Philippe Sautet

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6436296/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Use of DFT to achieve a rational understanding of acid?basic properties of ?-alumina surfaces. Journal of Catalysis, 2004, 226, 54-68.	6.2	880
2	Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors. Science, 2015, 350, 185-189.	12.6	725
3	Introducing structural sensitivity into adsorption–energy scaling relations by means of coordination numbers. Nature Chemistry, 2015, 7, 403-410.	13.6	600
4	Hydroxyl Groups on Î ³ -Alumina Surfaces: A DFT Study. Journal of Catalysis, 2002, 211, 1-5.	6.2	485
5	Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nature Catalysis, 2019, 2, 495-503.	34.4	464
6	A fundamental look at electrocatalytic sulfur reduction reaction. Nature Catalysis, 2020, 3, 762-770.	34.4	455
7	Competitive CC and CO Adsorption of α-β-Unsaturated Aldehydes on Pt and Pd Surfaces in Relation with the Selectivity of Hydrogenation Reactions: A Theoretical Approach. Journal of Catalysis, 1995, 152, 217-236.	6.2	446
8	Stability and Reactivity of ϵâ^'χâ^'Î, Iron Carbide Catalyst Phases in Fischerâ^'Tropsch Synthesis: Controlling μ _C . Journal of the American Chemical Society, 2010, 132, 14928-14941.	13.7	426
9	Fast Prediction of Adsorption Properties for Platinum Nanocatalysts with Generalized Coordination Numbers. Angewandte Chemie - International Edition, 2014, 53, 8316-8319.	13.8	366
10	Hydroxyl Groups on γ-Alumina Surfaces: A DFT Study. Journal of Catalysis, 2002, 211, 1-5.	6.2	364
11	γ-Alumina: The Essential and Unexpected Role of Water for the Structure, Stability, and Reactivity of "Defect―Sites. Journal of the American Chemical Society, 2012, 134, 14430-14449.	13.7	308
12	Calculation of the benzene on rhodium STM images. Chemical Physics Letters, 1991, 185, 23-30.	2.6	274
13	Structure and Stability of Aluminum Hydroxides:Â A Theoretical Study. Journal of Physical Chemistry B, 2002, 106, 5155-5162.	2.6	241
14	Semiconductors Used in Photovoltaic and Photocatalytic Devices: Assessing Fundamental Properties from DFT. Journal of Physical Chemistry C, 2014, 118, 5997-6008.	3.1	239
15	Significance of single-electron energies for the description of CO on Pt(111). Physical Review B, 2003, 68, .	3.2	225
16	How to Control the Selectivity of Palladiumâ€based Catalysts in Hydrogenation Reactions: The Role of Subsurface Chemistry. ChemCatChem, 2012, 4, 1048-1063.	3.7	223
17	Molecular adsorption at Pt(111). How accurate are DFT functionals?. Physical Chemistry Chemical Physics, 2015, 17, 28921-28930.	2.8	210
18	Images of Adsorbates with the Scanning Tunneling Microscope:  Theoretical Approaches to the Contrast Mechanism. Chemical Reviews, 1997, 97, 1097-1116.	47.7	203

#	Article	IF	CITATIONS
19	Hydrogen adsorption on palladium: a comparative theoretical study of different surfaces. Surface Science, 1998, 411, 123-136.	1.9	198
20	Electronic interference produced by a benzene embedded in a polyacetylene chain. Chemical Physics Letters, 1988, 153, 511-516.	2.6	195
21	Rh single atoms on TiO2 dynamically respond to reaction conditions by adapting their site. Nature Communications, 2019, 10, 4488.	12.8	191
22	Understanding Palladium Hydrogenation Catalysts: When the Nature of the Reactive Molecule Controls the Nature of the Catalyst Active Phase. Angewandte Chemie - International Edition, 2008, 47, 9274-9278.	13.8	185
23	Optimal Water Coverage on Alumina: A Key to Generate Lewis Acid–Base Pairs that are Reactive Towards the Cī£¿H Bond Activation of Methane. Angewandte Chemie - International Edition, 2011, 50, 3202-3205.	13.8	184
24	Dependence of stretching frequency on surface coverage and adsorbate–adsorbate interactions: a density-functional theory approach of CO on Pd (111). Surface Science, 1999, 425, 68-80.	1.9	180
25	Performance and degradation of Proton Exchange Membrane Fuel Cells: State of the art in modeling from atomistic to system scale. Journal of Power Sources, 2016, 304, 207-233.	7.8	180
26	Why conclusions from platinum model surfaces do not necessarily lead to enhanced nanoparticle catalysts for the oxygen reduction reaction. Chemical Science, 2017, 8, 2283-2289.	7.4	173
27	Molecular and dissociative chemisorption of NO on palladium and rhodium (100) and (111) surfaces: A density-functional periodic study. Journal of Chemical Physics, 1998, 108, 6447-6457.	3.0	171
28	Role of water in metal catalyst performance for ketone hydrogenation: a joint experimental and theoretical study on levulinic acid conversion into gamma-valerolactone. Chemical Communications, 2014, 50, 12450-12453.	4.1	168
29	Electronic transmission coefficient for the single-impurity problem in the scattering-matrix approach. Physical Review B, 1988, 38, 12238-12247.	3.2	167
30	Chemisorption of Benzene on Pt(111), Pd(111), and Rh(111) Metal Surfaces:  A Structural and Vibrational Comparison from First Principles. Journal of Physical Chemistry B, 2004, 108, 5653-5665.	2.6	158
31	Site preference of CO chemisorbed on Pt(111) from density functional calculations. Surface Science, 2003, 530, 71-87.	1.9	155
32	H ₂ â€Induced Reconstruction of Supported Pt Clusters: Metal–Support Interaction versus Surface Hydride. ChemCatChem, 2011, 3, 200-207.	3.7	152
33	Viscoelastic and electrical properties of self-assembled monolayers on gold (111) films. Langmuir, 1993, 9, 3600-3611.	3.5	149
34	Au Atoms and Dimers on the MgO(100) Surface:Â A DFT Study of Nucleation at Defects. Journal of Physical Chemistry B, 2005, 109, 8040-8048.	2.6	149
35	Efficient method for the simulation of STM images. I. Generalized Green-function formalism. Physical Review B, 1997, 56, 15885-15899.	3.2	147
36	Atomically Dispersed Pt ₁ –Polyoxometalate Catalysts: How Does Metal–Support Interaction Affect Stability and Hydrogenation Activity?. Journal of the American Chemical Society, 2019, 141, 8185-8197.	13.7	147

#	Article	IF	CITATIONS
37	Heterolytic Splitting of H2and CH4on Î ³ -Alumina as a Structural Probe for Defect Sites. Journal of Physical Chemistry B, 2006, 110, 23944-23950.	2.6	141
38	Dendritic Tip-on Polytriazine-Based Carbon Nitride Photocatalyst with High Hydrogen Evolution Activity. Chemistry of Materials, 2015, 27, 8237-8247.	6.7	140
39	Vibrational frequency and chemisorption site: a DFT-periodic study of NO on Pd (111) and Rh (111) surfaces. Chemical Physics Letters, 1998, 291, 15-23.	2.6	139
40	Modulation of catalyst particle structure upon support hydroxylation: Ab initio insights into Pd13 and Pt13/γ-Al2O3. Journal of Catalysis, 2010, 274, 99-110.	6.2	137
41	Guidelines to Achieving High Selectivity for the Hydrogenation of α,β-Unsaturated Aldehydes with Bimetallic and Dilute Alloy Catalysts: A Review. Chemical Reviews, 2020, 120, 12834-12872.	47.7	136
42	Imaging the Surface and the Interface Atoms of an Oxide Film onAg{111}by Scanning Tunneling Microscopy: Experiment and Theory. Physical Review Letters, 2000, 84, 3899-3902.	7.8	135
43	Metastable Structures in Cluster Catalysis from First-Principles: Structural Ensemble in Reaction Conditions and Metastability Triggered Reactivity. Journal of the American Chemical Society, 2018, 140, 2812-2820.	13.7	131
44	Fast Prediction of Selectivity in Heterogeneous Catalysis from Extended BrÃ,nsted–Evans–Polanyi Relations: A Theoretical Insight. Angewandte Chemie - International Edition, 2009, 48, 8978-8980.	13.8	126
45	Ru catalysts for levulinic acid hydrogenation with formic acid as a hydrogen source. Green Chemistry, 2016, 18, 2014-2028.	9.0	126
46	Revisiting Acido-basicity of the MgO Surface by Periodic Density Functional Theory Calculations:Â Role of Surface Topology and Ion Coordination on Water Dissociation. Journal of Physical Chemistry B, 2006, 110, 15878-15886.	2.6	125
47	Molecular Understanding of Alumina Supported Single-Site Catalysts by a Combination of Experiment and Theory. Journal of the American Chemical Society, 2006, 128, 9157-9169.	13.7	125
48	Infrared Characterization of Hydroxyl Groups on MgO:  A Periodic and Cluster Density Functional Theory Study. Journal of the American Chemical Society, 2007, 129, 6442-6452.	13.7	125
49	Chemoâ^'Regioselectivity in Heterogeneous Catalysis:Â Competitive Routes for CO and CC Hydrogenations from a Theoretical Approach. Journal of the American Chemical Society, 2006, 128, 1316-1323.	13.7	122
50	Catalysis and Surface Organometallic Chemistry: A View from Theory and Simulations. Chemical Reviews, 2010, 110, 1788-1806.	47.7	121
51	Low temperature adsorption of ethylene and butadiene on platinum and palladium surfaces: A theoretical study of the di?/? competition. Catalysis Letters, 1991, 9, 245-260.	2.6	120
52	Density-functional periodic study of the adsorption of hydrogen on a palladium (111) surface. Physical Review B, 1996, 53, 8015-8027.	3.2	120
53	Shape of molecular adsorbates in STM images: A theoretical study of benzene on Pt(111). Physical Review B, 1996, 53, 4910-4925.	3.2	118
54	A Density Functional Study of Adsorption Structures of Unsaturated Aldehydes on Pt(111): A Key Factor for Hydrogenation Selectivity. Journal of Catalysis, 2002, 211, 398-406.	6.2	118

