Tiebing Liang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6436802/publications.pdf Version: 2024-02-01

TIERING LIANG

#	Article	IF	CITATIONS
1	A genetic risk score and diabetes predict development of alcohol-related cirrhosis in drinkers. Journal of Hepatology, 2022, 76, 275-282.	3.7	33
2	FKBP51 modulates hippocampal size and function in post-translational regulation of Parkin. Cellular and Molecular Life Sciences, 2022, 79, 175.	5.4	8
3	PNPLA3 rs738409 and risk of fibrosis in NAFLD: Exploring mediation pathways through intermediate histological features. Hepatology, 2022, 76, 1482-1494.	7.3	9
4	Changes in Serum Myostatin Levels in Alcoholic Hepatitis Correlate with Improvement in MELD. Digestive Diseases and Sciences, 2021, 66, 3062-3073.	2.3	2
5	Genomeâ€wide Association Study and Metaâ€analysis on Alcoholâ€Associated Liver Cirrhosis Identifies Genetic Risk Factors. Hepatology, 2021, 73, 1920-1931.	7.3	54
6	Interrogation of selected genes influencing serum LDL-Cholesterol levels in patients with well characterized NAFLD. Journal of Clinical Lipidology, 2021, 15, 275-291.	1.5	8
7	Role of candidate gene variants in modulating the risk and severity of alcoholic hepatitis. Alcoholism: Clinical and Experimental Research, 2021, 45, 709-719.	2.4	8
8	Stressâ€Responsive Gene FK506â€Binding Protein 51 Mediates Alcoholâ€Induced Liver Injury Through the Hippo Pathway and Chemokine (Câ€Xâ€C Motif) Ligand 1 Signaling. Hepatology, 2021, 74, 1234-1250.	7.3	18
9	The Protection Conferred by HSD17B13 rs72613567 Polymorphism on Risk of Steatohepatitis and Fibrosis May Be Limited to Selected Subgroups of Patients With NAFLD. Clinical and Translational Gastroenterology, 2021, 12, e00400.	2.5	12
10	Impact of the Association Between PNPLA3 Genetic Variation and Dietary Intake on the Risk of Significant Fibrosis in Patients With NAFLD. American Journal of Gastroenterology, 2021, 116, 994-1006.	0.4	30
11	Apolipoprotein B and PNPLA3 Double Heterozygosity in a Father–Son Pair With Advanced Nonalcoholic Fatty Liver Disease. Hepatology, 2020, 71, 383-385.	7.3	4
12	Prenatal alcohol exposure reduces posterior dorsomedial striatum excitability and motivation in a sex- and age-dependent fashion. Neuropharmacology, 2020, 180, 108310.	4.1	8
13	Epigenetic changes on rat chromosome 4 contribute to disparate alcohol drinking behavior in alcohol-preferring and -nonpreferring rats. Alcohol, 2020, 89, 103-112.	1.7	2
14	ADH1Bâ^—2 Is Associated With Reduced Severity of Nonalcoholic Fatty Liver Disease in Adults, Independent of Alcohol Consumption. Gastroenterology, 2020, 159, 929-943.	1.3	18
15	A PNPLA3 I148M geneâ€edited Ossabaw swine model of Nonalcoholic steatohepatitis (NASH). FASEB Journal, 2020, 34, 1-1.	O.5	1
16	Loss of FKBP5 Affects Neuron Synaptic Plasticity: An Electrophysiology Insight. Neuroscience, 2019, 402, 23-36.	2.3	28
17	Oxidized Derivatives of Linoleic Acid in Pediatric Metabolic Syndrome: Is Their Pathogenic Role Modulated by the Genetic Background and the Gut Microbiota?. Antioxidants and Redox Signaling, 2019, 30, 241-250.	5.4	30
18	Evaluation of laboratory tests for cirrhosis and for alcohol use, in the context of alcoholic cirrhosis. Alcohol, 2018, 66, 1-7.	1.7	13

