Yun Chi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6434882/publications.pdf Version: 2024-02-01

	8732	13338
22,974	75	130
citations	h-index	g-index
421	421	12602
docs citations	times ranked	citing authors
	citations 421	22,974 75 citations h-index 421 421

Уны Сні

#	Article	IF	CITATIONS
1	Efficient Pyrazolo[5,4â€ <i>f</i>]quinoxaline Functionalized Os(II) Based Emitter with an Electroluminescence Peak Maximum at 811â€nm. Chemistry - A European Journal, 2022, 28, e202103202.	1.7	7
2	Nearâ€Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metalâ€Free Photosensitizer for Twoâ€Photonâ€Activated Photodynamic Therapy at the Cell and Small Animal Levels. Small, 2022, 18, e2106215.	5.2	61
3	Nearâ€Infrared Thermally Activated Delayed Fluorescence Nanoparticle: A Metalâ€Free Photosensitizer for Twoâ€Photonâ€Activated Photodynamic Therapy at the Cell and Small Animal Levels (Small 6/2022). Small, 2022, 18, .	5.2	0
4	Stepwise Access of Emissive Ir(III) Complexes Bearing a Multi-Dentate Heteroaromatic Chelate: Fundamentals and Applications. Inorganic Chemistry, 2022, 61, 4384-4393.	1.9	3
5	Iridium(III) Phosphors–Bearing Functional 9â€Phenylâ€7,9â€dihydroâ€8Hâ€purinâ€8â€ylidene Chelates and Blu Hyperphosphorescent OLED Devices. Advanced Photonics Research, 2022, 3, .	1e 1.7	23
6	Azolateâ€Based Osmium(II) Complexes with Luminescence Spanning Visible and Near Infrared Region. European Journal of Inorganic Chemistry, 2022, 2022, .	1.0	12
7	Efficient Blue Electrophosphorescence and Hyperphosphorescence Generated by Bis-tridentate Iridium(III) Complexes. Inorganic Chemistry, 2022, 61, 8898-8908.	1.9	18
8	Regioselective Syntheses of Imidazo[4,5- <i>b</i>]pyrazin-2-ylidene-Based Chelates and Blue Emissive Iridium(III) Phosphors for Solution-Processed OLEDs. Inorganic Chemistry, 2022, 61, 8797-8805.	1.9	22
9	Blue Phosphorescence and Hyperluminescence Generated from Imidazo[4,5â€b]pyridinâ€2â€ylideneâ€Based Iridium(III) Phosphors. Advanced Science, 2022, 9, .	5.6	28
10	Nearâ€Infrared OLEDs Based on Functional Pyrazinyl Azolate Os(II) Phosphors and Deuteration. Advanced Optical Materials, 2022, 10, .	3.6	15
11	Constructing deep-blue bis-tridentate Ir(<scp>iii</scp>) phosphors with fluorene-based dianionic chelates. Journal of Materials Chemistry C, 2021, 9, 1318-1325.	2.7	16
12	Rational Tuning of Bis-Tridentate Ir(III) Phosphors to Deep-Blue with High Efficiency and Sub-microsecond Lifetime. ACS Applied Materials & Interfaces, 2021, 13, 15437-15447.	4.0	34
13	21â€2: <i>Invited Paper:</i> Platinum(II) Based Nearâ€Infrared Phosphors for Efficient Organic Lightâ€Emitting Diodes with Peak Wavelength Beyond 800 nm. Digest of Technical Papers SID International Symposium, 2021, 52, 254-256.	0.1	0
14	Revealing the role of 1,2,4-triazolate fragment of blue-emitting bis-tridentate Ir(III) phosphors: photophysical properties, photo-stabilities, and applications. Materials Today Energy, 2021, 20, 100636.	2.5	10
15	High Performance NIR OLEDs with Low Efficiency Rollâ€Off by Leveraging Os(II) Phosphors and Exciplex Coâ€Host. Advanced Functional Materials, 2021, 31, 2102787.	7.8	25
16	Luminescence of Pyrazinyl Pyrazolate Pt(II) Complexes Fine-Tuned by the Solid-State Stacking Interaction. Energy & Fuels, 2021, 35, 19112-19122.	2.5	11
17	38.3: Invited Paper: Platinum(II) Based Phosphors and NIR Organic Light Emitting Diodes. Digest of Technical Papers SID International Symposium, 2021, 52, 486-486.	0.1	0
18	The Observation of Interchain Motion in Self-Assembled Crystalline Platinum(II) Complexes: An Exquisite Case but By No Means the Only One in Molecular Solids. Journal of Physical Chemistry Letters, 2021, 12, 7482-7489.	2.1	3

#	Article	IF	CITATIONS
19	Probing Electron Excitation Characters of Carboline-Based Bis-Tridentate Ir(III) Complexes. Molecules, 2021, 26, 6048.	1.7	3
20	Homoleptic Ir(III) Phosphors with 2-Phenyl-1,2,4-triazol-3-ylidene Chelates for Efficient Blue Organic Light-Emitting Diodes. ACS Applied Materials & Interfaces, 2021, 13, 59023-59034.	4.0	23
21	Boosting Efficiency of Nearâ€Infrared Organic Lightâ€Emitting Diodes with Os(II)â€Based Pyrazinyl Azolate Emitters. Advanced Functional Materials, 2020, 30, 1906738.	7.8	57
22	Roles of Ancillary Chelates and Overall Charges of Bis-tridentate Ir(III) Phosphors for OLED Applications. ACS Applied Materials & Interfaces, 2020, 12, 1084-1093.	4.0	31
23	Iridium(III) Complexes Bearing a Formal Tetradentate Coordination Chelate: Structural Properties and Phosphorescence Fine-Tuned by Ancillaries. Inorganic Chemistry, 2020, 59, 523-532.	1.9	24
24	Interlayer Charge Transfer Coupled with Acoustic Phonon in Organic/Inorganic van der Waals Stacked Heterostructures: Self-Assembled Pt(II) Complex on a PtSe ₂ Monolayer. Journal of Physical Chemistry C, 2020, 124, 25538-25546.	1.5	3
25	Methoxy-substituted bis-tridentate iridium(<scp>iii</scp>) phosphors and fabrication of blue organic light emitting diodes. Journal of Materials Chemistry C, 2020, 8, 13590-13602.	2.7	14
26	Exploiting the Reactivity of Fluorinated 2-Arylpyridines in Pd-Catalyzed C–H Bond Arylation for the Preparation of Bright Emitting Iridium(III) Complexes. Inorganic Chemistry, 2020, 59, 13898-13911.	1.9	8
27	Formation of Excimers in Isoquinolinyl Pyrazolate Pt(II) Complexes: Role of Cooperativity Effects. Inorganic Chemistry, 2020, 59, 18253-18263.	1.9	14
28	Highly Efficient Nearâ€Infrared Electroluminescence up to 800 nm Using Platinum(II) Phosphors. Advanced Functional Materials, 2020, 30, 2002173.	7.8	57
29	Versatile Pt(II) Pyrazolate Complexes: Emission Tuning via Interplay of Chelate Designs and Stacking Assemblies. ACS Applied Materials & Interfaces, 2020, 12, 16679-16690.	4.0	22
30	Overcoming the energy gap law in near-infrared OLEDs by exciton–vibration decoupling. Nature Photonics, 2020, 14, 570-577.	15.6	237
31	Methoxy substituents activated carbazole-based boron dimesityl TADF emitters. Journal of Materials Chemistry C, 2020, 8, 4780-4788.	2.7	28
32	Modulation of Solid‣tate Aggregation of Squareâ€Planar Pt(II) Based Emitters: Enabling Highly Efficient Deepâ€Red/Near Infrared Electroluminescence. Advanced Functional Materials, 2020, 30, 2002494.	7.8	59
33	Novel Ruthenium Sensitizers Designing for Efficient Light Harvesting under Both Sunlight and Ambient Dim Light. Solar Rrl, 2020, 4, 2000046.	3.1	7
34	Realization of Highly Efficient Red Phosphorescence from Bis-Tridentate Iridium(III) Phosphors. Inorganic Chemistry, 2019, 58, 10944-10954.	1.9	33
35	Bisâ€tridentate Ir ^{III} Phosphors Bearing Two Fused Fiveâ€Sixâ€Membered Metallacycles: A Strategy to Improved Photostability of Blue Emitters. Chemistry - A European Journal, 2019, 25, 15375-15386.	1.7	27
36	Near-Infrared Emission Induced by Shortened Pt–Pt Contact: Diplatinum(II) Complexes with Pyridyl Pyrimidinato Cyclometalates. Inorganic Chemistry, 2019, 58, 13892-13901.	1.9	40

#	Article	IF	CITATIONS
37	Ratiometric Tuning of Luminescence: Interplay between the Locally Excited and Interligand Charge-Transfer States in Pyrazolate-Based Boron Compounds. Journal of Physical Chemistry C, 2019, 123, 4022-4028.	1.5	19
38	New Spiroâ€Phenylpyrazole/Dibenzosuberene Derivatives as Holeâ€Transporting Material for Perovskite Solar Cells. Solar Rrl, 2019, 3, 1900143.	3.1	6
39	Functional Pyrimidinyl Pyrazolate Pt(II) Complexes: Role of Nitrogen Atom in Tuning the Solid‣tate Stacking and Photophysics. Advanced Functional Materials, 2019, 29, 1900923.	7.8	56
40	Emissive Iridium(III) Complexes with Phosphorous ontaining Ancillary. Chemical Record, 2019, 19, 1644-1666.	2.9	20
41	Heterobimetallic copper(<scp>i</scp>) complexes bearing both 1,1′-bis(diphenylphosphino)ferrocene and functionalized 3-(2′-pyridyl)-1,2,4-triazole. New Journal of Chemistry, 2019, 43, 4261-4271.	1.4	12
42	Phenyl- and Pyrazolyl-Functionalized Pyrimidine: Versatile Chromophore of Bis-Tridentate Ir(III) Phosphors for Organic Light-Emitting Diodes. Chemistry of Materials, 2019, 31, 6453-6464.	3.2	44
43	Luminescent Diiridium Complexes with Bridging Pyrazolates: Characterization and Fabrication of OLEDs Using Vacuum Thermal Deposition. Advanced Optical Materials, 2018, 6, 1800083.	3.6	34
44	Solar Cells: PtCoFe Nanowire Cathodes Boost Shortâ€Circuit Currents of Ru(II)â€Based Dyeâ€Sensitized Solar Cells to a Power Conversion Efficiency of 12.29% (Adv. Funct. Mater. 3/2018). Advanced Functional Materials, 2018, 28, 1870020.	7.8	0
45	Electroluminescence Stability of Organic Light-Emitting Devices Utilizing a Nondoped Pt-Based Emission Layer. ACS Omega, 2018, 3, 4760-4765.	1.6	5
46	Optically Triggered Planarization of Boryl-Substituted Phenoxazine: Another Horizon of TADF Molecules and High-Performance OLEDs. ACS Applied Materials & Interfaces, 2018, 10, 12886-12896.	4.0	75
47	PtCoFe Nanowire Cathodes Boost Short ircuit Currents of Ru(II)â€Based Dye‧ensitized Solar Cells to a Power Conversion Efficiency of 12.29%. Advanced Functional Materials, 2018, 28, 1703282.	7.8	55
48	Role of the Diphosphine Chelate in Emissive, Chargeâ€Neutral Iridium(III) Complexes. Chemistry - A European Journal, 2018, 24, 624-635.	1.7	12
49	Blue-emitting bis-tridentate Ir(<scp>iii</scp>) phosphors: OLED performances <i>vs.</i> substituent effects. Journal of Materials Chemistry C, 2018, 6, 10486-10496.	2.7	20
50	lsomeric spiro-[acridine-9,9′-fluorene]-2,6-dipyridylpyrimidine based TADF emitters: insights into photophysical behaviors and OLED performances. Journal of Materials Chemistry C, 2018, 6, 10088-10100.	2.7	46
51	Iridium(III) Complexes Bearing Tridentate Chromophoric Chelate: Phosphorescence Fine-Tuned by Phosphine and Hydride Ancillary. Inorganic Chemistry, 2018, 57, 8287-8298.	1.9	21
52	Bisâ€Tridentate Iridium(III) Phosphors with Very High Photostability and Fabrication of Blueâ€Emitting OLEDs. Advanced Science, 2018, 5, 1800846.	5.6	75
53	Emissive bis-tridentate Ir(III) metal complexes: Tactics, photophysics and applications. Coordination Chemistry Reviews, 2017, 346, 91-100.	9.5	130
54	Efficient thermally activated delayed fluorescence of functional phenylpyridinato boron complexes and high performance organic light-emitting diodes. Journal of Materials Chemistry C, 2017, 5, 1452-1462.	2.7	65