#	Article	IF	CITATIONS
55	Density-Functional Study of the Adsorption and Vibration Spectra of Benzene Molecules on Pt(111). Journal of Physical Chemistry B, 2003, 107, 2995-3002.	2.6	118
56	Influence of Sn additives on the selectivity of hydrogenation of α-β-unsaturated aldehydes with Pt catalysts: a density functional study of molecular adsorption. Journal of Catalysis, 2003, 220, 115-126.	6.2	116
57	Ordered structures of CO on Pd(111) studied by STM. Surface Science, 2002, 512, 48-60.	1.9	115
58	Structure sensitivity for NO dissociation on palladium and rhodium surfaces. Journal of Catalysis, 2003, 213, 211-225.	6.2	113
59	Structures and thermodynamic phase transitions for oxygen and silver oxide phases on Ag{1 1 1}. Chemical Physics Letters, 2003, 367, 344-350.	2.6	113
60	Catalytic Hydrogenation of Unsaturated Aldehydes on Pt(111): Understanding the Selectivity from First-Principles Calculations. Angewandte Chemie - International Edition, 2005, 44, 5279-5282.	13.8	113
61	Dual redox mediators accelerate the electrochemical kinetics of lithium-sulfur batteries. Nature Communications, 2020, 11, 5215.	12.8	113
62	What Makes Copper-Exchanged SSZ-13 Zeolite Efficient at Cleaning Car Exhaust Gases?. Journal of Physical Chemistry Letters, 2013, 4, 2244-2249.	4.6	112
63	Stability of Chiral Domains Produced by Adsorption of Tartaric Acid Isomers on the Cu(110) Surface:  A Periodic Density Functional Theory Study. Journal of the American Chemical Society, 2001, 123, 6639-6648.	13.7	110
64	Ethanol Electro-oxidation on Palladium Revisited Using Polarization Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS) and Density Functional Theory (DFT): Why Is It Difficult To Break the C–C Bond?. ACS Catalysis, 2016, 6, 4894-4906.	11.2	109
65	New Insights into Ethene Epoxidation on Two Oxidized Ag{111} Surfaces. Journal of the American Chemical Society, 2003, 125, 5620-5621.	13.7	108
66	Trends in the Chemisorption of Aromatic Molecules on a Pt(111) Surface:  Benzene, Naphthalene, and Anthracene from First Principles Calculations. Journal of Physical Chemistry B, 2004, 108, 12084-12091.	2.6	104
67	Relationship between Carbon Nitride Structure and Exciton Binding Energies: A DFT Perspective. Journal of Physical Chemistry C, 2015, 119, 25188-25196.	3.1	104
68	Influence of the Hydroxylation of γ-Al2O3Surfaces on the Stability and Diffusion of Single Pd Atoms: A DFT Study. Journal of Physical Chemistry B, 2006, 110, 1759-1767.	2.6	103
69	Unravelling the Mechanism of Glycerol Hydrogenolysis over Rhodium Catalyst through Combined Experimental–Theoretical Investigations. Chemistry - A European Journal, 2011, 17, 14288-14299.	3.3	99
70	Structure and contrast in scanning tunneling microscopy of oxides: FeO monolayer on Pt(111). Physical Review B, 1996, 54, R11145-R11148.	3.2	98
71	Critical Role of the Semiconductor–Electrolyte Interface in Photocatalytic Performance for Water-Splitting Reactions Using Ta ₃ N ₅ Particles. Chemistry of Materials, 2014, 26, 4812-4825.	6.7	98
72	Visibility of Al Surface Sites of γ-Alumina: A Combined Computational and Experimental Point of View. Journal of Physical Chemistry C, 2014, 118, 15292-15299.	3.1	97

#	Article	IF	CITATIONS
73	The adsorption of CO on Au(111) at elevated pressures studied by STM, RAIRS and DFT calculations. Surface Science, 2004, 566-568, 995-1000.	1.9	96
74	Heterogeneous Catalysis through Subsurface Sites. Journal of the American Chemical Society, 2000, 122, 1796-1801.	13.7	94
75	Chemisorption and Transformation of CHx Fragments (x = 0â^'3) on a Pd(111) Surface:  A Periodic Density Functional Study. Journal of Physical Chemistry B, 1998, 102, 1578-1585.	2.6	92
76	Cooperativity between Al Sites Promotes Hydrogen Transfer and Carbon–Carbon Bond Formation upon Dimethyl Ether Activation on Alumina. ACS Central Science, 2015, 1, 313-319.	11.3	92
77	Origin of the Enhanced Visible-Light Absorption in N-Doped Bulk Anatase TiO ₂ from First-Principles Calculations. Journal of Physical Chemistry C, 2011, 115, 19394-19404.	3.1	91
78	Comparative DFT study of the adsorption of 1,3-butadiene, 1-butene and 2-cis/trans-butenes on the Pt(111) and Pd(111) surfaces. Surface Science, 2004, 549, 121-133.	1.9	90
79	Impacts of electrode potentials and solvents on the electroreduction of CO ₂ : a comparison of theoretical approaches. Physical Chemistry Chemical Physics, 2015, 17, 13949-13963.	2.8	90
80	Chirality forces. Journal of the American Chemical Society, 1987, 109, 2887-2894.	13.7	87
81	Tuning the properties of visible-light-responsive tantalum (oxy)nitride photocatalysts by non-stoichiometric compositions: a first-principles viewpoint. Physical Chemistry Chemical Physics, 2014, 16, 20548-20560.	2.8	86
82	C–H versus O–H Bond Dissociation for Alcohols on a Rh(111) Surface: A Strong Assistance from Hydrogen Bonded Neighbors. ACS Catalysis, 2011, 1, 1430-1440.	11.2	85
83	Titaniaâ€Supported Catalysts for Levulinic Acid Hydrogenation: Influence of Support and its Impact on γâ€Valerolactone Yield. ChemSusChem, 2015, 8, 1538-1547.	6.8	85
84	Nucleation ofPdn(n=1–5)clusters and wetting of Pd particles onγâ^'Al2O3surfaces: A density functional theory study. Physical Review B, 2007, 75, .	3.2	84
85	Computationally Exploring Confinement Effects in the Methane-to-Methanol Conversion Over Iron-Oxo Centers in Zeolites. ACS Catalysis, 2016, 6, 8404-8409.	11.2	83
86	Interpretation of STM images: copper-phthalocyanine on copper. Surface Science, 1992, 271, 387-394.	1.9	82
87	On the Surface Chemistry of Iron Oxides in Reactive Gas Atmospheres. Angewandte Chemie - International Edition, 2011, 50, 1584-1588.	13.8	82
88	Interplay between molecular adsorption and metal–support interaction for small supported metal clusters: CO and C2H4 adsorption on Pd4/γPd4/γ-Al2O3. Journal of Catalysis, 2007, 247, 339-355.	6.2	80
89	Solvation free energies for periodic surfaces: comparison of implicit and explicit solvation models. Physical Chemistry Chemical Physics, 2016, 18, 31850-31861.	2.8	80
90	Surface Temperature Dependence of Rotational Excitation ofH2Scattered from Pd(111). Physical Review Letters, 2001, 87, 127601.	7.8	79

#	Article	IF	CITATIONS
91	Intermediates in the hydrogenation of benzene to cyclohexene on Pt(111) and Pd(111): A comparison from DFT calculations. Surface Science, 2006, 600, 1339-1350.	1.9	79
92	Anionic or Cationic S-Doping in Bulk Anatase TiO ₂ : Insights on Optical Absorption from First Principles Calculations. Journal of Physical Chemistry C, 2013, 117, 8892-8902.	3.1	78
93	Assessing a First-Principles Model of an Electrochemical Interface by Comparison with Experiment. Journal of Physical Chemistry C, 2016, 120, 5619-5623.	3.1	78
94	Atomic adsorbate identification with the STM: a theoretical approach. Surface Science, 1997, 374, 406-417.	1.9	77
95	Platinum Nanoclusters Stabilized on Î ³ -Alumina by Chlorine Used As a Capping Surface Ligand: A Density Functional Theory Study. ACS Catalysis, 2012, 2, 1346-1357.	11.2	77
96	A theoretical analysis of the site dependence of the shape of a molecule in STM images. Surface Science, 1994, 304, L445-L450.	1.9	76
97	Coverage Dependent Adsorption of Acrolein on Pt(111) from a Combination of First Principle Theory and HREELS Study. Journal of Physical Chemistry B, 2004, 108, 9085-9093.	2.6	75
98	Dynamics of Surface Alloys: Rearrangement of Pd/Ag(111) Induced by CO and O ₂ . Journal of Physical Chemistry C, 2019, 123, 8312-8323.	3.1	75
99	STM and chemistry: a qualitative molecular orbital understanding of the image of CO on a Pt surface. Surface Science, 1996, 360, 128-136.	1.9	74
100	Theoretical Study of Hydroxylated and Dehydroxylated Surfaces of a Cristobalite Model of Silica. Journal of Physical Chemistry B, 1997, 101, 8197-8203.	2.6	74
101	Adsorption of unsaturated aldehydes on the (111) surface of a Pt–Fe alloy catalyst from first principles. Journal of Catalysis, 2003, 217, 354-366.	6.2	73
102	From Î ³ -alumina to supported platinum nanoclusters in reforming conditions: 10years of DFT modeling and beyond. Journal of Catalysis, 2013, 308, 328-340.	6.2	73
103	CH3ReO3 on Î ³ -Al2O3: Understanding Its Structure, Initiation, and Reactivity in Olefin Metathesis. Angewandte Chemie - International Edition, 2007, 46, 3870-3873.	13.8	72
104	Stability of intermediates in the glycerol hydrogenolysis on transition metal catalysts from first principles. Physical Chemistry Chemical Physics, 2011, 13, 1448-1456.	2.8	72
105	Key Role of Anionic Doping for H ₂ Production from Formic Acid on Pd(111). ACS Catalysis, 2017, 7, 1955-1959.	11.2	72
106	Role of Hydrogen Species in Palladium-Catalyzed Alkyne Hydrogenation. Journal of Physical Chemistry C, 2010, 114, 2293-2299.	3.1	71
107	Nature and Structure of Aluminum Surface Sites Grafted on Silica from a Combination of High-Field Aluminum-27 Solid-State NMR Spectroscopy and First-Principles Calculations. Journal of the American Chemical Society, 2012, 134, 6767-6775.	13.7	71
108	Rational design of selective metal catalysts for alcohol amination with ammonia. Nature Catalysis, 2019, 2, 773-779.	34.4	70

