Astronomy and Astrophysics, 2020, 638, A39.	5.1	65
56	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2017, 600, A81.	5.1	63
57	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2018, 618, A73.	5.1	62
58	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2015, 580, A92.	5.1	60
59	Using population synthesis of massive stars to study the interstellar medium near OB associations. Astronomy and Astrophysics, 2009, 504, 531-542.	5.1	59
60	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2015, 575, A70.	5.1	59
61	LAMP: the long-term accretion monitoring programme of T Tauri stars in Chamaeleon I. Monthly Notices of the Royal Astronomical Society, 2012, 427, 1344-1362.	4.4	58
62	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2015, 574, A13.	5.1	58
63	THE TRANSITION MASS-LOSS RATE: CALIBRATING THE ROLE OF LINE-DRIVEN WINDS IN MASSIVE STAR EVOLUTION. Astrophysical Journal Letters, 2012, 751, L34.	8.3	57
64	The spectral variability and magnetic field characteristics of the Of?p star HD 148937a˜ Monthly Notices of the Royal Astronomical Society, 2012, 419, 2459-2471.	4.4	57
65	The R136 star cluster dissected with Hubble Space Telescope/STIS – II. Physical properties of the most massive stars in R136. Monthly Notices of the Royal Astronomical Society, 2020, 499, 1918-1936.	4.4	57
66	Hot horizontal branch stars: Predictions for mass loss. Astronomy and Astrophysics, 2002, 392, 553-562.	5.1	56
67	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2012, 542, A49.	5.1	54
68	Asphericity and clumpiness in the winds of Luminous Blue Variables. Astronomy and Astrophysics, 2005, 439, 1107-1125.	5.1	52
69	A consistent solution for the velocity field and mass-loss rate of massive stars. Astronomy and Astrophysics, 2008, 492, 493-509.	5.1	52
70	On the difference between Herbig Ae and Herbig Be stars. Monthly Notices of the Royal Astronomical Society, 2007, 377, 1363-1374.	4.4	47
71	DISCOVERY OF THE MASSIVE OVERCONTACT BINARY VFTS 352: EVIDENCE FOR ENHANCED INTERNAL MIXING. Astrophysical Journal, 2015, 812, 102.	4.5	47
72	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2014, 564, A39.	5.1	47

#	Article	IF	CITATIONS
73	Massive star evolution: rotation, winds, and overshooting vectors in the mass-luminosity plane. Astronomy and Astrophysics, 2019, 622, A50.	5.1	46
74	Metallicity-dependent wind parameter predictions for OB stars. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2051-2061.	4.4	46
75	IPHAS and the symbiotic stars. Astronomy and Astrophysics, 2010, 509, A41.	5.1	45
76	Massive stars on the verge of exploding: the properties of oxygen sequence Wolf-Rayet stars. Astronomy and Astrophysics, 2015, 581, A110.	5.1	44
77	X-RAY EMISSION FROM MASSIVE STARS IN CYG OB2. Astrophysical Journal, Supplement Series, 2015, 221, 1.	7.7	43
78	Two bi-stability jumps in theoretical wind models for massive stars and the implications for luminous blue variable supernovae. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1999-2011.	4.4	43
79	Driving classical Wolf-Rayet winds: A $\hat{I}^{"}$ and Z-dependent mass-loss. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	43
80	IPHAS discoveries of young stars towards Cyg OB2 and its southern periphery. Monthly Notices of the Royal Astronomical Society, 2008, 387, 308-318.	4.4	42
81	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2017, 601, A79.	5.1	42
82	Polarimetric line profiles for scattering off rotating disks. Astronomy and Astrophysics, 2005, 430, 213-222.	5.1	42
83	The Tarantula Massive Binary Monitoring. Astronomy and Astrophysics, 2020, 634, A118.	5.1	40
84	Eta Carinae and the Luminous Blue Variables. Astrophysics and Space Science Library, 2012, , 221-247.	2.7	39
85	Narrow He II emission in star-forming galaxies at low metallicity. Astronomy and Astrophysics, 2015, 578, L2.	5.1	39