#	Article	IF	CITATIONS
55	Luminescent Pt(<scp>ii</scp>) complexes featuring imidazolylidene–pyridylidene and dianionic bipyrazolate: from fundamentals to OLED fabrications. Journal of Materials Chemistry C, 2017, 5, 1420-1435.	2.7	37
56	Pt(II) Complexes with Azolate-containing Bidentate Chelate: Design, Photophysics, and Application. Journal of the Chinese Chemical Society, 2017, 64, 574-588.	0.8	14
57	Bisâ€Tridentate Ir(III) Metal Phosphors for Efficient Deepâ€Blue Organic Lightâ€Emitting Diodes. Advanced Materials, 2017, 29, 1702464.	11.1	117
58	Spiroâ€Phenylpyrazoleâ€9,9′â€Thioxanthene Analogues as Holeâ€Transporting Materials for Efficient Planar Perovskite Solar Cells. Advanced Energy Materials, 2017, 7, 1700823.	10.2	74
59	Performance Characterization of Dye-Sensitized Photovoltaics under Indoor Lighting. Journal of Physical Chemistry Letters, 2017, 8, 1824-1830.	2.1	51
60	Functional Pyrimidineâ€Based Thermally Activated Delay Fluorescence Emitters: Photophysics, Mechanochromism, and Fabrication of Organic Lightâ€Emitting Diodes. Chemistry - A European Journal, 2017, 23, 2858-2866.	1.7	75
61	Anomalously Long-Lasting Blue PhOLED Featuring Phenyl-Pyrimidine Cyclometalated Iridium Emitter. CheM, 2017, 3, 461-476.	5.8	76
62	Spiro-Phenylpyrazole/Fluorene as Hole-Transporting Material for Perovskite Solar Cells. Scientific Reports, 2017, 7, 7859.	1.6	28
63	Bis-tridentate Ru(ii) sensitizers with a spatially encumbered 2,6-dipyrazolylpyridine ancillary ligand for dye-sensitized solar cells. RSC Advances, 2017, 7, 42013-42023.	1.7	13
64	First N-Borylated Emitters Displaying Highly Efficient Thermally Activated Delayed Fluorescence and High-Performance OLEDs. ACS Applied Materials & Interfaces, 2017, 9, 27090-27101.	4.0	54
65	Sky Blue-Emitting Iridium(III) Complexes Bearing Nonplanar Tetradentate Chromophore and Bidentate Ancillary. Inorganic Chemistry, 2017, 56, 10054-10060.	1.9	28
66	Near-infrared organic light-emitting diodes with very high external quantum efficiency and radiance. Nature Photonics, 2017, 11, 63-68.	15.6	494
67	Unprecedented Homoleptic Bisâ€Tridentate Iridium(III) Phosphors: Facile, Scaledâ€Up Production, and Superior Chemical Stability. Advanced Functional Materials, 2017, 27, 1702856.	7.8	53
68	Bisâ€Tridentate Ir(III) Complexes with Nearly Unitary RGB Phosphorescence and Organic Lightâ€Emitting Diodes with External Quantum Efficiency Exceeding 31%. Advanced Materials, 2016, 28, 2795-2800.	11.1	247
69	Room temperature blue phosphorescence: a combined experimental and theoretical study on the bis-tridentate lr(<scp>iii</scp>) metal complexes. Dalton Transactions, 2016, 45, 15364-15373.	1.6	51
70	Metal Complexes with Azolateâ€Functionalized Multidentate Ligands: Tactical Designs and Optoelectronic Applications. Chemistry - A European Journal, 2016, 22, 17892-17908.	1.7	64
71	Triboluminescence and Metal Phosphor for Organic Light-Emitting Diodes: Functional Pt(II) Complexes with Both 2-Pyridylimidazol-2-ylidene and Bipyrazolate Chelates. ACS Applied Materials & Interfaces, 2016, 8, 33888-33898.	4.0	48
72	Phosphorescent PtAu ₂ Complexes with Differently Positioned Carbazole–Acetylide Ligands for Solution-Processed Organic Light-Emitting Diodes with External Quantum Efficiencies of over 20%. ACS Applied Materials & Interfaces, 2016, 8, 20251-20257.	4.0	47

#	Article	IF	CITATIONS
73	Molecularly Engineered Ru(II) Sensitizers Compatible with Cobalt(II/III) Redox Mediators for Dye-Sensitized Solar Cells. Inorganic Chemistry, 2016, 55, 7388-7395.	1.9	21
74	Crystal Organic Lightâ€Emitting Diodes with Perfectly Oriented Nonâ€Doped Ptâ€Based Emitting Layer. Advanced Materials, 2016, 28, 2526-2532.	11.1	206
75	Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Lightâ€Emitting Diodes. Angewandte Chemie, 2016, 128, 3069-3073.	1.6	32
76	Bis-Tridentate Iridium(III) Phosphors Bearing Functional 2-Phenyl-6-(imidazol-2-ylidene)pyridine and 2-(Pyrazol-3-yl)-6-phenylpyridine Chelates for Efficient OLEDs. Organometallics, 2016, 35, 1813-1824.	1.1	63
77	Pt(II) Phosphors Featuring Both Dicarbene and Functional Biazolate Chelates: Synthesis, Luminescent Properties, and Applications in Organic Light-Emitting Diodes. Inorganic Chemistry, 2016, 55, 6394-6404.	1.9	32
78	Pyridyl Pyrrolide Boron Complexes: The Facile Generation of Thermally Activated Delayed Fluorescence and Preparation of Organic Lightâ€Emitting Diodes. Angewandte Chemie - International Edition, 2016, 55, 3017-3021.	7.2	166
79	End-capped "thiophene-free―organic dye for dye-sensitized solar cell: Optimized donor, broadened spectra and enhanced open-circuit voltage. Dyes and Pigments, 2016, 124, 45-52.	2.0	9
80	Plant Growth Absorption Spectrum Mimicking Light Sources. Materials, 2015, 8, 5265-5275.	1.3	33
81	Luminescent Pt(<scp>ii</scp>) complexes bearing dual isoquinolinyl pyrazolates: fundamentals and applications. Dalton Transactions, 2015, 44, 8552-8563.	1.6	44
82	Tunable chromaticity stability in solution-processed organic light emitting devices. Organic Electronics, 2015, 20, 36-42.	1.4	7
83	Ruthenium and Osmium Complexes That Bear Functional Azolate Chelates for Dyeâ€Sensitized Solar Cells. Chemistry - an Asian Journal, 2015, 10, 1098-1115.	1.7	69
84	Blue-emitting heteroleptic Ir(<scp>iii</scp>) phosphors with functional 2,3′-bipyridine or 2-(pyrimidin-5-yl)pyridine cyclometalates. Dalton Transactions, 2015, 44, 14613-14624.	1.6	39
85	Near infrared-emitting tris-bidentate Os(ii) phosphors: control of excited state characteristics and fabrication of OLEDs. Journal of Materials Chemistry C, 2015, 3, 4910-4920.	2.7	52
86	Heteroleptic Ir(<scp>iii</scp>) phosphors with bis-tridentate chelating architecture for high efficiency OLEDs. Journal of Materials Chemistry C, 2015, 3, 3460-3471.	2.7	55
87	Pt(II) Metal Complexes Tailored with a Newly Designed Spiro-Arranged Tetradentate Ligand; Harnessing of Charge-Transfer Phosphorescence and Fabrication of Sky Blue and White OLEDs. Inorganic Chemistry, 2015, 54, 4029-4038.	1.9	87
88	Ir(III)-Based Phosphors with Bipyrazolate Ancillaries; Rational Design, Photophysics, and Applications in Organic Light-Emitting Diodes. Inorganic Chemistry, 2015, 54, 10811-10821.	1.9	36
89	Substituent effect of Ru(ii)-based sensitizers bearing a terpyridine anchor and a pyridyl azolate ancillary for dye sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 18422-18431.	5.2	8
90	Novel spiro-based hole transporting materials for efficient perovskite solar cells. Chemical Communications, 2015, 51, 15518-15521.	2.2	88