#	Article	IF	CITATIONS
109	Structure of the Diamineâ^'Rh(I) Precursor in the Asymmetric Hydride Transfer Reduction of Ketones: A Theoretical and Experimental Approach. Journal of the American Chemical Society, 1998, 120, 1441-1446.	13.7	69
110	Adsorption and energetics of isolated CO molecules on Pd(111). Surface Science, 2000, 453, 25-31.	1.9	68
111	A multiscale theoretical methodology for the calculation of electrochemical observables from ab initio data: Application to the oxygen reduction reaction in a Pt(111)-based polymer electrolyte membrane fuel cell. Electrochimica Acta, 2011, 56, 10842-10856.	5.2	68
112	Acetylene structure and dynamics on Pd(111). Physical Review B, 1998, 57, R12705-R12708.	3.2	66
113	Formation of Chiral Domains for Tartaric Acid on Cu(110):Â A Combined DFT and Kinetic Monte Carlo Study. Journal of Physical Chemistry B, 2004, 108, 11035-11043.	2.6	66
114	Evaluating the Risk of C–C Bond Formation during Selective Hydrogenation of Acetylene on Palladium. ACS Catalysis, 2018, 8, 1662-1671.	11.2	65
115	Transformation of molecular oxygen on a platinum surface: A theoretical calculation of STM images. Physical Review B, 1999, 59, 15437-15445.	3.2	64
116	Surface ReO _{<i>x</i>} Sites on Al ₂ O ₃ and Their Molecular Structure–Reactivity Relationships for Olefin Metathesis. ACS Catalysis, 2015, 5, 1432-1444.	11.2	64
117	CO on Pt(111): binding site assignment from the interplay between measured and calculated STM images. Chemical Physics Letters, 1999, 299, 403-409.	2.6	62
118	A Density Functional Study of Adsorption Structures of Unsaturated Aldehydes on Pt(111): A Key Factor for Hydrogenation Selectivity. Journal of Catalysis, 2002, 211, 398-406.	6.2	62
119	Breaking the NO bond on Rh, Pd, and Pd3Mn alloy (100) surfaces: A quantum chemical comparison of reaction paths. Journal of Chemical Physics, 2001, 115, 8101-8111.	3.0	61
120	Specific Ethene Surface Activation on Silver Oxide Covered Ag $\{111\}$ from the Interplay of STM Experiment and Theory. Journal of the American Chemical Society, 2003, 125, 3119-3125.	13.7	61
121	Atomic Scale Insights on Chlorinated γ-Alumina Surfaces. Journal of the American Chemical Society, 2008, 130, 11030-11039.	13.7	61
122	Achieving High Selectivity for Alkyne Hydrogenation at High Conversions with Compositionally Optimized PdAu Nanoparticle Catalysts in Raspberry Colloid-Templated SiO ₂ . ACS Catalysis, 2020, 10, 441-450.	11.2	61
123	Selective Elimination of Alkyldibenzothiophenes from Gas Oil by Formation of Insoluble Charge-Transfer Complexes. Energy & Fuels, 1999, 13, 881-887.	5.1	60
124	Reconstruction and stability of \hat{l}^2 -cristobalite 001, 101, and 111 surfaces during dehydroxylation. Physical Chemistry Chemical Physics, 2010, 12, 14930.	2.8	60
125	Heterogeneous Transformation of Glycerol to Lactic Acid. Topics in Catalysis, 2012, 55, 474-479.	2.8	60
126	Multiscale Modeling of Chemistry in Water: Are We There Yet?. Journal of Chemical Theory and Computation, 2013, 9, 5567-5577.	5.3	59

#	Article	IF	CITATIONS
127	Ab Initio Study of the Structure of the α-MoO3 Solid and Study of the Adsorption of H2O and CO Molecules on Its (100) Surface. The Journal of Physical Chemistry, 1996, 100, 10681-10688.	2.9	58
128	Tetrahydrofuran in TiCl ₄ /THF/MgCl ₂ : a Non-Innocent Ligand for Supported Ziegler–Natta Polymerization Catalysts. ACS Catalysis, 2013, 3, 52-56.	11.2	58
129	Electronic and Chemical Properties of the Pt80Fe20(111) Alloy Surface: A Theoretical Study of the Adsorption of Atomic H, CO, and Unsaturated Molecules. Journal of Catalysis, 1996, 164, 152-165.	6.2	56
130	eta.2 versus .eta.1 coordination of aldehydes and ketones in organometallic complexes. A .semiempirical theoretical study. Journal of the American Chemical Society, 1992, 114, 2446-2455.	13.7	55
131	Scanning-tunneling-microscopy study of the surface diffusion of sulfur on Re(0001). Physical Review B, 1993, 47, 2320-2328.	3.2	55
132	Affordable Estimation of Solvation Contributions to the Adsorption Energies of Oxygenates on Metal Nanoparticles. Journal of Physical Chemistry C, 2019, 123, 5578-5582.	3.1	54
133	Active sites of olefin metathesis on molybdena-alumina system: A periodic DFT study. Journal of Catalysis, 2008, 256, 1-14.	6.2	53
134	Electronic properties of PbX ₃ CH ₃ NH ₃ (X = Cl, Br, I) compounds for photovoltaic and photocatalytic applications. Physical Chemistry Chemical Physics, 2015, 17, 2199-2209.	2.8	52
135	Selectivity Control for the Catalytic 1,3-Butadiene Hydrogenation on Pt(111) and Pd(111) Surfaces:Â Radical versus Closed-Shell Intermediates. Journal of Physical Chemistry B, 2005, 109, 14175-14182.	2.6	51
136	Highly selective hydrogenation of butadiene on Pt/Sn alloy elucidated by first-principles calculations. Journal of Catalysis, 2010, 275, 129-139.	6.2	51
137	Supported gold–nickel nano-alloy as a highly efficient catalyst in levulinic acid hydrogenation with formic acid as an internal hydrogen source. Catalysis Science and Technology, 2018, 8, 4318-4331.	4.1	51
138	Imaging a p(2 × 2) layer of sulfur on Re(0001) with the scanning tunneling microscope: an experimental and theoretical study of the effect of adsorption site and tip structure. Surface Science, 1994, 315, 127-142.	1.9	50
139	Controlled Interactions between Anhydrous Keggin-Type Heteropolyacids and Silica Support: Preparation and Characterization of Well-Defined Silica-Supported Polyoxometalate Species. Journal of Physical Chemistry C, 2010, 114, 19024-19034.	3.1	50
140	Dilute Alloys Based on Au, Ag, or Cu for Efficient Catalysis: From Synthesis to Active Sites. Chemical Reviews, 2022, 122, 8758-8808.	47.7	50
141	Are electronic interference effects important for STM imaging of substrates and adsorbates?. Ultramicroscopy, 1992, 42-44, 115-121.	1.9	48
142	The superacidity of sulfated zirconia: an ab-initio quantum mechanical study. The Journal of Physical Chemistry, 1993, 97, 11501-11509.	2.9	48
143	Interpretation of STM images: the MoS2 surface. Surface Science, 1996, 367, 209-220.	1.9	48
144	Adsorption of α,β-Unsaturated Aldehydes on Pt(111) and Ptâ^'Sn Alloys: II. Crotonaldehyde. Journal of Physical Chemistry C, 2009, 113, 13947-13967.	3.1	48

