Roger Y Tam

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6435022/publications.pdf Version: 2024-02-01

ROCEP Y TAM

#	Article	IF	CITATIONS
1	Hollow-fiber bioreactor production of extracellular vesicles from human bone marrow mesenchymal stromal cells yields nanovesicles that mirrors the immuno-modulatory antigenic signature of the producer cell. Stem Cell Research and Therapy, 2021, 12, 127.	5.5	55
2	Resolving Isomeric Structures of Native Glycans by Nanoflow Porous Graphitized Carbon Chromatography–Mass Spectrometry. Analytical Chemistry, 2020, 92, 14038-14046.	6.5	32
3	Abstract 6316: High throughput small molecule screening with synthetic 3D lung-mimetic hydrogels in the rare lung cancer lymphangioleiomyomatosis. , 2020, , .		0
4	Benchmarking to the Gold Standard: Hyaluronanâ€Oxime Hydrogels Recapitulate Xenograft Models with In Vitro Breast Cancer Spheroid Culture. Advanced Materials, 2019, 31, e1901166.	21.0	51
5	Rationally Designed 3D Hydrogels Model Invasive Lung Diseases Enabling Highâ€Content Drug Screening. Advanced Materials, 2019, 31, e1806214.	21.0	45
6	Photo-immobilized EGF chemical gradients differentially impact breast cancer cell invasion and drug response in defined 3D hydrogels. Biomaterials, 2018, 178, 751-766.	11.4	56
7	Diels–Alder Click-Cross-Linked Hydrogels with Increased Reactivity Enable 3D Cell Encapsulation. Biomacromolecules, 2018, 19, 926-935.	5.4	133
8	Muscle stem cell intramuscular delivery within hyaluronan methylcellulose improves engraftment efficiency and dispersion. Biomaterials, 2018, 173, 34-46.	11.4	34
9	Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models. Accounts of Chemical Research, 2017, 50, 703-713.	15.6	135
10	Independently Tuning the Biochemical and Mechanical Properties of 3D Hyaluronan-Based Hydrogels with Oxime and Diels–Alder Chemistry to Culture Breast Cancer Spheroids. Biomacromolecules, 2017, 18, 4373-4384.	5.4	71
11	Human Pluripotent Stem Cell–Derived <i>TSC2</i> -Haploinsufficient Smooth Muscle Cells Recapitulate Features of Lymphangioleiomyomatosis. Cancer Research, 2017, 77, 5491-5502.	0.9	29
12	Transparent Porous Polysaccharide Cryogels Provide Biochemically Defined, Biomimetic Matrices for Tunable 3D Cell Culture. Chemistry of Materials, 2016, 28, 3762-3770.	6.7	47
13	6-Bromo-7-hydroxy-3-methylcoumarin (mBhc) is an efficient multi-photon labile protecting group for thiol caging and three-dimensional chemical patterning. Organic and Biomolecular Chemistry, 2016, 14, 8289-8300.	2.8	24
14	Combination of a peptide-modified gellan gum hydrogel with cell therapy in a lumbar spinal cord injury animal model. Biomaterials, 2016, 105, 38-51.	11.4	68
15	Hyaluronic Acidâ€Based Hydrogels Enable Rod Photoreceptor Survival and Maturation In Vitro through Activation of the mTOR Pathway. Advanced Functional Materials, 2016, 26, 1975-1985.	14.9	27
16	Hybrid Crosslinked Methylcellulose Hydrogel: A Predictable and Tunable Platform for Local Drug Delivery. Advanced Materials, 2015, 27, 5002-5008.	21.0	120
17	Innovative use of the taxol binding peptide overcomes key challenges of stable and high drug loading in polymeric nanomicelles. Chemical Communications, 2015, 51, 12000-12003.	4.1	8
18	Regenerative Therapies for Central Nervous System Diseases: a Biomaterials Approach. Neuropsychopharmacology, 2014, 39, 169-188.	5.4	248

Roger Y Tam

#	Article	IF	CITATIONS
19	Tissue Mimetics: Engineered Hydrogel Matrices Provide Biomimetic Environments for Cell Growth. Tissue Engineering - Part A, 2014, 20, 895-898.	3.1	27
20	Generation of the epicardial lineage from human pluripotent stem cells. Nature Biotechnology, 2014, 32, 1026-1035.	17.5	152
21	Modulation of bone marrow mesenchymal stem cell secretome byÂECM-like hydrogels. Biochimie, 2013, 95, 2314-2319.	2.6	54
22	Hyaluronic Acid Click Hydrogels Emulate the Extracellular Matrix. Langmuir, 2013, 29, 7393-7400.	3.5	106
23	Repair of the injured spinal cord by transplantation of neural stem cells in a hyaluronan-based hydrogel. Biomaterials, 2013, 34, 3775-3783.	11.4	224
24	Inhibiting ice recrystallization and optimization of cell viability after cryopreservation. Glycobiology, 2012, 22, 123-133.	2.5	78
25	A covalently modified hydrogel blend of hyaluronan–methyl cellulose with peptides and growth factors influences neural stem/progenitor cell fate. Journal of Materials Chemistry, 2012, 22, 19402.	6.7	90
26	The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/progenitor cell fate. Biomaterials, 2012, 33, 6345-6354.	11.4	129
27	Solution Conformation of C-Linked Antifreeze Glycoprotein Analogues and Modulation of Ice Recrystallization. Journal of the American Chemical Society, 2009, 131, 15745-15753.	13.7	56
28	The Importance of Hydration for Inhibiting Ice Recrystallization with C-Linked Antifreeze Glycoproteins. Journal of the American Chemical Society, 2008, 130, 2928-2929.	13.7	109
29	Hydration Indexî—, A Better Parameter for Explaining Small Molecule Hydration in Inhibition of Ice Recrystallization, Journal of the American Chemical Society, 2008, 130, 17494-17501.	13.7	88