#	Article	IF	CITATIONS
91	Efficient Pt(<scp>ii</scp>) emitters assembled from neutral bipyridine and dianionic bipyrazolate: designs, photophysical characterization and the fabrication of non-doped OLEDs. Journal of Materials Chemistry C, 2015, 3, 10837-10847.	2.7	31
92	A new insight into the chemistry of iridium(<scp>iii</scp>) complexes bearing phenyl phenylphosphonite cyclometalate and chelating pyridyl triazolate: the excited-state proton transfer tautomerism via an inter-ligand PO–Hâ <n 2015,="" 44,="" 8406-8418.<="" bond.="" dalton="" hydrogen="" td="" transactions,=""><td>1.6</td><td>10</td></n>	1.6	10
93	Semi-quantitative assessment of the intersystem crossing rate: an extension of the El-Sayed rule to the emissive transition metal complexes. Physical Chemistry Chemical Physics, 2014, 16, 26184-26192.	1.3	108
94	A universal, easy-to-apply light-quality index based on natural light spectrum resemblance. Applied Physics Letters, 2014, 104, 203304.	1.5	27
95	The tunable third-order optical nonlinearities of a diarylethene-zinc phthalocyanine hybrid. Dyes and Pigments, 2014, 102, 251-256.	2.0	8
96	Varying numbers and positions of carboxylate groups on Ru dyes for dye-sensitized solar cells: uptake on TiO2, cell performance and cell stability. RSC Advances, 2014, 4, 10165-10175.	1.7	7
97	Single-emission-layer white organic light-emitting devices: Chromaticity and colour-rendering consideration. Organic Electronics, 2014, 15, 517-523.	1.4	17
98	Engineering of Ru(<scp>ii</scp>) dyes for interfacial and light-harvesting optimization. Dalton Transactions, 2014, 43, 2726-2732.	1.6	21
99	Analyzing nanostructures in mesogenic host–guest systems for polarized phosphorescence. Organic Electronics, 2014, 15, 311-321.	1.4	17
100	Geometrical Isomerism of Ru ^{II} Dyeâ€Sensitized Solar Cell Sensitizers and Effects on Photophysical Properties and Device Performances. ChemPhysChem, 2014, 15, 1207-1215.	1.0	11
101	Structural tuning of ancillary chelate in tri-carboxyterpyridine Ru(ii) sensitizers for dye sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 5418-5426.	5.2	25
102	Os(<scp>ii</scp>) metal phosphors bearing tridentate 2,6-di(pyrazol-3-yl)pyridine chelate: synthetic design, characterization and application in OLED fabrication. Journal of Materials Chemistry C, 2014, 2, 6269.	2.7	34
103	Panchromatic Ru(<scp>ii</scp>) sensitizers bearing single thiocyanate for high efficiency dye sensitized solar cells. Journal of Materials Chemistry A, 2014, 2, 17618-17627.	5.2	53
104	Highly Efficient Dyeâ€Sensitized Solar Cells Based on Panchromatic Ruthenium Sensitizers with Quinolinylbipyridine Anchors. Angewandte Chemie - International Edition, 2014, 53, 178-183.	7.2	107
105	4,4′,5,5′-Tetracarboxy-2,2′-bipyridine Ru(II) Sensitizers for Dye-Sensitized Solar Cells. Inorganic Chemistry 2014, 53, 8593-8599.	['] .1.9	24
106	General application of blade coating to small-molecule hosts for organic light-emitting diode. Synthetic Metals, 2014, 196, 99-109.	2.1	15
107	Metal complexes with pyridyl azolates: Design, preparation and applications. Coordination Chemistry Reviews, 2014, 281, 1-25.	9.5	115
108	Dye sensitized solar cells with cobalt and iodine-based electrolyte: the role of thiocyanate-free ruthenium sensitizers, Journal of Materials Chemistry A, 2014, 2, 19556-19565	5.2	21

#	Article	IF	CITATIONS
109	Thiocyanateâ€Free Ruthenium(II) Sensitizers for Dye‧ensitized Solar Cells Based on the Cobalt Redox Couple. ChemSusChem, 2014, 7, 2930-2938.	3.6	21
110	Os(II) Phosphors with Near-Infrared Emission Induced by Ligand-to-Ligand Charge Transfer Transition. Inorganic Chemistry, 2014, 53, 9366-9374.	1.9	36
111	Design of Os ^{II} â€based Sensitizers for Dyeâ€Sensitized Solar Cells: Influence of Heterocyclic Ancillaries. ChemSusChem, 2013, 6, 1366-1375.	3.6	17
112	Phosphorescent Ir(iii) complexes with both cyclometalate chromophores and phosphine-silanolate ancillary: concurrent conversion of organosilane to silanolate. Dalton Transactions, 2013, 42, 7111.	1.6	40
113	A New Class of Sky-Blue-Emitting Ir(III) Phosphors Assembled Using Fluorine-Free Pyridyl Pyrimidine Cyclometalates: Application toward High-Performance Sky-Blue- and White-Emitting OLEDs. ACS Applied Materials & Interfaces, 2013, 5, 7341-7351.	4.0	90
114	High Open-Circuit Voltages: Evidence for a Sensitizer-Induced TiO2 Conduction Band Shift in Ru(II)-Dye Sensitized Solar Cells. Chemistry of Materials, 2013, 25, 4497-4502.	3.2	37
115	Mechanoluminescent and efficient white OLEDs for Pt(ii) phosphors bearing spatially encumbered pyridinyl pyrazolate chelates. Journal of Materials Chemistry C, 2013, 1, 7582.	2.7	87
116	Harnessing the open-circuit voltage via a new series of Ru(ii) sensitizers bearing (iso-)quinolinyl pyrazolate ancillaries. Energy and Environmental Science, 2013, 6, 859.	15.6	64
117	Thiocyanateâ€Free Ru(II) Sensitizers with a 4,4′â€Dicarboxyvinylâ€2,2′â€bipyridine Anchor for Dyeâ€5ensiti Solar Cells. Advanced Functional Materials, 2013, 23, 2285-2294.	zed 7.8	27
118	Blue-emitting Ir(iii) phosphors with 2-pyridyl triazolate chromophores and fabrication of sky blue- and white-emitting OLEDs. Journal of Materials Chemistry C, 2013, 1, 2639.	2.7	69
119	Engineering of thiocyanate-free Ru(ii) sensitizers for high efficiency dye-sensitized solar cells. Chemical Science, 2013, 4, 2423.	3.7	67
120	Ru(ii) sensitizers bearing dianionic biazolate ancillaries: ligand synergy for high performance dye sensitized solar cells. Journal of Materials Chemistry A, 2013, 1, 7681.	5.2	26
121	Emissive Osmium(II) Complexes with Tetradentate Bis(pyridylpyrazolate) Chelates. Inorganic Chemistry, 2013, 52, 5867-5875.	1.9	54
122	Interface and thickness tuning for blade coated small-molecule organic light-emitting diodes with high power efficiency. Journal of Applied Physics, 2013, 114, 123101.	1.1	11
123	Application of F4TCNQ doped spiro-MeOTAD in high performance solid state dye sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 11689.	1.3	75
124	Origins of device performance in dicarboxyterpyridine Ru(ii) dye-sensitized solar cells. Physical Chemistry Chemical Physics, 2012, 14, 14190.	1.3	24
125	Phenylcarbazole-dipyridyl triazole hybrid as bipolar host material for phosphorescent OLEDs. Journal of Materials Chemistry, 2012, 22, 5410.	6.7	48
126	Phosphorescent OLEDs assembled using Os(ii) phosphors and a bipolar host material consisting of both carbazole and dibenzophosphole oxide. Journal of Materials Chemistry, 2012, 22, 10684.	6.7	53

#	Article	IF	CITATIONS
127	Dye Molecular Structure Device Open-Circuit Voltage Correlation in Ru(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society, 2012, 134, 7488-7496.	6.6	123
128	Stepwise Formation of Iridium(III) Complexes with Monocyclometalating and Dicyclometalating Phosphorus Chelates. Inorganic Chemistry, 2012, 51, 1785-1795.	1.9	14
129	Organic Light-Emitting Diodes: Os(II) Based Green to Red Phosphors: A Great Prospect for Solution-Processed, Highly Efficient Organic Light-Emitting Diodes (Adv. Funct. Mater. 16/2012). Advanced Functional Materials, 2012, 22, 3318-3318.	7.8	1
130	Mechanistic Investigation of Improved Syntheses of Iridium(III)-Based OLED Phosphors. Organometallics, 2012, 31, 4349-4355.	1.1	34
131	Indolo[3,2-b]carbazole/benzimidazole hybrid bipolar host materials for highly efficient red, yellow, and green phosphorescent organic light emitting diodes. Journal of Materials Chemistry, 2012, 22, 8399.	6.7	85
132	A diarylborane-substituted carbazole as a universal bipolar host material for highly efficient electrophosphorescence devices. Journal of Materials Chemistry, 2012, 22, 870-876.	6.7	96
133	Harvesting Highly Electronically Excited Energy to Triplet Manifolds: State-Dependent Intersystem Crossing Rate in Os(II) and Ag(I) Complexes. Journal of the American Chemical Society, 2012, 134, 7715-7724.	6.6	101
134	Ru(ii) sensitizers with a tridentate heterocyclic cyclometalate for dye-sensitized solar cells. Energy and Environmental Science, 2012, 5, 7549.	15.6	53
135	The Empirical Correlation between Hydrogen Bonding Strength and Excited-State Intramolecular Proton Transfer in 2-Pyridyl Pyrazoles. Journal of Physical Chemistry A, 2012, 116, 4438-4444.	1.1	59
136	Theoretical Study of N749 Dyes Anchoring on the (TiO ₂) ₂₈ Surface in DSSCs and Their Electronic Absorption Properties. Journal of Physical Chemistry C, 2012, 116, 16338-16345.	1.5	76
137	Os(II) Based Green to Red Phosphors: A Great Prospect for Solutionâ€Processed, Highly Efficient Organic Lightâ€Emitting Diodes. Advanced Functional Materials, 2012, 22, 3491-3499.	7.8	96
138	Engineering of Osmium(II)â€Based Light Absorbers for Dyeâ€Sensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 5642-5646.	7.2	73
139	Structural tuning intra- versus inter-molecular proton transfer reaction in the excited state. Physical Chemistry Chemical Physics, 2012, 14, 9006.	1.3	27
140	Spiro onfigured Bipolar Host Materials for Highly Efficient Electrophosphorescent Devices. Chemistry - an Asian Journal, 2012, 7, 133-142.	1.7	39
141	N-heterocyclic carbene Pt(ii) complexes from caffeine: synthesis, structures and photoluminescent properties. Dalton Transactions, 2011, 40, 4402.	1.6	43
142	Heteroleptic lr(<scp>iii</scp>) complexes containing both azolate chromophoric chelate and diphenylphosphinoaryl cyclometalates; Reactivities, electronic properties and applications. Dalton Transactions, 2011, 40, 1132-1143.	1.6	44
143	Using a double-doping strategy to prepare a bilayer device architecture for high-efficiency red PhOLEDs. Journal of Materials Chemistry, 2011, 21, 1846-1851.	6.7	26
144	A carbazole–phenylbenzimidazole hybrid bipolar universal host for high efficiency RGB and white PhOLEDs with high chromatic stability. Journal of Materials Chemistry, 2011, 21, 19249.	6.7	49