#	Article	IF	CITATIONS
145	Enhanced Kinetics of Hole Transfer and Electrocatalysis during Photocatalytic Oxygen Evolution by Cocatalyst Tuning. ACS Catalysis, 2016, 6, 4117-4126.	11.2	48
146	Characterizing Slight Structural Disorder in Solids by Combined Solid-State NMR and First Principles Calculations. Journal of Physical Chemistry A, 2009, 113, 902-911.	2.5	47
147	Dehydrogenation mechanisms of methyl-cyclohexane on Î ³ -Al2O3 supported Pt13: Impact of cluster ductility. Journal of Catalysis, 2019, 370, 118-129.	6.2	47
148	Evolution of Metastable Structures at Bimetallic Surfaces from Microscopy and Machine-Learning Molecular Dynamics. Journal of the American Chemical Society, 2020, 142, 15907-15916.	13.7	47
149	Influence of the Surface Atom Metallic Coordination in the Adsorption of Ethylene on a Platinum Surface: A Theoretical Study. The Journal of Physical Chemistry, 1994, 98, 10906-10912.	2.9	46
150	Comparison of the nature of the hydrogen-metal bond on Pd(111) and Ni(111) by a periodic density functional method. Surface Science, 1996, 356, L403-L409.	1.9	46
151	Ab initiocalculations of scanning tunneling microscopy images within a scattering formalism. Physical Review B, 1999, 60, 1989-1999.	3.2	46
152	Trade-Off between Accuracy and Universality in Linear Energy Relations for Alcohol Dehydrogenation on Transition Metals. Journal of Physical Chemistry C, 2015, 119, 12988-12998.	3.1	46
153	Reaction product-driven restructuring and assisted stabilization of a highly dispersed Rh-on-ceria catalyst. Nature Catalysis, 2022, 5, 119-127.	34.4	46
154	Ab initio study of the bare and hydrated (001) surface of tetragonal zirconia. Surface Science, 1992, 275, 482-492.	1.9	45
155	H-induced reconstructions on Pd(110). Physical Review B, 1998, 57, 12482-12491.	3.2	45
156	Quantitative Investigation of MgO BrÃ,nsted Basicity: DFT, IR, and Calorimetry Study of Methanol Adsorption. Journal of Physical Chemistry C, 2010, 114, 3008-3016.	3.1	45
157	Dinitrogen: a selective probe for tri-coordinate Al "defect―sites on alumina. Chemical Communications, 2011, 47, 4890.	4.1	45
158	Adsorption of aldehydes and ketones on platinum and palladium: influence of steps, open faces and metal nature. Surface Science, 1993, 295, 353-373.	1.9	44
159	The effect of substituents on the adsorption of alkenes on (111) Pt and Pd surfaces: a theoretical study. Catalysis Letters, 1994, 28, 89-98.	2.6	44
160	Ab initio study of the dissociative adsorption of H2 on the Pd(110) surface. Surface Science, 1998, 412-413, 518-526.	1.9	44
161	Density functional periodic study of CO adsorption on thePd3Mn(100)alloy surface: Comparison with Pd(100). Physical Review B, 1999, 59, 5142-5153.	3.2	44
162	Modeling the HCOOH/CO ₂ Electrocatalytic Reaction: When Details Are Key. ChemPhysChem, 2015, 16, 2307-2311.	2.1	44

#	Article	IF	CITATIONS
163	The electric field under a STM tip apex: implications for adsorbate manipulation. Surface Science, 1993, 282, 400-410.	1.9	43
164	Chlorodiethylaluminum supported on silica: A dinuclear aluminum surface species with bridging μ2-Cl-ligand as a highly efficient co-catalyst for the Ni-catalyzed dimerization of ethene. Journal of Catalysis, 2014, 313, 46-54.	6.2	43
165	Comment on "Examination of Spinel and Nonspinel Structural Models for γ-Al2O3by DFT and Rietveld Refinement Simulations― Journal of Physical Chemistry B, 2006, 110, 20719-20720.	2.6	42
166	Role of Tricoordinate Al Sites in CH ₃ ReO ₃ /Al ₂ O ₃ Olefin Metathesis Catalysts. Journal of the American Chemical Society, 2016, 138, 6774-6785.	13.7	42
167	Reactivity of shape-controlled crystals and metadynamics simulations locate the weak spots of alumina in water. Nature Communications, 2019, 10, 3139.	12.8	42
168	Efficient method for the simulation of STM images. II. Application to clean Rh(111) andRh(111)+c(4×2)ⴒ2S. Physical Review B, 1997, 56, 15900-15918.	3.2	41
169	Structure of Isolated Molybdenum(VI) Oxide Species on γ-Alumina: A Periodic Density Functional Theory Study. Journal of Physical Chemistry C, 2008, 112, 14456-14463.	3.1	41
170	Surface of Metallic Catalysts under a Pressure of Hydrocarbon Molecules: Metal or Carbide?. ChemCatChem, 2010, 2, 636-639.	3.7	41
171	Linear Energy Relations As Predictive Tools for Polyalcohol Catalytic Reactivity. ACS Catalysis, 2014, 4, 464-468.	11.2	41
172	Interplay between magnetism and chemisorption: a theoretical study of CO and NO adsorption on a Pd3Mn alloy surface. Chemical Physics Letters, 1999, 302, 91-97.	2.6	40
173	Assignment of Photoluminescence Spectra of MgO Powders: TD-DFT Cluster Calculations Combined to Experiments. Part I: Structure Effects on Dehydroxylated Surfaces. Journal of Physical Chemistry C, 2008, 112, 16629-16637.	3.1	40
174	The initial step of silicate versus aluminosilicate formation in zeolite synthesis: a reaction mechanism in water with a tetrapropylammonium template. Physical Chemistry Chemical Physics, 2012, 14, 3369.	2.8	40
175	Low-temperature adsorption of formaldehyde on a platinum (111) surface. A theoretical study. Langmuir, 1993, 9, 197-207.	3.5	39
176	Control of the anisotropic shape of cobalt nanorods in the liquid phase: from experiment to theory… and back. Nanoscale, 2014, 6, 2682.	5.6	39
177	Can Dynamics Be Responsible for the Complex Multipeak Infrared Spectra of NO Adsorbed to Copper(II) Sites in Zeolites?. Angewandte Chemie - International Edition, 2015, 54, 7799-7804.	13.8	39
178	CO Oxidation Mechanisms on CoO _{<i>x</i>} -Pt Thin Films. Journal of the American Chemical Society, 2020, 142, 8312-8322.	13.7	39
179	Electronic Structure of Diamagnetic and Paramagnetic Hexanuclear Chalcohalide Clusters of Rhenium. Inorganic Chemistry, 2002, 41, 2537-2542.	4.0	38
180	Study of the Structure of OH Groups on MgO by 1D and 2D ¹ H MAS NMR Combined with DFT Cluster Calculations. Journal of Physical Chemistry C, 2007, 111, 18279-18287.	3.1	38

#	Article	IF	CITATIONS
181	Force Field for Water over Pt(111): Development, Assessment, and Comparison. Journal of Chemical Theory and Computation, 2018, 14, 3238-3251.	5.3	38
182	Observing Singleâ€Atom Catalytic Sites During Reactions with Electrospray Ionization Mass Spectrometry. Angewandte Chemie - International Edition, 2021, 60, 4764-4773.	13.8	38
183	The role of electronic interferences in determining the appearance of STM images: application to the S(2 × 2)/Re(0001) system. Surface Science, 1993, 295, 347-352.	1.9	37
184	DFT study of adsorption and dissociation of thiophene molecules on Ni(110). Surface Science, 2003, 540, 474-490.	1.9	37
185	Evolution of Structure and of Grafting Properties of Î ³ -Alumina with Pretreatment Temperature. Journal of Physical Chemistry C, 2012, 116, 834-843.	3.1	37
186	Understanding Adsorption-Induced Effects on Platinum Nanoparticles: An Energy-Decomposition Analysis. Journal of Physical Chemistry Letters, 2014, 5, 3120-3124.	4.6	37
187	Photophysical Properties of SrTaO ₂ N Thin Films and Influence of Anion Ordering: A Joint Theoretical and Experimental Investigation. Chemistry of Materials, 2017, 29, 3989-3998.	6.7	37
188	Structuration and Dynamics of Interfacial Liquid Water at Hydrated Î ³ -Alumina Determined by ab Initio Molecular Simulations: Implications for Nanoparticle Stability. ACS Applied Nano Materials, 2018, 1, 191-199.	5.0	37
189	Adsorption and Vibrations of α,β-Unsaturated Aldehydes on Pure Pt and Ptâ~'Sn Alloy (111) Surfaces I. Prenal. Journal of Physical Chemistry C, 2008, 112, 3701-3718.	3.1	36
190	Formation of Acrylates from Ethylene and CO ₂ on Ni Complexes: A Mechanistic Viewpoint from a Hybrid DFT Approach. Organometallics, 2014, 33, 6369-6380.	2.3	36
191	Structural Rearrangements of Subnanometer Cu Oxide Clusters Govern Catalytic Oxidation. ACS Catalysis, 2020, 10, 5309-5317.	11.2	36
192	A DFT comparative study of carbon adsorption and diffusion on the surface and subsurface of Ni and Ni3Pd alloy. Physical Chemistry Chemical Physics, 2009, 11, 11546.	2.8	35
193	Adsorption and Vibrations of α,β-Unsaturated Aldehydes on Pt(111) and Ptâ^'Sn Alloy (111) Surfaces. 3. Adsorption Energy vs Adsorption Strength. Journal of Physical Chemistry C, 2010, 114, 1073-1084.	3.1	35
194	Triisobutylaluminum: bulkier and yet more reactive towards silica surfaces than triethyl or trimethylaluminum. Dalton Transactions, 2013, 42, 12681.	3.3	35
195	In Silico Screening of Iron-Oxo Catalysts for CH Bond Cleavage. ACS Catalysis, 2015, 5, 2490-2499.	11.2	35
196	How Should Iron and Titanium be Combined in Oxides to Improve Photoelectrochemical Properties?. Journal of Physical Chemistry C, 2016, 120, 24521-24532.	3.1	35
197	Acetylene Adsorption on Pd–Ag Alloys: Evidence for Limited Island Formation and Strong Reverse Segregation from Monte Carlo Simulations. Journal of Physical Chemistry C, 2018, 122, 15456-15463.	3.1	35
198	Decoding reactive structures in dilute alloy catalysts. Nature Communications, 2022, 13, 832.	12.8	35

