Nereo Kalebic

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6436761/publications.pdf

Version: 2024-02-01

all docs

21 1,366 16 19 g-index

27 27 27 27 1720

times ranked

citing authors

docs citations

#	Article	IF	CITATIONS
1	The Ferret as a Model System for Neocortex Development and Evolution. Frontiers in Cell and Developmental Biology, 2021, 9, 661759.	3.7	20
2	Inheritance and flexibility of cell polarity: a clue for understanding human brain development and evolution. Development (Cambridge), 2021, 148, .	2.5	7
3	Roots of the Malformations of Cortical Development in the Cell Biology of Neural Progenitor Cells. Frontiers in Neuroscience, 2021, 15, 817218.	2.8	10
4	Human-Specific ARHGAP11B Acts in Mitochondria to Expand Neocortical Progenitors by Glutaminolysis. Neuron, 2020, 105, 867-881.e9.	8.1	101
5	Serotonin Receptor 2A Activation Promotes Evolutionarily Relevant Basal Progenitor Proliferation in the Developing Neocortex. Neuron, 2020, 108, 1113-1129.e6.	8.1	26
6	Basal Progenitor Morphology and Neocortex Evolution. Trends in Neurosciences, 2020, 43, 843-853.	8.6	57
7	In Vivo Targeting of Neural Progenitor Cells in Ferret Neocortex by In Utero Electroporation. Journal of Visualized Experiments, 2020, , .	0.3	4
8	Extracellular matrix-inducing Sox9 promotes both basal progenitor proliferation and gliogenesis in developing neocortex. ELife, 2020, 9, .	6.0	33
9	YAP Activity Is Necessary and Sufficient for Basal Progenitor Abundance and Proliferation in the Developing Neocortex. Cell Reports, 2019, 27, 1103-1118.e6.	6.4	43
10	Neocortical Expansion Due to Increased Proliferation of Basal Progenitors Is Linked to Changes in Their Morphology. Cell Stem Cell, 2019, 24, 535-550.e9.	11.1	114
11	Insm1 Induces Neural Progenitor Delamination in Developing Neocortex via Downregulation of the Adherens Junction Belt-Specific Protein Plekha7. Neuron, 2018, 97, 1299-1314.e8.	8.1	73
12	Extracellular Matrix Components HAPLN1, Lumican, and Collagen I Cause Hyaluronic Acid-Dependent Folding of the Developing Human Neocortex. Neuron, 2018, 99, 702-719.e6.	8.1	139
13	Human-specific ARHGAP11B induces hallmarks of neocortical expansion in developing ferret neocortex. ELife, 2018, 7, .	6.0	84
14	Epigenome profiling and editing of neocortical progenitor cells during development. EMBO Journal, 2017, 36, 2642-2658.	7.8	94
15	Neocortex Expansion in Development and Evolution: The Cell Biology ofÂNeural Stem and Progenitor Cells and the Impact of Human-Specific Gene Expression. , 2017, , 73-89.		6
16	Acetylated tubulin is essential for touch sensation in mice. ELife, 2016, 5, .	6.0	78
17	<scp>CRISPR</scp> /Cas9â€induced disruption of gene expression in mouse embryonic brain and single neural stem cells <i>i>in vivo</i> . EMBO Reports, 2016, 17, 338-348.	4.5	72
18	αTAT1 is the major α-tubulin acetyltransferase in mice. Nature Communications, 2013, 4, 1962.	12.8	176

NEREO KALEBIC

#	Article	IF	CITATIONS
19	Tubulin Acetyltransferase αTAT1 Destabilizes Microtubules Independently of Its Acetylation Activity. Molecular and Cellular Biology, 2013, 33, 1114-1123.	2.3	86
20	Genetically Separable Functions of the MEC-17 Tubulin Acetyltransferase Affect Microtubule Organization. Current Biology, 2012, 22, 1057-1065.	3.9	135
21	Forebrain Organoids to Model the Cell Biology of Basal Radial Glia in Neurodevelopmental Disorders and Brain Evolution. Frontiers in Cell and Developmental Biology, 0, 10, .	3.7	5