#	Article	IF	CITATIONS
145	Systematic Investigation of the Metal-Structure–Photophysics Relationship of Emissive d ¹⁰ -Complexes of Group 11 Elements: The Prospect of Application in Organic Light Emitting Devices. Journal of the American Chemical Society, 2011, 133, 12085-12099.	6.6	306
146	Donor–acceptor dyes with fluorine substituted phenylene spacer for dye-sensitized solar cells. Journal of Materials Chemistry, 2011, 21, 1937-1945.	6.7	129
147	A New and Facile Method To Prepare Uniform Hollow MnO/Functionalized mSiO ₂ Core/Shell Nanocomposites. ACS Nano, 2011, 5, 4177-4187.	7.3	130
148	Feeling blue? Blue phosphors for OLEDs. Materials Today, 2011, 14, 472-479.	8.3	153
149	Optimizing blue iridium complex and orange-red osmium complex doping concentrations to improve phosphorescent white organic light emitting diodes. Current Applied Physics, 2011, 11, S175-S178.	1.1	6
150	Harvesting luminescence via harnessing the photophysical properties of transition metal complexes. Coordination Chemistry Reviews, 2011, 255, 2653-2665.	9.5	292
151	Emissive Iridium(III) Diimine Complexes Formed by Double Cyclometalation of Coordinated Triphenylphosphite. Inorganic Chemistry, 2011, 50, 5075-5084.	1.9	25
152	Iridium(III) Complexes of a Dicyclometalated Phosphite Tripod Ligand: Strategy to Achieve Blue Phosphorescence Without Fluorine Substituents and Fabrication of OLEDs. Angewandte Chemie - International Edition, 2011, 50, 3182-3186.	7.2	128
153	Ruthenium(II) Sensitizers with Heteroleptic Tridentate Chelates for Dye ensitized Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 2054-2058.	7.2	199
154	Tris(thiocyanate) Ruthenium(II) Sensitizers with Functionalized Dicarboxyterpyridine for Dye‧ensitized Solar Cells. Angewandte Chemie - International Edition, 2011, 50, 8270-8274.	7.2	91
155	Mesomorphism and Luminescence Properties of Platinum(II) Complexes with Tris(alkoxy)phenylâ€Functionalized Pyridyl Pyrazolate Chelates. Chemistry - A European Journal, 2011, 17, 546-556.	1.7	71
156	Polarized phosphorescent organic light-emitting devices adopting mesogenic host–guest systems. Organic Electronics, 2011, 12, 15-21.	1.4	46
157	Power Efficiency Improvement of White Phosphorescent Organic Light-Emitting Diode with Thin Double-Emitting Layers and Hole-Trapping Mechanism. Japanese Journal of Applied Physics, 2011, 50, 04DK04.	0.8	4
158	Power Efficiency Improvement of White Phosphorescent Organic Light-Emitting Diode with Thin Double-Emitting Layers and Hole-Trapping Mechanism. Japanese Journal of Applied Physics, 2011, 50, 04DK04.	0.8	9
159	Transition-metal phosphors with cyclometalating ligands: fundamentals and applications. Chemical Society Reviews, 2010, 39, 638-655.	18.7	1,222
160	Homoleptic Tris(Pyridyl Pyrazolate) Ir ^{III} Complexes: En Route to Highly Efficient Phosphorescent OLEDs. Chemistry - A European Journal, 2010, 16, 4315-4327.	1.7	53
161	High-color-rendering pure-white phosphorescent organic light-emitting devices employing only two complementary colors. Organic Electronics, 2010, 11, 266-272.	1.4	72
162	Efficient phosphorescent white OLEDs with high color rendering capability. Organic Electronics, 2010, 11, 412-418.	1.4	83

#	Article	IF	CITATIONS
163	Donor–acceptor organic sensitizers assembled with isoxazole or its derivative 3-oxopropanenitrile. Tetrahedron, 2010, 66, 4223-4229.	1.0	50
164	Luminescent homodinuclear copper(I) halide complexes based on the 3,5-bis{6-(2,2′-dipyridyl)}pyrazole ligand. Inorganic Chemistry Communication, 2010, 13, 1057-1060.	1.8	39
165	Excited-State Intramolecular Proton Transfer (ESIPT) Fine Tuned by Quinolineâ^'Pyrazole Isomerism: ï€-Conjugation Effect on ESIPT. Journal of Physical Chemistry A, 2010, 114, 7886-7891.	1.1	67
166	New Series of Ruthenium(II) and Osmium(II) Complexes Showing Solid-State Phosphorescence in Far-Visible and Near-Infrared. Inorganic Chemistry, 2010, 49, 823-832.	1.9	42
167	Mono- versus Dinuclear Pt(II) 6-(5-Trifluoromethyl-Pyrazol-3-yl)-2,2′-Bipyridine Complexes: Synthesis, Characterization, and Remarkable Difference in Luminescent Properties. Inorganic Chemistry, 2010, 49, 1372-1383.	1.9	49
168	Phosphorescent Ir(iii) complexes bearing double benzyldiphenylphosphine cyclometalates; strategic synthesis, fundamental and integration for white OLED fabrication. Journal of Materials Chemistry, 2010, 20, 7682.	6.7	67
169	Organic dyes with remarkably high absorptivity; all solid-state dye sensitized solar cell and role of fluorine substitution. Chemical Communications, 2010, 46, 5256.	2.2	88
170	Development of thiocyanate-free, charge-neutral Ru(ii) sensitizers for dye-sensitized solar cells. Chemical Communications, 2010, 46, 5124.	2.2	115
171	Diphenyl(1-naphthyl)phosphine Ancillary for Assembling of Red and Orange-Emitting Ir(III) Based Phosphors; Strategic Synthesis, Photophysics, and Organic Light-Emitting Diode Fabrication. Inorganic Chemistry, 2010, 49, 8713-8723.	1.9	60
172	Rational Design of Chargeâ€Neutral, Nearâ€Infraredâ€Emitting Osmium(II) Complexes and OLED Fabrication. Advanced Functional Materials, 2009, 19, 2639-2647.	7.8	147
173	Highly Efficient Polymer Whiteâ€Lightâ€Emitting Diodes Based on Lithium Salts Doped Electron Transporting Layer. Advanced Materials, 2009, 21, 361-365.	11.1	160
174	En Route to High External Quantum Efficiency (â^¼12%), Organic Trueâ€Blueâ€Lightâ€Emitting Diodes Employi Novel Design of Iridium (III) Phosphors. Advanced Materials, 2009, 21, 2221-2225.	ng _{11.1}	195
175	Efficient red electrophosphorescence from a fluorene-based bipolar host material. Organic Electronics, 2009, 10, 871-876.	1.4	104
176	Efficient phosphorescent white organic light-emitting devices incorporating blue iridium complex and multifunctional orange–red osmium complex. Organic Electronics, 2009, 10, 1235-1240.	1.4	53
177	Platinum(II) complexes with spatially encumbered chelates; syntheses, structure and photophysics. Inorganica Chimica Acta, 2009, 362, 4734-4739.	1.2	23
178	Efficient iridium(III) based, true-blue emitting phosphorescent OLEDS employing both double emission and double buffer layers. Organic Electronics, 2009, 10, 1364-1371.	1.4	44
179	Electrochemiluminescence studies of phosphine chelated osmium(II) complexes. Inorganic Chemistry Communication, 2009, 12, 378-381.	1.8	14
180	Syntheses, Photophysics, and Application of Iridium(III) Phosphorescent Emitters for Highly Efficient, Longâ€Life Organic Lightâ€Emitting Diodes. Chemistry - an Asian Journal, 2009, 4, 742-753.	1.7	36

#	Article	IF	CITATIONS
181	Authentic-Blue Phosphorescent Iridium(III) Complexes Bearing Both Hydride and Benzyl Diphenylphosphine; Control of the Emission Efficiency by Ligand Coordination Geometry. Inorganic Chemistry, 2009, 48, 8164-8172.	1.9	60
182	Photophysics of Heteroleptic Iridium(III) Complexes Of Current Interest; a Closer Look on Relaxation Dynamics. Inorganic Chemistry, 2009, 48, 6501-6508.	1.9	43
183	Neutral, panchromatic Ru(ii) terpyridine sensitizers bearing pyridine pyrazolate chelates with superior DSSC performance. Chemical Communications, 2009, , 5844.	2.2	96
184	Blue to True-Blue Phosphorescent Ir ^{III} Complexes Bearing a Nonconjugated Ancillary Phosphine Chelate: Strategic Synthesis, Photophysics, and Device Integration. ACS Applied Materials & Interfaces, 2009, 1, 433-442.	4.0	64
185	Blue-emitting Ir(iii) phosphors with ancillary 4,6-difluorobenzyl diphenylphosphine based cyclometalate. Dalton Transactions, 2009, , 6472.	1.6	57
186	Strategic design and synthesis of novel tridentate bipyridine pyrazolate coupled Ru(ii) complexes to achieve superior solar conversion efficiency. Journal of Materials Chemistry, 2009, 19, 5329.	6.7	40
187	Iridiumâ€Complexâ€Functionalized Fe ₃ O ₄ /SiO ₂ Core/Shell Nanoparticles: A Facile Threeâ€inâ€One System in Magnetic Resonance Imaging, Luminescence Imaging, and Photodynamic Therapy. Small, 2008, 4, 218-224.	5.2	229
188	Phosphorescent Iridium(III) Complexes with Nonconjugated Cyclometalated Ligands. Chemistry - A European Journal, 2008, 14, 5423-5434.	1.7	84
189	Highly Efficient Blueâ€Emitting Iridium(III) Carbene Complexes and Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2008, 47, 4542-4545.	7.2	382
190	Rational Design of Chelating Phosphine Functionalized Os ^(II) Emitters and Fabrication of Orange Polymer Lightâ€Emitting Diodes Using Solution Process. Advanced Functional Materials, 2008, 18, 183-194.	7.8	45
191	Electrophosphorescent Polyfluorenes Containing Osmium Complexes in the Conjugated Backbone. Advanced Functional Materials, 2008, 18, 1430-1439.	7.8	85
192	Highly Efficient White Polymer Lightâ€Emitting Diodes Based on Nanometerâ€Scale Control of the Electron Injection Layer Morphology through Solvent Processing. Advanced Materials, 2008, 20, 1565-1570.	11.1	97
193	Pt ^{II} Complexes with 6â€(5â€Trifluoromethylâ€Pyrazolâ€3â€yl)â€2,2â€2â€Bipyridine Terdentate Chel Ligands: Synthesis, Characterization, and Luminescent Properties. Chemistry - an Asian Journal, 2008, 3, 2112-2123.	lating 1.7	30
194	Synthesis, Characterization, and Photophysical Properties of Luminescent Gallium and Indium Complexes Constructed using Tridentate 6-Azolyl-2,2′-bipyridine Chelates. Organometallics, 2008, 27, 80-87.	1.1	24
195	Simple organic molecules bearing a 3,4-ethylenedioxythiophene linker for efficient dye-sensitized solar cells. Chemical Communications, 2008, , 5152.	2.2	195
196	Luminescent Osmium(II) Complexes with Functionalized 2-Phenylpyridine Chelating Ligands: Preparation, Structural Analyses, and Photophysical Properties. Inorganic Chemistry, 2008, 47, 3307-3317.	1.9	35
197	An electron-transporting host material compatible with diverse triplet emitters used for highly efficient red- and green-electrophosphorescent devices. Chemical Communications, 2008, , 4956.	2.2	30
198	Emissive Pt(ii) complexes bearing both cyclometalated ligand and 2-pyridyl hexafluoropropoxide ancillary chelate. Dalton Transactions, 2008, , 6901.	1.6	54