86	Probing the evolving massive star population in Orion with kinematic and radioactive tracers. Astronomy and Astrophysics, 2010, 520, A51.	5.1	38
87	Internal entrainment and the origin of jet-related broad-band emission in Centaurus A. Monthly Notices of the Royal Astronomical Society, 2014, 447, 1001-1013.	4.4	38
88	Rotating massive O stars with non-spherical 2D winds. Astronomy and Astrophysics, 2014, 564, A57.	5.1	37
89	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2017, 600, A82.	5.1	37
90	The Tarantula Massive Binary Monitoring. Astronomy and Astrophysics, 2017, 598, A85.	5.1	37

#	Article	IF	CITATIONS
91	Modelling the clumping-induced polarimetric variability of hot star winds. Astronomy and Astrophysics, 2007, 469, 1045-1056.	5.1	37
92	Light-travel-time diagnostics in early supernova spectra: substantial mass-loss of the IIb progenitor of SNÂ2013cu through a superwind. Monthly Notices of the Royal Astronomical Society, 2016, 455, 112-126.	4.4	35
93	Very massive stars: a metallicity-dependent upper-mass limit, slow winds, and the self-enrichment of globular clusters. Astronomy and Astrophysics, 2018, 615, A119.	5.1	34
94	Effects of winds on the leftover hydrogen in massive stars following Roche lobe overflow. Monthly Notices of the Royal Astronomical Society, 2019, 486, 4451-4462.	4.4	34
95	On the missing second generation AGB stars in NGC 6752. Astronomy and Astrophysics, 2014, 571, A81.	5.1	33
96	An X-ray-quiet black hole born with a negligible kick in a massive binary within the Large Magellanic Cloud. Nature Astronomy, 2022, 6, 1085-1092.	10.1	33
97	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2011, 530, L10.	5.1	32
98	Fast and slow winds from supergiants and luminous blue variables. Astronomy and Astrophysics, 2018, 619, A54.	5.1	32
99	PENELLOPE: The ESO data legacy program to complement the <i>Hubble</i> UV Legacy Library of Young Stars (ULLYSES). Astronomy and Astrophysics, 2021, 650, A196.	5.1	32
100	On the presence and absence of disks around O-type stars. Astronomy and Astrophysics, 2009, 505, 743-753.	5.1	32
101	Classical TÂTauri stars with VPHAS+ – I. HÂα and <i>u</i> band accretion rates in the Lagoon Nebula M8. Monthly Notices of the Royal Astronomical Society, 2015, 453, 1026-1046.	4.4	31
102	The Gaia-ESO Survey: asymmetric expansion of the Lagoon Nebula cluster NGC 6530 from GES and Gaia DR2. Monthly Notices of the Royal Astronomical Society, 2019, 486, 2477-2493.	4.4	30
103	The deep OB star population in Carina from the VST Photometric Hα Survey (VPHAS+). Monthly Notices of the Royal Astronomical Society, 2017, 465, 1807-1830.	4.4	29
104	Mapping the core of the Tarantula Nebula with VLT-MUSE. Astronomy and Astrophysics, 2018, 614, A147.	5.1	29
105	The theory of stellar winds. Astrophysics and Space Science, 2011, 336, 163-167.	1.4	28
106	Rotating Wolf-Rayet stars in a post RSG/LBV phase. Astronomy and Astrophysics, 2012, 547, A83.	5.1	28
107	The nature of V39: an LBV candidate or LBV impostor in the very low metallicity galaxy IC 1613?. Astronomy and Astrophysics, 2010, 513, A70.	5.1	27
108	A statistical spectropolarimetric study of Herbig Ae/Be stars. Monthly Notices of the Royal Astronomical Society, 2017, 472, 854-868.	4.4	27

#	Article	IF	Citations
109	The <i>Gaia</i> -ESO Survey: Age spread in the star forming region NGC 6530 from the HR diagram and gravity indicators. Astronomy and Astrophysics, 2019, 623, A159.	5.1	27
110	Testing the predicted mass-loss bi-stability jump at radio wavelengths. Astronomy and Astrophysics, 2007, 467, 1265-1274.	5.1	26
111	Mass loss and the evolution of massive stars. New Astronomy Reviews, 2008, 52, 419-422.	12.8	25