TIEBING LIANG

#	Article	IF	CITATIONS
19	Estrogen-Dependent Upregulation of Adcyap1r1 Expression in Nucleus Accumbens Is Associated With Genetic Predisposition of Sex-Specific QTL for Alcohol Consumption on Rat Chromosome 4. Frontiers in Genetics, 2018, 9, 513.	2.3	15
20	<scp>CIS</scp> â€Acting Alleleâ€5pecific Expression Differences Induced by Alcohol and Impacted by Sex as Well as Parental Genotype of Origin. Alcoholism: Clinical and Experimental Research, 2018, 42, 1444-1453.	2.4	4
21	In a pilot study, reduced fatty acid desaturase 1 function was associated with nonalcoholic fatty liver disease and response to treatment in children. Pediatric Research, 2018, 84, 696-703.	2.3	10
22	Rat animal models for screening medications to treat alcohol use disorders. Neuropharmacology, 2017, 122, 201-243.	4.1	72
23	Loss of FKBP5 impedes adipocyte differentiation under both normoxia and hypoxic stress. Biochemical and Biophysical Research Communications, 2017, 485, 761-767.	2.1	19
24	Age of Drinking Initiation as a Risk Factor for Alcohol Use Disorder Symptoms is Moderated by <i>ALDH2*2</i> and Ethnicity. Alcoholism: Clinical and Experimental Research, 2017, 41, 1738-1744.	2.4	5
25	Gene-by-Environment Interactions on Alcohol Use Among Asian American College Freshmen. Journal of Studies on Alcohol and Drugs, 2017, 78, 531-539.	1.0	2
26	Differential Expression of miRNAs in Nontumor Liver Tissue ofÂPatients With Hepatocellular Cancer Caused by Nonalcoholic Steatohepatitis Cirrhosis. Clinical Gastroenterology and Hepatology, 2017, 15, 465-467.	4.4	2
27	The FKBP5 Gene Affects Alcohol Drinking in Knockout Mice and Is Implicated in Alcohol Drinking in Humans. International Journal of Molecular Sciences, 2016, 17, 1271.	4.1	27
28	High Resolution Genomic Scans Reveal Genetic Architecture Controlling Alcohol Preference in Bidirectionally Selected Rat Model. PLoS Genetics, 2016, 12, e1006178.	3.5	22
29	Npy deletion in an alcohol non-preferring rat model elicits differential effects on alcohol consumption and body weight. Journal of Genetics and Genomics, 2016, 43, 421-430.	3.9	12
30	Differences in IV alcohol-induced dopamine release in the ventral striatum of social drinkers and nontreatment-seeking alcoholics. Drug and Alcohol Dependence, 2016, 160, 163-169.	3.2	64
31	An α-synuclein gene (SNCA) polymorphism moderates the association of PTSD symptomatology with hazardous alcohol use, but not with aggression-related measures. Journal of Anxiety Disorders, 2015, 30, 41-47.	3.2	5
32	The association of SNCA with hazardous alcohol use is mediated by impulsivity. Psychiatry Research, 2015, 226, 523-524.	3.3	1
33	Adaptation of Subjective Responses to Alcohol is Affected by an Interaction of <i>GABRA2</i> Genotype and Recent Drinking. Alcoholism: Clinical and Experimental Research, 2015, 39, 1148-1157.	2.4	20
34	Liver Injury and Fibrosis Induced by Dietary Challenge in the Ossabaw Miniature Swine. PLoS ONE, 2015, 10, e0124173.	2.5	22
35	A Snapshot of the Hepatic Transcriptome: Ad Libitum Alcohol Intake Suppresses Expression of Cholesterol Synthesis Genes in Alcohol-Preferring (P) Rats. PLoS ONE, 2014, 9, e110501.	2.5	10
36	Subjective Response to Alcohol andADHPolymorphisms in a Select Sample of Young Adult Male East Indians and Africans in Trinidad and Tobago. Journal of Studies on Alcohol and Drugs, 2014, 75, 827-838.	1.0	4