#	Article	IF	CITATIONS
199	A solution-processable bipolar molecular glass as a host material for white electrophosphorescent devices. Journal of Materials Chemistry, 2008, 18, 3461.	6.7	54
200	Reactions of the (2-Pyridyl) Pyrrolide Platinum(II) Complex Driven by Sterically Encumbered Chelation: A Model for the Reversible Attack of Alcohol at the Coordinated Carbon Monoxide. Inorganic Chemistry, 2008, 47, 5154-5161.	1.9	22
201	High-efficiency and solution processible multilayer white polymer light-emitting diodes using neutral conjugated surfactant as an electron injection layer. Applied Physics Letters, 2008, 92, 063303.	1.5	33
202	Highly efficient red organic light-emitting devices based on a fluorene-triphenylamine host doped with an Os(II) phosphor. Applied Physics Letters, 2008, 92, 233303.	1.5	44
203	Pâ€212: Architecture Design for Efficient Trueâ€Blue Phosphorescent OLEDs. Digest of Technical Papers SID International Symposium, 2008, 39, 2005-2007.	0.1	1
204	Light Emitting Materials for Organic Electronics. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2008, 21, 357-362.	0.1	0
205	Nonacarbonyl-Tri-μ-Hydrido-μ3 -Methylidyne-Triruthenium and -Triosmium. Inorganic Syntheses, 2007, , 196-208.	0.3	9
206	Alkoxo-bridged Cobalt(II) Cube and Its Radical Adduct. Chemistry Letters, 2007, 36, 1154-1155.	0.7	5
207	64.3: Highâ€Efficiency Phosphorescent White OLEDs Using Redâ€Emitting Osmium Complex and Blueâ€Emitting Iridium Complex. Digest of Technical Papers SID International Symposium, 2007, 38, 1772-1775.	0.1	2
208	Color tuning associated with heteroleptic cyclometalated Ir(iii) complexes: influence of the ancillary ligand. Dalton Transactions, 2007, , 1881.	1.6	110
209	Luminescent Platinum(II) Complexes Containing Isoquinolinyl Indazolate Ligands:  Synthetic Reaction Pathway and Photophysical Properties. Inorganic Chemistry, 2007, 46, 7064-7074.	1.9	79
210	Contemporary progresses on neutral, highly emissive Os(ii) and Ru(ii) complexes. Chemical Society Reviews, 2007, 36, 1421.	18.7	253
211	Highly efficient white-electrophosphorescent devices based on polyfluorene copolymers containing charge-transporting pendent units. Journal of Materials Chemistry, 2007, 17, 167-173.	6.7	38
212	Blue-Emitting Platinum(II) Complexes Bearing both Pyridylpyrazolate Chelate and Bridging Pyrazolate Ligands:  Synthesis, Structures, and Photophysical Properties. Inorganic Chemistry, 2007, 46, 11202-11212.	1.9	107
213	Strategic Design and Synthesis of Osmium(II) Complexes Bearing a Single Pyridyl Azolate Ĩ€-Chromophore:  Achieving High-Efficiency Blue Phosphorescence by Localized Excitation. Inorganic Chemistry, 2007, 46, 10276-10286.	1.9	60
214	Novel host material for highly efficient blue phosphorescent OLEDs. Journal of Materials Chemistry, 2007, 17, 1692.	6.7	138
215	Chiral Fluorous Dialkoxy-Diamino Zirconium Complexes: Synthesis and Use in Stereospecific Polymerization of 1-Hexene. Chemistry - A European Journal, 2007, 13, 923-935.	1.7	43
216	Iridium(I) Pyridyl Azolate Complexes with Saturated Red Metal-to-Ligand Charge Transfer Phosphorescence; Fundamental and Potential Applications in Organic Light-Emitting Diodes. Chemistry - A European Journal, 2007, 13, 2686-2694.	1.7	28

#	Article	IF	CITATIONS
217	Phosphorescent Dyes for Organic Light-Emitting Diodes. Chemistry - A European Journal, 2007, 13, 380-395.	1.7	747
218	Blue-Emitting Heteroleptic Iridium(III) Complexes Suitable for High-Efficiency Phosphorescent OLEDs. Angewandte Chemie - International Edition, 2007, 46, 2418-2421.	7.2	396
219	Monodisperse Starburst Oligofluorene-Functionalized 4,4′,4″-Tris(carbazol-9-yl)-triphenylamines: Their Synthesis and Deep-Blue Fluorescent Properties for Organic Light-Emitting Diode Applications. Advanced Functional Materials, 2007, 17, 1028-1036.	7.8	102
220	New Family of Rutheniumâ€Dye―Sensitized Nanocrystalline TiO ₂ Solar Cells with a High Solarâ€Energyâ€Conversion Efficiency. Advanced Functional Materials, 2007, 17, 2964-2974.	7.8	67
221	Crosslinkable Hole-Transport Layer on Conducting Polymer for High-Efficiency White Polymer Light-Emitting Diodes. Advanced Materials, 2007, 19, 300-304.	11.1	170
222	Probing Pb2+ cation via the iridium based phosphorescent dye. Polyhedron, 2007, 26, 4886-4892.	1.0	48
223	Polyfluorene presenting dipolar pendent groups and its application to electroluminescent devices. Journal of Polymer Science Part A, 2007, 45, 2073-2084.	2.5	22
224	Osmium Complexes with Tridentate 6-Pyrazol-3-yl 2,2′-Bipyridine Ligands: Coarse Tuning of Phosphorescence from the Red to the Near-Infrared Region. Chemistry - an Asian Journal, 2007, 2, 155-163.	1.7	25
225	Iridium-complex modified CdSe/ZnS quantum dots; a conceptual design for bifunctionality toward imaging and photosensitization. Chemical Communications, 2006, , 615.	2.2	68
226	Platinum(II) Complexes with Pyridyl Azolate-Based Chelates:  Synthesis, Structural Characterization, and Tuning of Photo- and Electrophosphorescence. Inorganic Chemistry, 2006, 45, 137-146.	1.9	180
227	Design and synthesis of iridium(iii) azacrown complex: application as a highly sensitive metal cation phosphorescence sensor. Organic and Biomolecular Chemistry, 2006, 4, 98.	1.5	110
228	Neutral Rull-Based Emitting Materials:  A Prototypical Study on Factors Governing Radiationless Transition in Phosphorescent Metal Complexes. Inorganic Chemistry, 2006, 45, 8041-8051.	1.9	48
229	Red Phosphorescent Material Doped in the Hole- and Electron-Transport Layer of Organic Light-Emitting Device. , 2006, , .		0
230	En Route to the Formation of High-Efficiency, Osmium(II)-Based Phosphorescent Materials. Inorganic Chemistry, 2006, 45, 10188-10196.	1.9	46
231	Room-temperature NIR phosphorescence of new iridium (III) complexes with ligands derived from benzoquinoxaline. Canadian Journal of Chemistry, 2006, 84, 309-318.	0.6	64
232	Iridium Metal Thin Films and Patterned IrO2 Nanowires Deposited Using Iridium(I) Carbonyl Precursors. Chemical Vapor Deposition, 2006, 12, 442-447.	1.4	32
233	Osmium―and Rutheniumâ€Based Phosphorescent Materials: Design, Photophysics, and Utilization in OLED Fabrication. European Journal of Inorganic Chemistry, 2006, 2006, 3319-3332.	1.0	233
234	A New Family of Homoleptic Ir(III) Complexes: Tris-Pyridyl Azolate Derivatives with Dual Phosphorescence. ChemPhysChem, 2006, 7, 2294-2297.	1.0	114

#	Article	IF	CITATIONS
235	Orange and Red Organic Light-Emitting Devices Employing Neutral Ru(II) Emitters: Rational Design and Prospects for Color Tuning. Advanced Functional Materials, 2006, 16, 1615-1626.	7.8	130
236	Phosphorescence of red Os(fptz)2(PPh2Me)2 doped organic light-emitting devices with n and p hosts. Applied Physics Letters, 2006, 88, 063508.	1.5	15
237	Efficient white-light-emitting diodes based on poly(N-vinylcarbazole) doped with blue fluorescent and orange phosphorescent materials. Applied Physics Letters, 2006, 88, 251110.	1.5	140
238	61.3: Blue Dopants and New Host Materials for Phosphorescent Organic Light-Emitting Diodes. Digest of Technical Papers SID International Symposium, 2005, 36, 1756.	0.1	0
239	Initial growth of chemical-vapor-deposited Ru from bis(hexafluoroacetylacetonate)dicarbonyl ruthenium. Thin Solid Films, 2005, 483, 31-37.	0.8	10
240	Heteroleptic Cyclometalated Iridium(III) Complexes Displaying Blue Phosphorescence in Solution and Solid State at Room Temperature. Inorganic Chemistry, 2005, 44, 7770-7780.	1.9	210
241	Switching Luminescent Properties in Osmium-Based β-Diketonate Complexes. ChemPhysChem, 2005, 6, 2012-2017.	1.0	88
242	Deposition of Silver Thin Films Using the Pyrazolate Complex [Ag(3,5-(CF3)2C3HN2)]3. Chemical Vapor Deposition, 2005, 11, 206-212.	1.4	39
243	In Search of High-Performance Platinum(II) Phosphorescent Materials for the Fabrication of Red Electroluminescent Devices. Advanced Functional Materials, 2005, 15, 223-229.	7.8	158
244	Rational Color Tuning and Luminescent Properties of Functionalized Boron-Containing 2-Pyridyl Pyrrolide Complexes. Advanced Functional Materials, 2005, 15, 567-574.	7.8	113
245	New Dopant and Host Materials for Blue-Light-Emitting Phosphorescent Organic Electroluminescent Devices. Advanced Materials, 2005, 17, 285-289.	11.1	675
246	Organic Light-Emitting Diodes based on Charge-Neutral Rull Phosphorescent Emitters. Advanced Materials, 2005, 17, 1059-1064.	11.1	158
247	Interplay between Intra- and Interligand Charge Transfer with Variation of the Axial N-Heterocyclic Ligand in Osmium(II) Pyridylpyrazolate Complexes: Extensive Color Tuning by Phosphorescent Solvatochromism. Chemistry - A European Journal, 2005, 11, 6347-6357.	1.7	32
248	New CVD Precursors Capable of Depositing Copper Metal under Mixed O2/Ar Atmosphere ChemInform, 2005, 36, no.	0.1	0
249	Polyfluorene containing diphenylquinoline pendants and their applications in organic light emitting diodes. Journal of Polymer Science Part A, 2005, 43, 859-869.	2.5	36
250	Organic light-emitting diodes based on charge-neutral Os(ii) emitters: generation of saturated red emission with very high external quantum efficiency. Journal of Materials Chemistry, 2005, 15, 460.	6.7	132
251	An Aluminum Complex Supported by a Fluorous Diamino-Dialkoxide Ligand for the Highly Productive Ring-Opening Polymerization of Îμ-Caprolactone. Organometallics, 2005, 24, 6279-6282.	1.1	75
252	Highly Efficient Light-Emitting Diodes Based on Fluorene Copolymer Consisting of Triarylamine Units in the Main Chain and Oxadiazole Pendent Groups. Macromolecules, 2005, 38, 9028-9036.	2.2	137