112	On the alignment between the circumstellar disks and orbital planes of Herbig Ae/Be binary systems. Astronomy and Astrophysics, 2011, 532, A28.	5.1	25
113	Stellar mass-loss near the Eddington limit. Astronomy and Astrophysics, 2013, 560, A6.	5.1	25
114	Wind-envelope interaction as the origin of the slow cyclic brightness variations of luminous blue variables. Astronomy and Astrophysics, 2021, 647, A99.	5.1	25
115	On the $H < i > \hat{l} \pm < / i >$ behaviour of blue supergiants: rise and fall over the bi-stability jump. Astronomy and Astrophysics, 2014, 565, A62.	5.1	24
116	IGAPS: the merged IPHAS and UVEX optical surveys of the northern Galactic plane. Astronomy and Astrophysics, 2020, 638, A18.	5.1	24
117	Resolved polarization changes across Hαâ€in the classical T Tauri star RY Tauri. Astronomy and Astrophysics, 2003, 406, 703-707.	5.1	24
118	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2018, 615, A101.	5.1	23
119	The bi-stability jump as the origin for multiple P-Cygni absorption components in luminous blue variables. Astronomy and Astrophysics, 2011, 531, L10.	5.1	22
120	Mass-loss predictions for evolved very metal-poor massive stars. Astronomy and Astrophysics, 2012, 546, A42.	5.1	22
121	Energetic feedback and sup>26 /sup>Al from massive stars and their supernovae in the Carina region. Astronomy and Astrophysics, 2012, 539, A66.	5.1	21
122	New OB star candidates in the Carina Arm around Westerlund 2 from VPHAS+. Monthly Notices of the Royal Astronomical Society, 2015, 450, 3855-3873.	4.4	21
123	First stellar spectroscopy in Leo P. Astronomy and Astrophysics, 2019, 622, A129.	5.1	21
124	In pursuit of gamma-ray burst progenitors: the identification of a sub-population of rotating Wolf-Rayet stars. Astronomy and Astrophysics, 2011, 536, L10.	5.1	20
125	Evolution of Wolf–Rayet stars as black hole progenitors. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4874-4889.	4.4	20
126	How common is LBV S Doradus variability at low metallicity?. Astronomy and Astrophysics, 2018, 618, A17.	5.1	20

#	Article	IF	CITATIONS
127	Constraining GRBÂprogenitor models by probing Wolf-Rayet wind geometries in the Large Magellanic Cloud. Astronomy and Astrophysics, 2007, 469, 707-711.	5.1	19
128	On the nature of WO stars: a quantitative analysis of the WO3 star DR1 in IC 1613. Astronomy and Astrophysics, 2013, 559, A72.	5.1	19
129	Wolf-Rayet spin at low metallicity and its implication for black hole formation channels. Astronomy and Astrophysics, 2017, 603, A120.	5.1	19
130	Theoretical investigation of the Humphreys–Davidson limit at high and low metallicity. Astronomy and Astrophysics, 2020, 635, A175.	5.1	19
131	Mass-Loss Rates of Very Massive Stars. Astrophysics and Space Science Library, 2015, , 77-111.	2.7	19
132	The <i>Gaia</i> -ESO Survey: Target selection of open cluster stars. Astronomy and Astrophysics, 2022, 659, A200.	5.1	19
133	Spectropolarimetry of the massive post-red supergiants IRC +10420 and HD 179821. Monthly Notices of the Royal Astronomical Society, 2008, 385, 967-978.	4.4	18
134	Very Massive Stars in the local Universe. Proceedings of the International Astronomical Union, 2012, 10, 51-79.	0.0	17
135	Bayesian inference of T Tauri star properties using multi-wavelength survey photometry. Monthly Notices of the Royal Astronomical Society, 2013, 429, 1981-2000.	4.4	17
136	PRE-MAIN-SEQUENCE ACCRETION IN THE LOW METALLICITY GALACTIC STAR-FORMING REGION Sh 2-284. Astrophysical Journal, 2015, 800, 113.	4.5	17
137	<i>Gaia</i> -ESO Survey: Global properties of clusters Trumpler 14 and 16 in the Carina nebula. Astronomy and Astrophysics, 2017, 603, A81.	5.1	17
138	On the origin of the X-ray emission towards the early Herbig BeÂstar MWCÂ297. Astronomy and Astrophysics, 2005, 438, L21-L24.	5.1	16