#	Article	IF	CITATIONS
199	Structure of Hydrated Microporous Aluminophosphates:  Static and Molecular Dynamics Approaches of AlPO4-34 from First Principles Calculations. Journal of Physical Chemistry B, 2002, 106, 8599-8608.	2.6	34
200	Insights into the Geometry, Stability and Vibrational Properties of OH Groups on γ-Al2O3, TiO2-Anatase and MgO from DFT Calculations. Topics in Catalysis, 2009, 52, 1005-1016.	2.8	34
201	How Surface Hydroxyls Enhance MgO Reactivity in Basic Catalysis: The Case of Methylbutynol Conversion. ACS Catalysis, 2014, 4, 4004-4014.	11.2	34
202	Decomposition Mechanism of Anisole on Pt(111): Combining Single-Crystal Experiments and First-Principles Calculations. ACS Catalysis, 2016, 6, 8166-8178.	11.2	34
203	Challenges in calculating the bandgap of triazine-based carbon nitride structures. Journal of Materials Chemistry A, 2017, 5, 5115-5122.	10.3	34
204	Developing a Descriptor-Based Approach for CO and NO Adsorption Strength to Transition Metal Sites in Zeolites. Chemistry of Materials, 2017, 29, 6434-6444.	6.7	34
205	Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks. Journal of Chemical Theory and Computation, 2019, 15, 5614-5627.	5.3	34
206	Pt8 cluster on alumina under a pressure of hydrogen: Support-dependent reconstruction from first-principles global optimization. Journal of Chemical Physics, 2019, 151, 194703.	3.0	34
207	Mononuclear Fe in N-doped carbon: computational elucidation of active sites for electrochemical oxygen reduction and oxygen evolution reactions. Catalysis Science and Technology, 2020, 10, 1006-1014.	4.1	34
208	Synthesis, Characterization, and Catalytic Properties of Î ³ -Al2O3-Supported Zirconium Hydrides through a Combined Use of Surface Organometallic Chemistry and Periodic Calculations. Organometallics, 2007, 26, 3329-3335.	2.3	33
209	Structure of Dimeric Molybdenum(VI) Oxide Species on γ-Alumina: A Periodic Density Functional Theory Study. Journal of Physical Chemistry C, 2010, 114, 19406-19414.	3.1	33
210	Electronic structure and photocatalytic activity of wurtzite Cu–Ga–S nanocrystals and their Zn substitution. Journal of Materials Chemistry A, 2015, 3, 8896-8904.	10.3	33
211	The impact of finite temperature on the coordination of Cu cations in the zeolite SSZ-13. Catalysis Today, 2016, 267, 41-46.	4.4	33
212	Adsorption thermodynamics of acrolein on Pt (111) in realistic temperature and pressure from first-principle calculations. Chemical Physics Letters, 2005, 405, 434-439.	2.6	32
213	Determination of the Electronic Structure and UV–Vis Absorption Properties of (Na2–xCux)Ta4O11 from First-Principle Calculations. Journal of Physical Chemistry C, 2013, 117, 17477-17484.	3.1	32
214	Effect of Temperature on the Adsorption of Short Alkanes in the Zeolite SSZ-13—Adapting Adsorption Isotherms to Microporous Materials. ACS Catalysis, 2014, 4, 2351-2358.	11.2	32
215	Surface crystallography of Re(0001)â^'(2×2)â^'S and Re(0001)â^'(2â^š3× 2â^š3)R30°â^'6S: a combined LEED study. Surface Science, 1994, 312, 10-20.	and STM	31
216	Role of Hydroxyl Groups in the Basic Reactivity of MgO: a Theoretical and Experimental Study. Oil and Gas Science and Technology, 2006, 61, 479-488.	1.4	31

#	Article	lF	CITATIONS
217	Heterogeneous Catalytic Hydrogenation: Is Double Bond/Surface Coordination Necessary?. Journal of Physical Chemistry Letters, 2010, 1, 323-326.	4.6	31
218	Towards more accurate prediction of activation energies for polyalcohol dehydrogenation on transition metal catalysts in water. Catalysis Science and Technology, 2016, 6, 6615-6624.	4.1	31
219	Electro-carboxylation of butadiene and ethene over Pt and Ni catalysts. Journal of Catalysis, 2016, 343, 240-247.	6.2	31
220	A machine learning approach to graph-theoretical cluster expansions of the energy of adsorbate layers. Journal of Chemical Physics, 2017, 147, 054106.	3.0	31
221	Unraveling the Role of Base and Catalyst Polarization in Alcohol Oxidation on Au and Pt in Water. ACS Catalysis, 2018, 8, 11716-11721.	11.2	31
222	Hydride Transfer Reduction of Carbonyls by a Rhodium(I) Complex: A Theoretical Study. 1. The Two-Step Mechanism. Organometallics, 2000, 19, 1589-1598.	2.3	30
223	Understanding the High Activity of a Nanostructured Catalyst Obtained by a Deposit of Pd on Ni: First Principle Calculations. Journal of the American Chemical Society, 2004, 126, 3228-3233.	13.7	30
224	Imaging and moving a xenon atom on a copper (110) surface with the tip of a scanning tunneling microscope: A theoretical study. Physical Review B, 1993, 47, 7454-7461.	3.2	29
225	Catalytic Asymmetric Hydride Transfer Reduction of Ketones with Rhodium and Chiral Diamine Ligands: Approach of the Active Species Structure by DFT Calculations. Organometallics, 2000, 19, 5715-5722.	2.3	29
226	Pt80Fe20surface from first principles: Electronic structure and adsorption of CO and atomic H. Physical Review B, 2002, 66, .	3.2	29
227	Tuning catalytic reactivity on metal surfaces: Insights from DFT. Journal of Catalysis, 2013, 308, 374-385.	6.2	29
228	Understanding the influence of the composition of the Ag Pd catalysts on the selective formic acid decomposition and subsequent levulinic acid hydrogenation. International Journal of Hydrogen Energy, 2020, 45, 17339-17353.	7.1	29
229	SURFACE STRUCTURE DETERMINATION BY STM vs LEED. Progress in Surface Science, 1997, 54, 315-329.	8.3	28
230	First-Principles Study of CO Adsorption and Vibration on Au Surfaces. Journal of Physical Chemistry B, 2005, 109, 9596-9603.	2.6	28
231	A Theoretical Study of Cohesion, Structural Deformation, Inclusion, and Dynamics in Porous Hydrogen-Bonded Molecular Networks. Journal of the American Chemical Society, 2007, 129, 3621-3626.	13.7	28
232	Early stages of water/hydroxyl phase generation at transition metal surfaces – synergetic adsorption and O–H bond dissociation assistance. Physical Chemistry Chemical Physics, 2012, 14, 15286.	2.8	28
233	Carbon–Carbon Bond Formation by Activation of CH ₃ F on Alumina. Journal of Physical Chemistry C, 2015, 119, 7156-7163.	3.1	28
234	Structural Characterization of the EtOH–TiCl ₄ –MgCl ₂ Ziegler–Natta Precatalyst. Journal of Physical Chemistry C, 2016, 120, 18075-18087.	3.1	28

#	Article	IF	CITATIONS
235	Bismuth Silver Oxysulfide for Photoconversion Applications: Structural and Optoelectronic Properties. Chemistry of Materials, 2017, 29, 8679-8689.	6.7	28
236	Shining Light on Carbon Nitrides: Leveraging Temperature To Understand Optical Gap Variations. Chemistry of Materials, 2018, 30, 4253-4262.	6.7	28
237	Mechanistic and Electronic Insights into a Working NiAu Single-Atom Alloy Ethanol Dehydrogenation Catalyst. Journal of the American Chemical Society, 2021, 143, 21567-21579.	13.7	28
238	Theoretical analysis of the addition of nucleophiles to (.eta.4-diene)MLn complexes. Organometallics, 1987, 6, 1845-1849.	2.3	27
239	Ethylene Adsorption and Coadsorption with H on Pd(110) from First Principles. Journal of Physical Chemistry B, 2003, 107, 1604-1615.	2.6	27
240	Simulating Temperature Programmed Desorption of Water on Hydrated Î ³ -Alumina from First-Principles Calculations. Journal of Physical Chemistry B, 2006, 110, 7392-7395.	2.6	27
241	Determination of the crotonaldehyde structures on Pt and PtSn surface alloys from a combined experimental and theoretical study. Chemical Physics Letters, 2006, 433, 188-192.	2.6	27
242	Theoretical Study of NO Dissociation on Stepped Rh(221) and RhCu(221) Surfaces. Journal of Physical Chemistry C, 2007, 111, 11376-11383.	3.1	27
243	Alkane metathesis by a tungsten carbyne complex grafted on gamma alumina: Is there a direct chemical role of the support?. Journal of Catalysis, 2007, 251, 507-513.	6.2	27
244	Understanding the HIV-1 Protease Reactivity with DFT: What Do We Gain from Recent Functionals?. Journal of Physical Chemistry B, 2011, 115, 8545-8558.	2.6	27
245	Group Additivity for Aqueous Phase Thermochemical Properties of Alcohols on Pt(111). Journal of Physical Chemistry C, 2017, 121, 21510-21519.	3.1	27
246	Surface Structure of Co ₃ O ₄ (111) under Reactive Gas-Phase Environments. ACS Catalysis, 2019, 9, 6380-6392.	11.2	27
247	Theoretical chemistry as a tool for interpreting catalysts selectivities. Topics in Catalysis, 2000, 13, 213-219.	2.8	26
248	DFT Study of the Interaction of a single Palladium Atom with \$gamma \$-Alumina Surfaces: the Role of Hydroxylation. Oil and Gas Science and Technology, 2006, 61, 535-545.	1.4	26
249	Quantum chemical and vibrational investigation of sodium exchanged Î ³ -alumina surfaces. Physical Chemistry Chemical Physics, 2007, 9, 2577-2582.	2.8	26
250	The Weak Help the Strong: Low-Molar-Mass Organogelators Harden Bitumen. Langmuir, 2009, 25, 8400-8403.	3.5	26
251	C ₂ H ₂ -Induced Surface Restructuring of Pd–Ag Catalysts: Insights from Theoretical Modeling. Journal of Physical Chemistry C, 2016, 120, 26320-26327.	3.1	26
252	Computational screening for selective catalysts: Cleaving the C C bond during ethanol electro-oxidation reaction. Electrochimica Acta, 2018, 274, 274-278.	5.2	26