#	Article	IF	CITATIONS
253	New CVD Precursors Capable of Depositing Copper Metal under Mixed O2/Ar Atmosphere. Inorganic Chemistry, 2005, 44, 7226-7233.	1.9	37
254	Highly Efficient Red-Electrophosphorescent Devices Based on Polyfluorene Copolymers Containing Charge-Transporting Pendant Units. Journal of Physical Chemistry B, 2005, 109, 14000-14005.	1.2	49
255	Highly Efficient Electrophosphorescent Devices with Saturated Red Emission from a Neutral Osmium Complex. Chemistry of Materials, 2005, 17, 3532-3536.	3.2	91
256	Synthesis, Characterization, and Photophysical Properties of Os(II) Diimine Complexes [Os(Nâ^§N)(CO)2I2] (Nâ^§N = Bipyridine, Phenanthroline, and Pyridyl Benzoxazole). Inorganic Chemistry, 2005, 44, 4287-4294.	1.9	60
257	High-efficiency red electrophosphorescent devices based on new osmium(II) complexes. Synthetic Metals, 2005, 155, 56-62.	2.1	24
258	Efficient and bright blue-emitting phosphorescent materials. Journal of the Society for Information Display, 2005, 13, 857-862.	0.8	9
259	Dual Room-Temperature Fluorescent and Phosphorescent Emission in 8-Quinolinolate Osmium(II) Carbonyl Complexes:Â Rationalization and Generalization of Intersystem Crossing Dynamics. Inorganic Chemistry, 2005, 44, 4594-4603.	1.9	56
260	Iridium(III) Complexes with Orthometalated Quinoxaline Ligands:Â Subtle Tuning of Emission to the Saturated Red Color. Inorganic Chemistry, 2005, 44, 1344-1353.	1.9	276
261	Highly efficient red electrophosphorescent devices based on an iridium complex with trifluoromethyl-substituted pyrimidine ligand. Applied Physics Letters, 2004, 85, 1619-1621.	1.5	46
262	Atomic layer deposition of noble metals: Exploration of the low limit of the deposition temperature. Journal of Materials Research, 2004, 19, 3353-3358.	1.2	152
263	Bright and Efficient, Non-Doped, Phosphorescent Organic Red-Light-Emitting Diodes. Advanced Functional Materials, 2004, 14, 1221-1226.	7.8	162
264	Synthesis and Characterization of Tris (\hat{l}^2 -ketoiminato)ruthenium(III) Complexes: Potential Precursors for CVD of Ru and RuO2 Thin Films. Chemical Vapor Deposition, 2004, 10, 149-158.	1.4	15
265	A Remarkable Ligand Orientational Effect in Osmium-Atom-Induced Blue Phosphorescence. Chemistry - A European Journal, 2004, 10, 6255-6264.	1.7	66
266	Transition Metal Carbonyl Compounds. Inorganic Syntheses, 2004, , 96-132.	0.3	34
267	Synthesis and Characterization of Fluorinated Aminoalkoxide and Iminoalkoxide Gallium Complexes: Application in Chemical Vapor Deposition of Ga2O3 Thin Films. Organometallics, 2004, 23, 95-103.	1.1	41
268	Probing Triplet State Properties of Organic Chromophores via Design and Synthesis of Os(II)-Diketonate Complexes:Â The Triplet State Intramolecular Charge Transfer. Journal of Physical Chemistry B, 2004, 108, 19908-19911.	1.2	21
269	C2-Symmetric Fluorous Diamino-Dialkoxide Complexes of Early Transition Metals. Organometallics, 2004, 23, 5450-5458.	1.1	53
270	Highly Efficient Red Phosphorescent Osmium(II) Complexes for OLED Applications. Organometallics, 2004, 23, 3745-3748.	1.1	162

#	Article	IF	CITATIONS
271	Growth of IrO2 Films and Nanorods by Means of CVD: An Example of Compositional and Morphological Control of Nanostructures. Chemical Vapor Deposition, 2003, 9, 301-305.	1.4	35
272	Preparation of Pt–Ru Alloyed Thin Films Using a Single-Source CVD Precursor. Chemical Vapor Deposition, 2003, 9, 157-161.	1.4	14
273	Deposition of Conductive Ru and RuO2 Thin Films Employing a Pyrazolate Complex [Ru(CO)3(3,5-(CF3)2-pz)]2 as the CVD Source Reagent. Chemical Vapor Deposition, 2003, 9, 162-169.	1.4	21
274	Realizing Green Phosphorescent Light-Emitting Materials from Rhenium(I) Pyrazolato Diimine Complexes. Inorganic Chemistry, 2003, 42, 1248-1255.	1.9	188
275	Syntheses and remarkable photophysical properties of 5-(2-pyridyl) pyrazolate boron complexes; photoinduced electron transferElectronic supplementary information (ESI) available: Photophysical experimental details, the spectral data of all boron complexes, and crystal data of 2a. See http://www.rsc.org/suppdata/cc/b3/b309374c/. Chemical Communications. 2003 2628.	2.2	64
276	Synthesis and characterization of luminescent osmium(ii) carbonyl complexes based on chelating dibenzoylmethanate and halide ligandsElectronic supplementary information (ESI) available: experimental details and the spectral data of all isolated Os complexes. See http://www.rsc.org/suppdata/cc/b3/b308340c/. Chemical Communications, 2003, , 3046.	2.2	24
277	Synthesis and Characterization of Metal Complexes Possessing the 5-(2-Pyridyl) Pyrazolate Ligands:Â The Observation of Remarkable Osmium-Induced Blue Phosphorescence in Solution at Room Temperature. Organometallics, 2003, 22, 4938-4946.	1.1	103
278	Excited-State Intramolecular Proton Transfer in Five-Membered Hydrogen-Bonding Systems:Â 2-Pyridyl Pyrazoles. Journal of the American Chemical Society, 2003, 125, 10800-10801.	6.6	164
279	Synthesis and Characterization of Ruthenium Complexes with Two Fluorinated Amino Alkoxide Chelates. The Quest To Design Suitable MOCVD Source Reagents. Chemistry of Materials, 2003, 15, 2454-2462.	3.2	21
280	Growth control and characterization of vertically aligned IrO2 nanorods. Journal of Materials Chemistry, 2003, 13, 2525.	6.7	79
281	Deposition of Ru and RuO2 thin films employing dicarbonyl bis-diketonate ruthenium complexes as CVD source reagents. Journal of Materials Chemistry, 2003, 13, 1999.	6.7	39
282	Synthesis and characterization of fluorinated β-ketoiminate and imino-alcoholate Pd complexes: precursors for palladium chemical vapor deposition. Journal of Materials Chemistry, 2003, 13, 135-142.	6.7	38
283	Fluorinated Aminoalkoxide and Ketoiminate Indium Complexes as MOCVD Precursors for In2O3Thin Film Deposition. Inorganic Chemistry, 2003, 42, 6041-6049.	1.9	46
284	A Study of Unsaturated Pyrazolate-Bridged Diruthenium Carbonyl Complexes. Organometallics, 2002, 21, 4735-4742.	1.1	10
285	Fluorinated aminoalkoxide Cull complexes: new CVD precursors for deposition of copper metal. Journal of Materials Chemistry, 2002, 12, 3541-3550.	6.7	41
286	Deposition of osmium thin films using pyrazolate complexes as CVD source reagents. Journal of Materials Chemistry, 2002, 12, 1363-1369.	6.7	34
287	Deposition of Iridium Thin Films Using New Irl CVD Precursors. Chemical Vapor Deposition, 2002, 8, 17.	1.4	27
288	Preparation and characterization of RuO2 thin films from Ru(CO)2(tmhd)2 by metalorganic chemical vapor deposition. Thin Solid Films, 2002, 413, 85-91.	0.8	25

		run Chi		
#	Article		IF	CITATIONS
289	Alkaline-earth metal fluoroalkoxide complexes with multi-coordinated polyether append and characterization. Inorganica Chimica Acta, 2002, 334, 172-182.	lage: synthesis	1.2	19
290	Preparation and characterization of volatile alkaline-earth metal complexes with multipl coordinated aminoalkoxide ligands. Dalton Transactions RSC, 2001, , 2462-2466.	y	2.3	32
291	Syntheses and Reactivity Studies of the Carbido-Alkylidyne Cluster Complexes LWRu4(μ5-C)(μ-CPh)(CO)12and LWRu5(μ6-C)(μ-CPh)(CO)14, L = Cp and Cp*, C of Acetylide Ligand. Organometallics, 2001, 20, 215-223.	btained from Reversible	Scission	12
292	Syntheses of new ruthenium clusters containing sulfur, ynyl and diynyl ligands. Crystal of [Ru3(CO)9(µ-η2-SCî€,CSiMe3)(µ3-η2-Cî€,CSiMe3)], [Ru4(CO)12(µ4-S)(µ-η2-Cî€			