139	VLTI/AMBER observations of the binary B[e] supergiant HDÂ327083. Astronomy and Astrophysics, 2012, 538, A6.	5.1	15
140	The Tarantula Massive Binary Monitoring. Astronomy and Astrophysics, 2021, 650, A147.	5.1	15
141	Dusty Blue Supergiants: News from High-Angular Resolution Observations. Advances in Astronomy, 2014, 2014, 1-8.	1.1	14
142	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2017, 603, A91.	5.1	14
143	Mass-loss implementation and temperature evolution of very massive stars. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3736-3753.	4.4	14
144	A search for strong magnetic fields in massive and very massive stars in the Magellanic Clouds. Astronomy and Astrophysics, 2020, 635, A163.	5.1	13

#	Article	IF	CITATIONS
145	Superadiabaticity and the metallicity independence of the Humphreys–Davidson limit. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4473-4487.	4.4	13
146	Near-infrared line spectropolarimetry of hot massive stars. Monthly Notices of the Royal Astronomical Society, 2005, 364, 725-730.	4.4	12
147	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2012, 542, A50.	5.1	12
148	Space astrometry of the very massive â ¹ /₄150ÂM⊙ candidate runaway star VFTS682. Monthly Notices of the Royal Astronomical Society: Letters, 2019, 482, L102-L106.	3.3	12
149	Optical and near-infrared observations of the Fried Egg Nebula. Astronomy and Astrophysics, 2020, 635, A183.	5.1	12
150	Xâ€shooting Herbig Ae/Be stars: Accretion probed by nearâ€infrared He I emission. Astronomische Nachrichten, 2011, 332, 238-241.	1.2	11
151	First constraints on the magnetic field strength in extra-Galactic stars: FORS2 observations of Of?p stars in the Magellanic Clouds. Astronomy and Astrophysics, 2017, 601, A136.	5.1	11
152	The VLT-FLAMES Tarantula Survey. XV. VFTS 822: A candidate Herbig B[e] star at low metallicity. Astronomy and Astrophysics, 2014, 564, L7.	5.1	11
153	The <i>Gaia</i> -ESO Survey: A new diagnostic for accretion and outflow activity in the young cluster NGC 2264. Astronomy and Astrophysics, 2020, 642, A56.	5.1	11
154	An IPHAS-based search for accreting very low-mass objects using VO tools. Astronomy and Astrophysics, 2009, 497, 973-981.	5.1	10
155	Mass loss and stellar superwinds. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2017, 375, 20160269.	3.4	9
156	Linear spectropolarimetry across the optical spectrum of Herbig Ae/Be stars. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3089-3110.	4.4	8
157	Resolving the MYSO binaries PDS 27 and PDS 37 with VLTI/PIONIER. Astronomy and Astrophysics, 2019, 623, L5.	5.1	8
158	Mapping the core of the Tarantula Nebula with VLT-MUSE. Astronomy and Astrophysics, 2021, 648, A65.	5.1	8
159	Wind properties of Milky Way and SMC massive stars: empirical <i>Z</i> dependence from <scp>cmfgen</scp> models. Monthly Notices of the Royal Astronomical Society, 2022, 511, 5104-5119.	4.4	8
160	A polarimetric study of the B[e] star HD 45677. Monthly Notices of the Royal Astronomical Society, 2006, 373, 1641-1647.	4.4	7
161	A dearth of young and bright massive stars in the Small Magellanic Cloud. Astronomy and Astrophysics, 2021, 646, A106.	5.1	7
162	VLT/X-shooter spectroscopy of massive young stellar objects in the 30 Doradus region of the Large Magellanic Cloud. Astronomy and Astrophysics, 2020, 636, A54.	5.1	7

#	Article	IF	CITATIONS
163	The MiMeS project: overview and current status. Proceedings of the International Astronomical Union, 2010, 6, 118-123.	0.0	6
164	Linear line spectropolarimetry of Herbig Ae/Be stars. Astrophysics and Space Science, 2015, 357, 1.	1.4	6
165	The origin of very massive stars around NGC 3603. Astronomy and Astrophysics, 2019, 625, L2.	5.1	5
166	Massive stars in extremely metal-poor galaxies: a window into the past. Experimental Astronomy, 2021, 51, 887-911.	3.7	5