#	Article	IF	CITATIONS
253	Direct <i>n</i> -octanol amination by ammonia on supported Ni and Pd catalysts: activity is enhanced by "spectator―ammonia adsorbates. Catalysis Science and Technology, 2018, 8, 611-621.	4.1	26
254	Facilitating hydrogen atom migration via a dense phase on palladium islands to a surrounding silver surface. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 22657-22664.	7.1	26
255	Global Activity Search Uncovers Reaction Induced Concomitant Catalyst Restructuring for Alkane Dissociation on Model Pt Catalysts. ACS Catalysis, 2021, 11, 1877-1885.	11.2	26
256	The Sixl-Higelin salicylideneaniline molecular switch revisited. Chemical Physics, 1989, 135, 99-108.	1.9	25
257	Scanning tunneling microscopy tip-dependent image contrast of S/Pt(111) by controlled atom transfer. Journal of Vacuum Science & Technology an Official Journal of the American Vacuum Society B, Microelectronics Processing and Phenomena, 1994, 12, 1751.	1.6	25
258	NO chemisorption on a magnetic alloy surface: a density-functional periodic study of Pd3Mn(100) compared with Pd(100). Surface Science, 1999, 442, 338-348.	1.9	25
259	Origin of the Enantioselectivity in the Hydrogen Transfer Reduction of Carbonyls by a Rhodium(I) Complex: A Theoretical Study. Organometallics, 2001, 20, 2207-2214.	2.3	25
260	Density-functional theory calculations of the adsorption of Cl at perfect and defective Ag(111) surfaces. Physical Review B, 2004, 69, .	3.2	25
261	Assignment of Photoluminescence Spectra of MgO Powders: TD-DFT Cluster Calculations Combined to Experiments. Part II. Hydroxylation Effects. Journal of Physical Chemistry C, 2008, 112, 19710-19717.	3.1	25
262	Adsorption of Simple Alkenes on Pt(111) and Ptâ^'Sn Surface Alloys: Bond Strength versus Heat of Adsorption. Journal of Physical Chemistry C, 2008, 112, 14693-14695.	3.1	25
263	Capturing Solvation Effects at a Liquid/Nanoparticle Interface by Ab Initio Molecular Dynamics: Pt ₂₀₁ Immersed in Water. Small, 2016, 12, 5312-5319.	10.0	25
264	Entropic Control of HD Exchange Rates over Dilute Pd-in-Au Alloy Nanoparticle Catalysts. ACS Catalysis, 2021, 11, 6971-6981.	11.2	25
265	A double ionic mechanism for the Chapman-like rearrangement of imino-ethers to N-alkylmides, in the solid state or in the melt. Theoretical and experimental evidence. Journal of the Chemical Society Chemical Communications, 1992, .	2.0	24
266	Tip-dependent contrast in STM imaging of adsorbed sulfur layers: theory and experiment. Ultramicroscopy, 1992, 42-44, 490-497.	1.9	24
267	Hartree-Fock ab initio study of the geometric and electronic structure of RuS2 and its (100) and (111) surfaces. Surface Science, 1995, 336, 149-165.	1.9	24
268	Chemisorption of H2 and H2S on the (100) surface of RuS2: an ab initio theoretical study. Surface Science, 1997, 389, 131-146.	1.9	24
269	Highly Strained Structure of a Four-Layer Deposit of Pd on Ni(110): A Coupled Theoretical and Experimental Study. Physical Review Letters, 2002, 89, 146106.	7.8	24
270	Trichloroethene Dechlorination Reactions on the PdCu(110) Alloy Surface: A Periodical Density Functional Theory Study of the Mechanism. Journal of Catalysis, 2002, 207, 127-138.	6.2	24

#	Article	IF	CITATIONS
271	Charge transfer complexes between tetranitrofluorenone and polyaromatic compounds from gasoil: a combined DFT and experimental study. Physical Chemistry Chemical Physics, 2004, 6, 1169.	2.8	24
272	Interplay between Reaction Mechanism and Hydroxyl Species for Water Formation on Pt(111). ACS Catalysis, 2015, 5, 1068-1077.	11.2	24
273	Interpreting the Operando XANES of Surface-Supported Subnanometer Clusters: When Fluxionality, Oxidation State, and Size Effect Fight. Journal of Physical Chemistry C, 2020, 124, 10057-10066.	3.1	24
274	The influence of sulfur adsorption on the step structure of vicinal Mo(100): a LEED and STM study. Surface Science, 1993, 280, 313-324.	1.9	23
275	Stress induced nanostructure in a Pd monolayer on Ni(110): a first principles theoretical study. Surface Science, 2001, 472, L139-L144.	1.9	23
276	Alumina as a Simultaneous Support and Co Catalyst: Cationic Hafnium Complex Evidenced by Experimental and DFT Analyses. Journal of Physical Chemistry C, 2010, 114, 18516-18528.	3.1	23
277	Polyoxometalate grafting onto silica: stability diagrams of H3PMo12O40 on {001}, {101}, and {111} β-cristobalite surfaces analyzed by DFT. Physical Chemistry Chemical Physics, 2011, 13, 15955.	2.8	23
278	Controlling the Adsorption of Aromatic Compounds on Pt(111) with Oxygenate Substituents: From DFT to Simple Molecular Descriptors. Journal of Physical Chemistry Letters, 2016, 7, 2074-2079.	4.6	23
279	Acid–Base Control of Valency within Carboranedithiol Self-Assembled Monolayers: Molecules Do the Can-Can. ACS Nano, 2018, 12, 2211-2221.	14.6	23
280	Vibrational identification of the surface reaction intermediates for the dehalogenation of trichloroethene on PdCu(110) alloy. Surface Science, 2002, 505, 153-162.	1.9	22
281	A Combined Experimental and Theoretical Evaluation of the Structure of Hydrated Microporous Aluminophosphate AlPO4-18. Journal of Physical Chemistry B, 2005, 109, 22939-22946.	2.6	22
282	A theoretical study of models for X2Y2 Zintl ions. Journal of the American Chemical Society, 1989, 111, 8105-8111.	13.7	21
283	The origin of STM contrast differences for inequivalent S atoms on a Mo(100) surface. Surface Science, 1996, 364, 335-344.	1.9	21
284	Surface restructuring under gas pressure from first principles: A mechanism for CO-induced removal of theAu(110)â^'(1A—2)reconstruction. Physical Review B, 2005, 71, .	3.2	21
285	First principles surface thermodynamics of industrial supported catalysts in working conditions. Journal of Physics Condensed Matter, 2008, 20, 064235.	1.8	21
286	Stabilization of the (110) tetragonal zirconia surface by hydroxyl chemical transformation. Surface Science, 2009, 603, 2526-2531.	1.9	21
287	Modeling the adsorption of short alkanes in the zeolite SSZ-13 using "van der Waals―DFT exchange correlation functionals: Understanding the advantages and limitations of such functionals. Journal of Chemical Physics, 2014, 140, 154105.	3.0	21
288	DFT Perspective on the Thermochemistry of Carbon Nitride Synthesis. Journal of Physical Chemistry C, 2016, 120, 24542-24550.	3.1	21

#	Article	IF	CITATIONS
289	C–H Activation and Proton Transfer Initiate Alkene Metathesis Activity of the Tungsten(IV)–Oxo Complex. Journal of the American Chemical Society, 2018, 140, 11395-11401.	13.7	21
290	Effects of Morphology and Surface Properties of Copper Oxide on the Removal of Hydrogen Sulfide from Gaseous Streams. Industrial & Engineering Chemistry Research, 2019, 58, 18836-18847.	3.7	21
291	Optimal Packing of CO at a High Coverage on Pt(100) and Pt(111) Surfaces. ACS Catalysis, 2020, 10, 9533-9544.	11.2	21
292	Identification of active catalysts for the acceptorless dehydrogenation of alcohols to carbonyls. Nature Communications, 2021, 12, 5100.	12.8	21
293	4.23 Sulfated Zirconia for n-Butane Isomerization Experimental and Theoretical Approaches. Studies in Surface Science and Catalysis, 1994, , 519-529.	1.5	20
294	Surface phase stability diagram for Pd deposits on Ni(110): A first-principles theoretical study. Physical Review B, 2001, 64, .	3.2	20
295	NO structures adsorbed on Rh(111): Theoretical approach to high-coverage STM images. Physical Review B, 2006, 73, .	3.2	20
296	Coverage-dependent thermodynamic analysis of the formation of water and hydrogen peroxide on a platinum model catalyst. Physical Chemistry Chemical Physics, 2015, 17, 11392-11400.	2.8	20
297	Hydrogen Evolution on Restructured B-Rich WB: Metastable Surface States and Isolated Active Sites. ACS Catalysis, 2020, 10, 13867-13877.	11.2	20
298	The switching ability of a three-level tight-binding system: the isolated and embedded case. Journal of Physics C: Solid State Physics, 1988, 21, 3939-3957.	1.5	19
299	Model catalysts obtained by cluster deposition of Palladium onto HOPG. TEM and STM characterisation. Microscopy Microanalysis Microstructures, 1993, 4, 441-452.	0.4	19
300	Chemisorption of Trichloroethene on the PdCu Alloy (110) Surface:Â A Periodical Density Functional Study. Langmuir, 2002, 18, 2625-2635.	3.5	19
301	Revisiting the Structure of Methyltrioxorhenium Chemisorbed on Alumina. ChemCatChem, 2010, 2, 812-815.	3.7	19
302	Importance of a Nonlocal Description of Electron–Electron Interactions in Modeling the Dissociative Adsorption of H ₂ on Cu(100). Journal of Physical Chemistry C, 2014, 118, 5374-5382.	3.1	19
303	Trends and Control in the Nitridation of Transition-Metal Surfaces. ACS Catalysis, 2018, 8, 63-68.	11.2	19
304	Reagent-Triggered Isomerization of Fluxional Cluster Catalyst via Dynamic Coupling. Journal of Physical Chemistry Letters, 2020, 11, 3089-3094.	4.6	19
305	Oxidation of Methane to Methanol over Single Site Palladium Oxide Species on Silica: A Mechanistic view from DFT. Journal of Physical Chemistry A, 2017, 121, 5500-5508.	2.5	18
306	Contribution of electrolyte in nanoscale electrolysis of pure and buffered water by particulate photocatalysis. Sustainable Energy and Fuels, 2018, 2, 2044-2052.	4.9	18