#	Article	IF	CITATIONS
307	Alkyne–carbide coupling on WOs3 cluster framework; synthesis and X-ray structure of (C5Me5)WOs3(μ4-C)(μ-CHCHR)(CO)10 and (C5Me5)WOs3[μ3-CCR(CH2)](CO)10, R=CH2Ph. Journal of Organometallic Chemistry, 1999, 574, 294-301.	0.8	7
308	Synthesis and Characterization of the Wâ^'Os Heterometallic Complex Os3(CO)10(μ-H)(μ-η3-C(CHPh)C⋮CW(O)2(C5Me5)): Evidence of Hydride Dislocation on a Triosmium Framework by Crystal Polymorphism. Organometallics, 1999, 18, 1675-1679.	1.1	13
309	Synthesis and Characterization of Allyl(β-ketoiminato)palladium(II) Complexes:  New Precursors for Chemical Vapor Deposition of Palladium Thin Films. Organometallics, 1999, 18, 864-869.	1.1	44
310	Reversible coordination of the high oxidation state dioxo-acetylide fragment (C5Me5)W(O)2(CCPh) to a hexaruthenium cluster frame. Journal of Organometallic Chemistry, 1998, 565, 3-10.	0.8	6
311	Synthesis and skeletal isomerization of the phosphinidene acetylide cluster complexes [Ru4(CO)10(μ4-PPh)(CCPh){WL(CO)}] where Lâ€=â€C5Me5 or C5H5. Journal of the Chemical Society Dalto Transactions, 1998, , 1053-1056.	01.1	6
312	Reactivity of the Tetrametallic Carbido Cluster (C5Me5)WOs3(μ4-C)(μ-H)(CO)11with Alkyne: Isomerization of an Allyl Fragment on a Tetrametallic Cluster Framework and Ring-Methyl Activation in the C5Me5Ligand. Organometallics, 1998, 17, 2207-2214.	1.1	13
313	Ligand Exchange in Tungstenâ``Rhenium Acetylide Complexes (C5Me5)WRe(μ-X)(CCPh)(CO)5, X = Br, I, SPh, and O2CMe, and the Conversion to Complexes LWRe(μ-SO2Ph)(CCPh)(CO)5, L = Cp and C5Me5, Bearing a Sulfinate Bridge via Oxidation Using Hydrogen Peroxide. Organometallics, 1998, 17, 438-445.	1.1	9
314	Cluster Compounds Bearing both High- and Low-Valent Transition Metal Fragments:Â The Reactions of Imido Carbonyl Cluster Ru3(CO)10(1¼3-NPh) with Dioxo Acetylide Complexes (C5Me5)W(O)2(CCR), R = Ph and CMeCH2. Organometallics, 1998, 17, 4146-4154.	1.1	10
315	Alkyneâ^'Acetylide Coupling in Cluster Compounds Bearing a Triosmium Carbonyl Os3(CO)8Fragment and a High Oxidation State (C5Me5)W(O)2Unit. Organometallics, 1998, 17, 2970-2976.	1.1	16
316	Coordinatively and Electronically Unsaturated Tetraruthenium Clusters: Reversible Triple CO Addition to Ru4(CO)9(î¼-PPh2)[î¼4-Ph2PCC(Ph)CC(Ph)]. Organometallics, 1998, 17, 2936-2938.	1.1	51
317	Polycarbon Ligand Complexes:  Synthesis, Molecular Structures, and Selected EHMO Studies of Ru4, Ru5, and Ru6 Clusters with Carbon Ligands Derived from Phosphinodiynes. Organometallics, 1998, 17, 2447-2458.	1.1	39
318	Triadic coupling between hydride, acetylide and alkyne on the complex [WRe(η-C5Me5)O(CO)4() Tj ETQq0 0 0 rgE a folded metallacyclopentadienyl fragment. Journal of the Chemical Society Dalton Transactions, 1997, 1931-1936.	BT /Overlo 1.1	ck 10 Tf 50 9
319	Competitive Acetylide Câ^'C Bond Scission vs Formation of a Quadruply Bridging Carbonyl Ligand. X-ray Crystal Structures of the Two Pentanuclear Clusters Cp*3W3Ru2(μ4-C)(μ3-CPh)(CO)9and Cp*3W3Ru2(μ3-CCBut)(CO)9. Organometallics, 1997, 16, 1870-1874.	1.1	16
320	Syntheses and Reactivity of Heterometallic Oxoâ^'Acetylide Cluster Compounds. Skeletal Rearrangement and Conversion of Acetylide to Alkenyl, Alkylidene, and Allenyl Ligands on a WRe2Framework. Organometallics, 1997, 16, 2434-2442.	1.1	8
321	Reversible Câ~'C Bond Cleavage and Interconversion of the Resulting Hydrocarbyl Ligands on Butterfly Frameworks Derived from Acetylide Complexes Cp*WOs3(μ4-CCR)(CO)11 (R = Ph, nBu, CH2OMe, CH2OPh). Organometallics, 1997, 16, 1702-1713.	1.1	22
322	Early High Oxidation Stateâ^'Late Low Oxidation State Mixed-Metal Organometallics:Â Examples of Oxo-Bridged Tungstenâ^'Ruthenium Acetylide Clusters. Organometallics, 1997, 16, 519-521.	1.1	27
323	Stepwise Formation of Heterometallic Cluster Compounds (C5Me5)WRu5(μ6-C)(μ-CCH2Ph)(μ-H)2(CO)13an (C5Me5)WRu5(μ4-C)(μ3-CCH2Ph)(μ-H)4(CO)12from Ru5(μ5-C)(CO)15. Reactivity Studies of Carbido Clust Bearing Acetylide Ligands. Organometallics, 1997, 16, 3523-3530.	d :er.s.	13
324	Synthesis, Characterization, and Reactivity Study of Triosmium Acetylide Cluster Complexes Bearing a (C5Me5)W(O)2Fragment. Organometallics, 1997, 16, 5368-5371.	1.1	17

Yun Chi

#	Article	IF	CITATIONS
325	Synthesis of the First Cluster Complexes Bearing Three Quadruply Bridging CO Ligands:  X-ray Crystal Structure of [C5H3(SiMe3)2]WRu6(μ3-H)- (CO)18. Journal of the American Chemical Society, 1997, 119, 11114-11115.	6.6	10
326	Title is missing!. Journal of Cluster Science, 1997, 8, 507-519.	1.7	5
327	New electron-deficient alkene and alkyne derivatives of Ru5(μ5-C)(CO)15: The syntheses and crystal structure analyses of Ru5(μ5-C)(CO)13 [C2H2(CO2Me)2] and Ru5(μ5-C)(CO)15 [C2(CO2Me)2]. Journal of Cluster Science, 1997, 8, 87-100.	1.7	5
328	Simple and effective synthesis of pentamethylcyclopentadienyl oxo-peroxo and dioxo tungsten acetylide complexes. Journal of Organometallic Chemistry, 1997, 545-546, 151-156.	0.8	16
329	Oxo Ligand Reactivity and Bonding in the Dinuclear Wâ^'Re Oxoâ^'Acetylide Complex (η5-C5Me5)W(O)Re(CO)4(μ-H)(CCPh). Inorganic Chemistry, 1996, 35, 6015-6020.	1.9	18
330	Generation of Oxoâ^'Carbide Clusters from Direct Scission of a Coordinated Carbonyl Ligand:Â Molecular Structures of Cp2W2Ru3(CO)13and Cp*W(O)Cp*WRu3(μ5-C)(CO)11. Journal of the American Chemical Society, 1996, 118, 3289-3290.	6.6	30
331	Coupling of Acetylide Ligands on an Electron-Rich Tetraruthenium Diphosphido Framework:  Synthesis, Structure, and Reactivity Studies of Ru4(CO)9(μ-PPh2)2(C2But)2 and Ru4(CO)8(μ-PPh2)2(C4But2). Organometallics, 1996, 15, 5269-5271.	1.1	57
332	Aurated tungsten-triosmium cluster compounds. Synthesis and characterization ofLWOs3(CO)12(AuPPh3) and related hydrogenation productsLWOs3(CO)11(μ-H)2(AuPPh3),L = C5 H5 and C5 Me5. Journal of Cluster Science, 1996, 7, 85-102.	1.7	3
333	Novel butterfly tungsten-osmium carbido cluster Complexes from the reaction of Os3(CO)10(NCME)2 CPW(CO)3(CH2SMe). Journal of Cluster Science, 1995, 6, 289-309.	1.7	11
334	Heteronuclear Clusters Containing C1, C2, C3, …, C Acyclic Hydrocarbyl Ligands. , 1995, , 85-185.		6
335	Clusters Containing a Quadruply Bridging CO Ligand. Syntheses, Crystal Structures, and Solution Dynamics of CpWRu4(CO)14H and CpMRu4(CO)14H (M = Mo, W). Organometallics, 1995, 14, 4286-4293.	1.1	15
336	Synthesis and Characterization of a (Ketenyl)metal Cluster Complex, an Intermediate in the Oxidative Decarbonation of an Acetylide Ligand. Organometallics, 1995, 14, 2164-2166.	1.1	17
337	Reversible C-C Bond Scission and C-H Bond Activation in the Butterfly Acetylide Clusters Cp*WOs3(CO)11(CCR) (R = Ph, Bu, CH2OMe). Organometallics, 1995, 14, 5483-5485.	1.1	16
338	Reactions of Acetylide Clusters Cp*WRe2(CO)9(CCR) [R = Ph, C(Me):CH2, and Cyclohexenyl] with Thiophenol. Formation of WRe2 Thiolate Alkyne and Vinylalkylidyne Derivatives. Organometallics, 1995, 14, 626-633.	1.1	24
339	Preparation and Structure of Cp*2Ru2(.muCl)(.muX)(C60), X = H and Cl. Novel Dinuclear Fullerene Complexes with and without Direct Ruthenium-Ruthenium Bonding. Organometallics, 1995, 14, 4454-4456.	1.1	67
340	Skeletal Rearrangement and Acetylide Migration in the Butterfly Cluster Complexes with Formula CpWOs3(CO)11(C.tplbond.CCH2OMe). Organometallics, 1995, 14, 4844-4849.	1.1	21
341	Unusual Ligand Transformations and Rearrangements in Heterometallic Clusters. , 1995, , 113-124.		0
342	Synthesis and properties of mixed-metal phosphido and phosphinidene clusters derived from reaction		9

 $342 \qquad \mbox{Synthesis and properties of mixed-metal phosphido and phosphinidene clusters derived from reaction between Ru3(CO)10(14-H)(14-PPh2) and Cpa~... Mo(CO)3H. Journal of Organometallic Chemistry, 1994, 481, 143-152. \qquad 9 \ \mbox{Synthesis and properties of mixed-metal phosphido and phosphinidene clusters derived from reaction between Ru3(CO)10(14-H)(14-PPh2) and Cpa~... Mo(CO)3H. Journal of Organometallic Chemistry, 1994, 481, 143-152. \qquad 9 \ \mbox{Synthesis and properties of mixed-metal phosphido and phosphinidene clusters derived from reaction between Ru3(CO)10(14-H)(14-PPh2) and Cpa~... Mo(CO)3H. Journal of Organometallic Chemistry, 1994, 481, 143-152. \qquad 9 \ \mbox{Synthesis and phosphido and phosphinidene clusters derived from reaction between Ru3(CO)10(14-H)(14-PPh2) and Cpa~... Mo(CO)3H. Journal of Organometallic Chemistry, 1994, 481, 143-152. \qquad 9 \ \mbox{Synthesis and phosphido and ph$