167	The VLT-FLAMES Tarantula Survey. Astronomy and Astrophysics, 2020, 634, A16.	5.1	5
168	Mass-loss predictions for Subdwarf B stars. Astrophysics and Space Science, 2004, 291, 239-245.	1.4	4
169	Mass loss and evolution of hot massive stars. Proceedings of the International Astronomical Union, 2008, 4, 271-281.	0.0	4
170	The O stars in the VLT-FLAMES Tarantula Survey. Journal of Physics: Conference Series, 2011, 328, 012022.	0.4	4
171	Response to Comment on "An excess of massive stars in the local 30 Doradus starburst― Science, 2018, 361, .	12.6	4
172	Disks formed by Rotation Induced Bi-stability. International Astronomical Union Colloquium, 1999, 169, 159-168.	0.1	3
173	The properties of single WO stars. Proceedings of the International Astronomical Union, 2014, 9, 144-145.	0.0	2
174	COBRaS: The e-MERLIN 21 cm Legacy survey of Cygnus OB2. Astronomy and Astrophysics, 2020, 637, A64.	5.1	2
175	Impact of Rubin Observatory LSST Template Acquisition Strategies on Early Science from the Transients and Variable Stars Science Collaboration: Time-critical Science Cases. Research Notes of the AAS, 2020, 4, 41.	0.7	2
176	Mass-loss predictions and stellar masses of early-type stars. Symposium - International Astronomical Union, 2003, 212, 164-165.	0.1	1
177	Mass-loss Predictions for Hot Stars. , 2007, , .		1
178	The VLT–FLAMES Tarantula Survey. Proceedings of the International Astronomical Union, 2009, 5, 35-40.	0.0	1
179	Linear spectropolarimetry and the circumstellar media of young and massive stars. , 2012, , .		1
180	Rotational velocities of single and binary O-type stars in the Tarantula Nebula. Proceedings of the International Astronomical Union, 2014, 9, 76-81.	0.0	1

#	Article	IF	CITATIONS
181	Constraining the progenitor evolution of GW 150914. Proceedings of the International Astronomical Union, 2018, 14, 444-448.	0.0	1
182	Star Formation in the Ultraviolet. Galaxies, 2020, 8, 43.	3.0	1
183	Linear Spectropolarimetry of Young and Other Emission Line Stars. , 0, , 214-224.		1
184	Clumps in stellar winds. ASTRA Proceedings, 0, 1, 39-41.	0.0	1
185	Very Massive Stars in the Local Universe. Astrophysics and Space Science Library, 2015, , 1-8.	2.7	1
186	Evolution of Massive Stars at Low Metallicity. Proceedings of the International Astronomical Union, 2007, 3, 571-576.	0.0	0
187	Can LBV's Be The Direct Progenitors of Core Collapse Supernovae?. , 2009, , .		0
188	The VLT-FLAMES Tarantula survey. Proceedings of the International Astronomical Union, 2010, 6, 296-297.	0.0	0
189	Are the stellar winds in IC 1613 stronger than expected?. Proceedings of the International Astronomical Union, 2010, 6, 292-293.	0.0	0
190	Mass loss and fate of the most massive stars. Proceedings of the International Astronomical Union, 2011, 7, 29-33.	0.0	0
191	Binary star formation: Primary disks and secondary stars 1., 2012, , .		0
192	Gamma-ray burst progenitors and the population of rotating Wolf–Rayet stars. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2013, 371, 20120237.	3.4	0
193	Emission line spectropolarimetry and circumstellar structures. Proceedings of the International Astronomical Union, 2014, 10, 288-292.	0.0	0
194	Linear line spectropolarimetry as a new window to measure 2D and 3D wind geometries. Proceedings of the International Astronomical Union, 2014, 9, 359-364.	0.0	0
195	The VLT-FLAMES Tarantula Survey. Proceedings of the International Astronomical Union, 2016, 12, 279-286.	0.0	0
196	Testing how massive stars evolve, lose mass, and collapse at low metal content. Proceedings of the International Astronomical Union, 2018, 14, 98-101.	0.0	0
197	Massive star evolution revealed in the Mass-Luminosity plane. Proceedings of the International Astronomical Union, 2018, 14, 480-485.	0.0	0