#	Article	IF	CITATIONS
307	Water on Oxide Surfaces: A Triaqua Surface Coordination Complex on Co ₃ O ₄ (111). Journal of the American Chemical Society, 2019, 141, 5623-5627.	13.7	18
308	A Perspective on interfacial engineering of lithium metal anodes and beyond. Applied Physics Letters, 2020, 117, .	3.3	18
309	Initial stages in the oxidation and reduction of the4×4surface oxide phase on Ag{111}: A combined density-functional theory and STM simulation study. Physical Review B, 2003, 68, .	3.2	17
310	Restoring the Co Magnetic Moments at Interfacial Co-Porphyrin Arrays by Site-Selective Uptake of Iron. ACS Nano, 2015, 9, 3605-3616.	14.6	17
311	Characterization and charge transfer properties of organic BODIPY dyes integrated in TiO ₂ nanotube based dye-sensitized solar cells. RSC Advances, 2016, 6, 91529-91540.	3.6	17
312	Evaluating Thermal Corrections for Adsorption Processes at the Metal/Gas Interface. Journal of Physical Chemistry C, 2019, 123, 28828-28835.	3.1	17
313	Active Site Fluxional Restructuring as a New Paradigm in Triggering Reaction Activity for Nanocluster Catalysis. Accounts of Chemical Research, 2021, 54, 3841-3849.	15.6	17
314	Thermokinetic and Spectroscopic Mapping of Carbon Monoxide Adsorption on Highly Dispersed Pt/γ-Al ₂ O ₃ . ACS Catalysis, 2021, 11, 13280-13293.	11.2	17
315	Molecular transparence and contrast with the STM: a theoretical comparison of carbon monoxide and ethylene. Surface Science, 1998, 415, 148-155.	1.9	16
316	Density functional study of the structural and electronic properties of RuS2(111). Surface Science, 1999, 439, 163-172.	1.9	16
317	Pyroglutamic acid as a chiral auxiliary in the diastereoselective hydrogenation of disubstituted aromatic rings on Rh(111): aAperiodic density functional theory approach. Journal of Catalysis, 2003, 217, 23-23.	6.2	16
318	Vanadium Distribution in Fourâ€Component Moâ€Vâ€Teâ€Nb Mixedâ€Oxide Catalysts from First Principles: How to Explore the Numerous Configurations?. Angewandte Chemie - International Edition, 2012, 51, 12854-12858.	13.8	16
319	Adsorption and Decomposition of a Lignin β-O-4 Linkage Model, 2-Phenoxyethanol, on Pt(111): Combination of Experiments and First-Principles Calculations. Journal of Physical Chemistry C, 2017, 121, 9889-9900.	3.1	16
320	Approach to surface structure determination with the scanning tunneling microscope: Multiple-gap imaging and electron-scattering quantum-chemistry theory. Physical Review B, 1995, 52, 11446-11456.	3.2	15
321	A Theoretical Study of Butadiene Adsorption on the Pd–Ni Bimetallic System. Journal of Catalysis, 1997, 167, 33-42.	6.2	15
322	RuS2(111) Surfaces: Theoretical Study of Various Terminations and Their Interaction with H2. Journal of Catalysis, 1997, 170, 402-410.	6.2	15
323	Formation of a High Coverage (3 × 3) NO Phase on Pd(111) at Elevated Pressures: Interplay between Kinetic and Thermodynamic Accessibility. Journal of Physical Chemistry B, 2005, 109, 5414-5417.	2.6	15
324	Characterization of Surface Hydride Hafnium Complexes on Alumina by a Combination of Experiments and DFT Calculations. Journal of Physical Chemistry C, 2011, 115, 6757-6763.	3.1	15

#	Article	IF	CITATIONS
325	Investigation of the structures of sulfur on Mo(100) by scanning tunneling microscopy. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 1975-1981.	2.1	14
326	Density functional study of the structural and electronic properties of RuS2(111): II. Hydrogenated surfaces. Surface Science, 2000, 457, 285-293.	1.9	14
327	Alloying Effects on Nâ^'O Stretching Frequency:Â A Density Functional Theory Study of the Adsorption of NO on Pd3Mn (100) and (111) Surfaces. Journal of Physical Chemistry B, 2001, 105, 3027-3033.	2.6	14
328	Pressure and Temperature Effects on the Formation of a Pd/C Surface Carbide: Insights into the Role of Pd/C as a Selective Catalytic State for the Partial Hydrogenation of Acetylene. Journal of Physical Chemistry C, 2013, 117, 11059-11065.	3.1	14
329	Coadsorption of Butadiene and Hydrogen on the (111) Surfaces of Pt and Pt2Sn Surface Alloy: Understanding the Cohabitation from First-Principles Calculations. Journal of Physical Chemistry C, 2017, 121, 25152-25163.	3.1	14
330	The Tip Apex Structure of the Eigler Atomic Switch. Europhysics Letters, 1992, 20, 697-702.	2.0	13
331	Application of scanning tunneling microscopy to study adatom diffusion and lateral interactions: Sulfur on Re(0001) at low coverages. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 1993, 11, 2145-2152.	2.1	13
332	Dithiourea Ligands in the Rhodium-Catalyzed Hydride-Transfer Reduction of Ketones â^' A Theoretical and Experimental Approach. European Journal of Organic Chemistry, 2001, 2001, 1589-1596.	2.4	13
333	Direct Amination of Alcohols Catalyzed by Aluminum Triflate: An Experimental and Computational Study. Chemistry - A European Journal, 2018, 24, 14146-14153.	3.3	13
334	Facile Decomposition of Organophosphonates by Dual Lewis Sites on a Fe ₃ O ₄ (111) Film. Journal of Physical Chemistry C, 2020, 124, 12432-12441.	3.1	13
335	Formation of a Ti–Cu(111) single atom alloy: Structure and CO binding. Journal of Chemical Physics, 2021, 154, 234703.	3.0	13
336	Electron Tunneling Through a Molecule. , 1990, , 377-389.		13
337	Electronic Structure and Magnetism of Ordered Palladiumâ^'Manganese and Palladiumâ^'Chromium Alloys. Chemistry of Materials, 1997, 9, 3072-3082.	6.7	12
338	Comparison between plane-wave and linear-scaling localized basis sets for structural calculations of microporous molecular sieves. Physical Review B, 2003, 68, .	3.2	12
339	Scrutinizing individual CoTPP molecule adsorbed on coinage metal surfaces from the interplay of STM experiment and theory. Surface Science, 2015, 635, 108-114.	1.9	12
340	Heterogeneity in Local Chemical Bonding Explains Spectral Broadening in Quantum Dots with Cu Impurities. Journal of Physical Chemistry C, 2019, 123, 5705-5713.	3.1	12
341	What does graphitic carbon nitride really look like?. Physical Chemistry Chemical Physics, 2021, 23, 2853-2859.	2.8	12
342	The role of surface relaxations in determining the STM images of sulfur adatoms and clusters on Re(0001): theory versus experiment. Surface Science, 1998, 409, 145-159.	1.9	11

#	Article	IF	CITATIONS
343	Gamma-alumina: An Active Support to Obtain Immobilized Electron Poor Zr Complexes. Topics in Catalysis, 2008, 48, 114-119.	2.8	11
344	Global Optimization of Adsorbate Covered Supported Cluster Catalysts: The Case of Pt ₇ H ₁₀ CH ₃ on αâ€Al ₂ O ₃ . ChemCatChem, 2020, 12, 762-770.	3.7	11
345	Stabilizing Oxidative Dehydrogenation Active Sites at High Temperature with Steam: ZnFe ₂ O ₄ -Catalyzed Oxidative Dehydrogenation of 1-Butene to 1,3-Butadiene. ACS Catalysis, 2020, 10, 12888-12897.	11.2	11
346	Observing Singleâ€Atom Catalytic Sites During Reactions with Electrospray Ionization Mass Spectrometry. Angewandte Chemie, 2021, 133, 4814-4823.	2.0	11
347	Grafting trimethylaluminum and its halogen derivatives on silica: general trends for ²⁷ Al SS-NMR response from first principles calculations. Physical Chemistry Chemical Physics, 2015, 17, 26937-26945.	2.8	10
348	Automated Detection and Characterization of Surface Restructuring Events in Bimetallic Catalysts. Journal of Physical Chemistry C, 2019, 123, 16332-16344.	3.1	10
349	Effect of Frustrated Rotations on the Pre-Exponential Factor for Unimolecular Reactions on Surfaces: A Case Study of Alkoxy Dehydrogenation. Journal of Physical Chemistry C, 2020, 124, 1429-1437.	3.1	10
350	Diffusion Barriers for Carbon Monoxide on the Cu(001) Surface Using Many-Body Perturbation Theory and Various Density Functionals. Journal of Chemical Theory and Computation, 2021, 17, 7862-7872.	5.3	10
351	Imaging Molecules with the Scanning Tunneling Microscope: A Theoretical Interpretation of Benzene on Platinum. Israel Journal of Chemistry, 1996, 36, 63-72.	2.3	9
352	Towards a Multiscale Modeling Methodology for the Prediction of the Electro-Activity of PEM Fuel Cell Catalysts. ECS Transactions, 2010, 25, 167-173.	0.5	9
353	Mechanistic and spectroscopic identification of initial reaction intermediates for prenal decomposition on a platinum model catalyst. Physical Chemistry Chemical Physics, 2011, 13, 6000.	2.8	9
354	How Does the Surface Structure of Pt–Ni Alloys Control Water and Hydrogen Peroxide Formation?. ACS Catalysis, 2016, 6, 5641-5650.	11.2	9
355	Molecular mechanics models for the image charge, a comment on "including image charge effects in the molecular dynamics simulations of molecules on metal surfaces― Journal of Computational Chemistry, 2017, 38, 2127-2129.	3.3	9
356	Impact of Organic Templates on the Selective Formation of Zeolite Oligomers. Angewandte Chemie, 2021, 133, 7187-7192.	2.0	9
357	Electronic transmission coefficient as a tool for the analysis of the effect of impurities and defects on the electronic structure of polymers. Chemistry of Materials, 1989, 1, 225-231.	6.7	8
358	On the nature of RuS2 HDS active sites: insight from ab initio theory. Journal of Molecular Catalysis A, 2001, 174, 239-244.	4.8	8
359	Nature of adhesion of condensed organic films on platinum by first-principles simulations. Physical Chemistry Chemical Physics, 2011, 13, 11827.	2.8	8
360	Comment on "Electronic properties and charge transfer phenomena in Pt nanoparticles on γ-Al2O3: size, shape, support, and adsorbate effects―by F. Behafarid et al., Phys. Chem. Chem. Phys., 2012, 14, 11766–11779. Physical Chemistry Chemical Physics, 2012, 14, 16773.	2.8	8