TIEBING LIANG

#	Article	IF	CITATIONS
37	Effects of ALDH2â^—2 on alcohol problem trajectories of Asian American college students Journal of Abnormal Psychology, 2014, 123, 130-140.	1.9	14
38	Alcoholâ€Preferring Rats Show Decreased Corticotropinâ€Releasing Hormoneâ€2 Receptor Expression and Differences in <scp>HPA</scp> Activation Compared to Alcoholâ€Nonpreferring Rats. Alcoholism: Clinical and Experimental Research, 2014, 38, 1275-1283.	2.4	20
39	Changes in gene expression within the extended amygdala following binge-like alcohol drinking by adolescent alcohol-preferring (P) rats. Pharmacology Biochemistry and Behavior, 2014, 117, 52-60.	2.9	23
40	FKBP5 Moderates Alcohol Withdrawal Severity: Human Genetic Association and Functional Validation in Knockout Mice. Neuropsychopharmacology, 2014, 39, 2029-2038.	5.4	54
41	Quantitative trait locus for body weight identified on rat chromosome 4 in inbred alcohol-preferring and -nonpreferring rats: Potential implications for neuropeptide Y and corticotrophin releasing hormone 2. Alcohol, 2013, 47, 63-67.	1.7	8
42	Gene expression within the extended amygdala of 5 pairs of rat lines selectively bred for high or low ethanol consumption. Alcohol, 2013, 47, 517-529.	1.7	38
43	Loss of metabotropic glutamate receptor 2 escalates alcohol consumption. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 16963-16968.	7.1	105
44	ALDH2 and ADH1B Interactions in Retrospective Reports of Low-Dose Reactions and Initial Sensitivity to Alcohol in Asian American College Students. Alcoholism: Clinical and Experimental Research, 2011, 35, 1238-1245.	2.4	23
45	Candidate genes for alcohol preference identified by expression profiling in alcohol-preferring and -nonpreferring reciprocal congenic rats. Genome Biology, 2010, 11, R11.	9.6	34
46	Gene expression changes in the nucleus accumbens of alcohol-preferring rats following chronic ethanol consumption. Pharmacology Biochemistry and Behavior, 2009, 94, 131-147.	2.9	106
47	Associations of∢i>ALDH2and <i>ADH1B</i> Genotypes With Alcoholâ€Related Phenotypes in Asian Young Adults. Alcoholism: Clinical and Experimental Research, 2009, 33, 839-847.	2.4	49
48	ALDH2, ADH1B and alcohol expectancies: Integrating genetic and learning perspectives Psychology of Addictive Behaviors, 2009, 23, 452-463.	2.1	33
49	Drd2 expression in the high alcohol-preferring and low alcohol-preferring mice. Mammalian Genome, 2008, 19, 69-76.	2.2	27
50	Neuropeptide Y Receptor Genes Are Associated With Alcohol Dependence, Alcohol Withdrawal Phenotypes, and Cocaine Dependence. Alcoholism: Clinical and Experimental Research, 2008, 32, 2031-2040.	2.4	76
51	Differential gene expression in the nucleus accumbens with ethanol self-administration in inbred alcohol-preferring rats. Pharmacology Biochemistry and Behavior, 2008, 89, 481-498.	2.9	80
52	Association of Alcohol Craving With ?-Synuclein (SNCA). Alcoholism: Clinical and Experimental Research, 2007, 31, 070212174136009-???.	2.4	76
53	Identification of Candidate Genes for Alcohol Preference by Expression Profiling of Congenic Rat Strains. Alcoholism: Clinical and Experimental Research, 2007, 31, 1089-1098.	2.4	39
54	Regulation of alpha-synuclein expression in alcohol-preferring and -non preferring rats. Journal of Neurochemistry, 2006, 99, 470-482.	3.9	29

#	Article	IF	CITATIONS
55	Glutathione S-Transferase 8-8 Expression Is Lower in Alcohol-Preferring Than in Alcohol-Nonpreferring Rats. Alcoholism: Clinical and Experimental Research, 2004, 28, 1622-1628.	2.4	29
56	Â-Synuclein maps to a quantitative trait locus for alcohol preference and is differentially expressed in alcohol-preferring and -nonpreferring rats. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 4690-4695.	7.1	125