#	Article	IF	CITATIONS
361	Verursacht Dynamik das komplexe Infrarotspektrum von NO an Kupfer(II)â€Zentren in Zeolithen?. Angewandte Chemie, 2015, 127, 7910-7915.	2.0	8
362	DFT investigations for the catalytic reaction mechanism of methane combustion occurring on Pd(<scp>ii</scp>)/Al-MCM-41. Physical Chemistry Chemical Physics, 2018, 20, 25377-25386.	2.8	8
363	Insights into Copper Sulfide Formation from Cu and S K edge XAS and DFT studies. Inorganic Chemistry, 2020, 59, 15276-15288.	4.0	8
364	Atomic layer etching of metals with anisotropy, specificity, and selectivity. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2020, 38, .	2.1	8
365	Stoichiometry-controllable optical defects in Cu _x In _{2â^'x} S _y quantum dots for energy harvesting. Journal of Materials Chemistry A, 2020, 8, 12556-12565.	10.3	8
366	Highly dispersed Pt atoms and clusters on hydroxylated indium tin oxide: a view from first-principles calculations. Journal of Materials Chemistry A, 2021, 9, 15724-15733.	10.3	8
367	CO organization at ambient pressure on stepped Pt surfaces: first principles modeling accelerated by neural networks. Chemical Science, 2021, 12, 15543-15555.	7.4	8
368	Modeling Electrochemical Processes with Grand Canonical Treatment of Many-Body Perturbation Theory. Journal of Physical Chemistry Letters, 2022, 13, 6079-6084.	4.6	8
369	Chemisorption and decomposition of C1 and C2 hydrocarbons on a Pd(111) surface: a periodic density functional study. Studies in Surface Science and Catalysis, 1996, 101, 1253-1261.	1.5	7
370	Pd–Mn Silica-Supported Catalysts. Journal of Catalysis, 2001, 198, 243-255.	6.2	7
371	Self-Assembly of Diacid Molecules: A Theoretical Approach of Molecular Interactions. Journal of Physical Chemistry C, 2009, 113, 17566-17571.	3.1	7
372	The mechanism of the initial step of germanosilicate formation in solution: a first-principles molecular dynamics study. Physical Chemistry Chemical Physics, 2016, 18, 14419-14425.	2.8	7
373	The Pressure Gap for Thiols: Methanethiol Self-Assembly on Au(111) from Vacuum to 1 bar. Journal of Physical Chemistry C, 2019, 123, 12382-12389.	3.1	7
374	Tuning reactivity layer-by-layer: formic acid activation on Ag/Pd(111). Chemical Science, 2020, 11, 6492-6499.	7.4	7
375	Impact of Organic Templates on the Selective Formation of Zeolite Oligomers. Angewandte Chemie - International Edition, 2021, 60, 7111-7116.	13.8	7
376	Oxidation Dynamics of Supported Catalytic Cu Clusters: Coupling to Fluxionality. ACS Catalysis, 2022, 12, 818-827.	11.2	7
377	Imaging Ga tetramers onAg(001)by scanning tunneling microscopy: Theory and experiment. Physical Review B, 1998, 57, 10035-10043.	3.2	6
378	Contribution of DFT Calculations to the Understanding of an Asymmetric Reaction, the Hydrogen Transfer Reduction of Ketones by a Rhodium(I) Complex. European Journal of Organic Chemistry, 2003, 2003, 2092-2097.	2.4	6

#	Article	IF	CITATIONS
379	Further insight in the minor/major concept using hydrogen pressure effect in asymmetric hydrogenation. Journal of Molecular Catalysis A, 2012, 363-364, 214-222.	4.8	6
380	Structure-sensitive scaling relations among carbon-containing species and their possible impact on CO2 electroreduction. Journal of Catalysis, 2021, 395, 136-142.	6.2	6
381	Theory and experiments join forces to characterize the electrocatalytic interface. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7611-7613.	7.1	5
382	Preparing Your Manuscript for Submission to ACS Catalysis. ACS Catalysis, 2014, 4, 2827-2828.	11.2	4
383	Isosorbide telechelic bio-based oligomers. Journal of Polymer Science Part A, 2017, 55, 2178-2189.	2.3	4
384	Excellence <i>versus</i> Diversity? Not an Either/Or Choice. ACS Catalysis, 2020, 10, 7310-7311.	11.2	4
385	Atomic Environments in N-Containing Graphitic Carbon Probed by First-Principles Calculations and Solid-State Nuclear Magnetic Resonance. Journal of Physical Chemistry C, 2021, 125, 8779-8787.	3.1	4
386	Avoiding dendrite formation by confining lithium deposition underneath Li–Sn coatings. Journal of Materials Research, 2021, 36, 797-811.	2.6	4
387	Structural Transformation of (110) Ultrathin Films of Tetragonal Zirconia Induced by Polarity. Journal of Physical Chemistry C, 2007, 111, 8314-8320.	3.1	3
388	Understanding the influence of hydrogen pressure on the enantioselectivity of hydrogenation: A combined theory-experiment approach. Journal of Organometallic Chemistry, 2017, 836-837, 90-99.	1.8	3
389	Thermodynamics of Atomic Layer Etching Chemistry on Copper and Nickel Surfaces from First Principles. Chemistry of Materials, 2021, 33, 6774-6786.	6.7	3
390	Toward benchmarking theoretical computations of elementary rate constants on catalytic surfaces: formate decomposition on Au and Cu. Chemical Science, 2022, 13, 804-815.	7.4	3
391	Interpreting the Operando X-ray Absorption Near-Edge Structure of Supported Cu and CuPd Clusters in Conditions of Oxidative Dehydrogenation of Propane: Dynamic Changes in Composition and Size. Journal of Physical Chemistry C, 2022, 126, 1972-1981.	3.1	3
392	Unraveling Gold(I)‧pecific Action Towards Peptidic Disulfide Cleavage: A DFT Investigation. ChemPhysChem, 2011, 12, 2596-2603.	2.1	2
393	Unravelling the Metastable Nature of the Single Site Tungsten Hydride Metathesis Catalyst Supported on Î ³ -Alumina from First Principles. Journal of Physical Chemistry C, 2019, 123, 1226-1234.	3.1	2
394	Conclusion: Challenges to Computational Catalysis. , 0, , 441-446.		2
395	Back Cover: Optimal Water Coverage on Alumina: A Key to Generate Lewis Acid-Base Pairs that are Reactive Towards the Cï٤¿H Bond Activation of Methane (Angew. Chem. Int. Ed. 14/2011). Angewandte Chemie - International Edition, 2011, 50, 3324-3324.	13.8	1
396	Density Functional Theory as a Key Approach in Surface Chemistry and Heterogeneous Catalysis. , 2013, , 405-420.		1

#	Article	IF	CITATIONS
397	QMX: A versatile environment for hybrid calculations applied to the grafting of Al ₂ Cl ₃ Me ₃ on a silica surface. Journal of Computational Chemistry, 2013, 34, 1155-1163.	3.3	1
398	<i>ACS Catalysis</i> Appoints Takashi Ooi as Associate Editor and Posts Virtual Special Issue on Theory and Computation in Catalysis. ACS Catalysis, 2015, 5, 3027-3027.	11.2	1
399	A Salute to My Colleague Yves Chauvin, 1930–2015. ACS Catalysis, 2015, 5, 2115-2115.	11.2	1
400	Theoretical Treatment of Surfaces in Equilibrium with Gases. , 2018, , 684-698.		1
401	Revisiting the Link between Magnetic Properties and Chemisorption at Graphene Nanoribbon Zigzag Edge. Journal of Chemical Physics, 2022, 156, 044706.	3.0	1
402	Thermal excitation of CO–Pt on the (2×1) Pt {110} surface: a theoretical simulation of a variable-temperature STM contrast. Chemical Physics Letters, 2003, 382, 41-47.	2.6	0
403	NanoCluster heterogeneous catalysts: Insights from theory. , 2021, , .		0
404	Rücktitelbild: Impact of Organic Templates on the Selective Formation of Zeolite Oligomers (Angew.) Tj ETQqC	0.0 rgBT	/Oyerlock 10

405	Stress, strain and chemical reactivity. , 2001, , 155-171.	0
406	Control of Intramolecular Interferences Through Benzene and Cyclophane Using Donor and Acceptor Groups. , 1990, , 531-543.	0
407	How can Scanning Tunneling Microscopy, Coupled with Theory, Help us Undestand Some Elementary Steps in Catalysis?. , 1993, , 305-311.	0