#	Article	IF	CITATIONS
343	Reaction of Heterotrinuclear Vinylacetylide Complexes Cp*WRe2(CO)9(C.tplbond.CR) with Alcohol and Dihydrogen. Formation of WRe2 Allenylidene and Metallacyclopentadienyl Derivatives. Organometallics, 1994, 13, 2365-2374.	1.1	27
344	Characterization of the Oxo-Alkylidyne Complex CpWOs3(CO)10(.muO)(.mu.3-CCH2Tol) Resulting from Acyl Ligand C-O Bond Scission. Interconversion of Alkylidyne, Alkylidene, Vinylidene, and Alkyne Ligand Moieties in a Single Heterometallic Cluster System. Organometallics, 1994, 13, 813-821.	1.1	32
345	Heterometallic carbonyl cluster oxide. Formation, structure and reactivity of WRe2 oxo-acetylide cluster compounds. Journal of the Chemical Society Chemical Communications, 1994, , 1839.	2.0	19
346	Isomerization Involving a Quadruply Bridging Carbonyl Ligand: Dynamics and Crystal Structure of (C5Me5)MoRu3(CO)12H. Organometallics, 1994, 13, 4167-4169.	1.1	19
347	Intermetal Oxo Transfer: Isomerization of Tungsten-Rhenium Carbonyl Complexes Containing Oxo and Acetylide Ligands. Organometallics, 1994, 13, 4652-4654.	1.1	23
348	Reversible Scission of Coordinated Acetylide Ligand: Characterization and Reactivity Studies of WRu4 and WRu5 Carbide-Alkylidyne Clusters. Journal of the American Chemical Society, 1994, 116, 11181-11182.	6.6	31
349	Stoichiometric Alkyne Metathesis at Metal Cluster Compounds: Interconversion of Os3W Alkyne-Alkylidyne and Dimetalloallyl Clusters. Organometallics, 1994, 13, 2142-2144.	1.1	10
350	Synthesis of Unsaturated Os3W2 and Metastable Os4W Oxo-Ethylidyne Clusters by Solid-State Pyrolysis. Direct C-O Bond Cleavage of a Coordinated Ketenyl Ligand. Organometallics, 1994, 13, 1720-1727.	1.1	17
351	Synthesis of Thiolato Heterometalllc Clusters from the Reaction of Os3(CO)9(NCMe)(μ-H)(μ-SMe) with CpW(CO)3H. Journal of the Chinese Chemical Society, 1994, 41, 621-625.	0.8	3
352	Synthesis of Os3W alkylidyne and alkylidene clusters by solid-state pyrolysis; direct C–O bond cleavage of co-ordinated ketenyl ligand. Journal of the Chemical Society Dalton Transactions, 1993, , 1829-1834.	1.1	11
353	Concurrent rearrangement of phenylimido and alkenyl ligands on a WRu2 metal triangle. Journal of the Chemical Society Dalton Transactions, 1993, , 227.	1.1	9
354	Synthesis, crystal structure and solution fluxionality of heterometallic hydride clusters [WRu3L(CO)11(µ-H)2-(AuPPh3)](L = C5H5or C5Me5). Journal of the Chemical Society Dalton Transactions, 1993, , 1823-1828.	1.1	8
355	Fluxional behavior of the .sigma.,.pivinyl complexes Os2[.muCH:C(H)Ph](.muBr)(CO)6-n(PPh3)n (n = 1,) Tj E 1616-1622.	TQq1 1 0.1 1.1	784314 rgB 21
356	High-nuclearity phosphinidene clusters. Synthesis, characterization, and reactivity of two W2Ru4 clusters with a .mu.4eta.2-CO ligand. Organometallics, 1993, 12, 4061-4066.	1.1	17
357	A heteronuclear vinylacetylide cluster as a precursor to allenylidene and metallacyclopentadienyl cluster compounds. X-ray structures of Cp*WRe2(CO)8(.muOMe)(C:C:CMe2) and Cp*WRe2(CO)7(.muH)(CHCHCMeCH). Organometallics, 1993, 12, 250-252.	1.1	14
358	Chemistry of Heterometallic Cluster Compounds Prepared by Condensation of Group 6 Metal Acetylide and Group 8 Binary Carbonyl Complexes. Journal of the Chinese Chemical Society, 1992, 39, 591-601.	0.8	6
359	Synthesis and structural characterization of a novel WRu2 cluster compound possessing a terminal phenylimido ligand. Journal of the Chemical Society Chemical Communications, 1992, , 1705.	2.0	5
360	Unprecedented examples of imido-ligand-assisted alkenyl migration and dissociative intermetallic phosphine migration. Organometallics, 1992, 11, 1763-1766.	1.1	16

#	Article	IF	CITATIONS
361	Synthesis and characterization of the heterometallic phosphinidene clusters (C5Me5)WRu3(CO)10(.mu.3-H)(.mu.3-PPh), (C5H5)WRu2(CO)8(.muH)(.mu.3-PPh), and (C5Me5)WRu2(CO)8(.muH)(.mu.3-PPh). Inorganic Chemistry, 1992, 31, 3818-3824.	1.9	24
362	Ligand substitution reactions in metal cluster complexes. Evidence for unusually facile metal-metal bond cleavages in the reactions of osmium clusters Os3(CO)11(NCMe) and Os3(CO)10(NCMe)2 with CNCF3 including the isolation and structural characterization of intermediates. Journal of the American Chemical Society, 1992, 114, 10822-10826.	6.6	20
363	Opening of metal carbonyl cluster complexes by ligand addition. Synthesis and structural characterization of osmium cluster Os3(CO)11(.muCNCF3)2, a stabilized derivative of the hypothetical complex Os3(CO)13. Journal of the American Chemical Society, 1992, 114, 1909-1910.	6.6	16
364	Clusters containing ynamine ligands. 5. Coordination and transformations of an ynamine ligand in a dimanganese complex. Synthesis and structural characterization of Mn2(CO)8[.muMeC2NEt2], Mn2(CO)8[.muH2CCC(H)NEt2], Mn2(CO)8[.mueta.2-C3H3NEt2], and Mn2(CO)7[.mueta.4-C3H3NEt2]. Organometallics, 1992, 11, 1473-1479.	1.1	18
365	Clusters containing ynamine ligands. 6. Transformations of an ynamine ligand in a dirhenium complex. Synthesis and structural characterization of Re2(CO)8[.muH2CCHCNMe2], Re2(CO)7[.muH2CCCNMe2](.muH), and Re2(CO)8[.muH2C:CCNMe2](.muH). Organometallics, 1992, 11, 1480-1486.	1.1	9
366	Ruthenium and osmium cluster with unusual structures induced by the trifluoromethyl isocyanide ligand. Journal of Fluorine Chemistry, 1992, 58, 258.	0.9	0
367	Chemistry of heterometallic phenyl imido and phosphinidene clusters. Journal of Cluster Science, 1992, 3, 333-345.	1.7	4
368	Synthesis of tetranuclear heterometallic cluster complexes via condensation of triosmium alkyne complexes OS3(CO)10(C2R2), R = Tol and Me, and mononuclear tungsten acetylide complexes	0.8	13
369	Reactions of the mixed-metal clusters prepared from tungsten acetylide complexes; X-ray structural analyses of two novel butterfly clusters with 60 valence electrons. Journal of the Chemical Society Chemical Communications, 1991, , 1019.	2.0	11
370	Preparation of tetranuclear heterometallic clusters by condensation of tungsten acetylides [W(CO)3(CCR)(η-C5H5)] with acetylide clusters [WRu2(CO)8(CCR)L](L =η-C5H5or η-C5Me5, R = Ph or) Tj		rgBT /Overlo
370	[W2Ru2(CO)6(CCPh)2(Î-C5H5)(Î-C5Me5)]. Journal of the Chemical Society Dalton Transactions, 1991, ,	1.1	0
371	21612167 Metal acetylide CpW(CO)3C.tplbond.CPh and hydride CpW(CO)3H complexes as building blocks to prepare tungsten-ruthenium heterometallic clusters. Synthesis, characterization, and crystal structure of CpWRu3(CO)9(.mu.3-COMe)(C:CHPh), Cp2W2Ru3(CO)9[CC(Ph)C(OMe)](C:CHPh), and Cp2W2Ru3(CO)9(COMe)(C.tplbond.CPh). Organometallics, 1991, 10, 2485-2492.	1.1	21
372	Rearrangement of acetylide and vinylidene ligands on the coordination spheres of cluster complexes. Reaction of the trinuclear acetylide cluster CpWOs2(CO)8(C.tplbond.CPh) with mononuclear metal hydride complexes LW(CO)3H (L = Cp, Cp*). Organometallics, 1991, 10, 1676-1682.	1.1	16
373	Reactions of the triosmium complex Os3(CO)10(μ-Br)(CHCHPh) with benzyl isonitrile and triphenylphosphine. Crystal structure and solut fluxionality of the ethenyl derivatives. Journal of Organometallic Chemistry, 1991, 410, 85-99.	0.8	6
374	Cluster assisted formation of carbon-carbon bonds: Synthesis and crystal structures of two trinuclear heterometallic complexes CpWRu2(CO)7(?-H)[OC(NMe2)CCHCHEt] and CpWRu2(CO)6(?-H)[OC(NMe2)CCH(?-?2-C6H4)]. Journal of Cluster Science, 1991, 2, 1-18.	1.7	3
375	Conversion of the cluster core structure via CO elimination and activation of the coordinated hydrocarbon ligand. Synthesis and reactions of WOs3Cp(CO)10(CMeCMeCCPh). Journal of the Chemical Society Chemical Communications, 1991, , 1023.	2.0	9
376	Synthesis and crystal structure of a tetranuclear mixed-metal alkylidene complex CpWOs3(CO)9(l¼-O)(l¼-H)(l¼-CHTol). Polyhedron, 1990, 9, 1491-1495.	1.0	6
377	Synthesis and structure of heterometallic cluster complexes. Reaction of imido complex LWRu2(CO)8(μ-H)(μ3-NPh), L = CP and Cpâ˜, with the tungsten acetylide complex CpW(CO)3Cî—¼CPh. Jou Organometallic Chemistry, 1990, 390, c50-c56.	ur noa sof	16
378	Synthesis and crystal structure of a pentanuclear heterometallic acetylide complex Cp2Mo2Ru3(CO)10(Cî—¼CPh)2. Journal of Organometallic Chemistry, 1990, 389, c7-c11.	0.8	19

#	Article	IF	CITATIONS
379	Regiospecific coupling of coordinated acetylide and disubstituted alkynes. X-ray structures of CpWOs2(CO)7[C(Tol)C(Tol)CCnBu] and CpWOs2(CO)7[C(CF3)C(CF3)CCPh]. Journal of Organometallic Chemistry, 1990, 384, 93-103.	0.8	11
380	Synthesis of the tetranuclear mixed-metal carbido clusters [WRu3L(CO)11(Âμ4-C)(Âμ-H)]via methoxymethylidyne clusters [WRu3L(CO)11(Âμ3-COMe)](L =ÎC5H5or ÎC5Me5). Crystal structures of [WRu3(ÎC5Me5)(CO)11(Âμ3-COMe)] and [WRu3(ÎC5H5)(CO)11(Âμ4-C)(Âμ-H)]. Journal of the Chemical Socie Dalton Transactions, 1990, , 3033-3037.		25
381	Reaction of polynuclear acetylide clusters. Synthesis of pentanuclear heterometallic clusters by addition of [M(CO)3(CCPh)(η-C5H5)] to [MOs3(CO)11(CCPh)(η-C5H5)](M = Mo or W). Crystal structures [Mo2Os3(CO)11(CCPhCCPh)(η-C5H5)2]·2H2O and [MoWOs3(CO)8(µ4-C)-(µ3-CPh)(CCPh)(η-C5H5)2]·CH2 lournal of the Chemical Society Dalton Transactions. 1990. , 3025-3031.	of 2Ct2.	11
382	Rotation of coordinated acetylide ligands on the triangular surface of trinuclear heterometallic clusters. Organometallics, 1990, 9, 2709-2718.	1.1	36
383	Reaction of polynuclear acetylide clusters. Mixed-metal complexes derived from reactions of CpWOs3(CO)11(C.tplbond.CR) (R = Ph, nBu) with disubstituted alkynes. Organometallics, 1990, 9, 2305-2312.	1.1	22
384	Synthesis and characterization of tetranuclear mixed-metal hydride complexes, LWM3(CO)11(μ-H)3, L = C5H5, C5Me5 and M = Ru, OS. Journal of Organometallic Chemistry, 1989, 378, 45-56.	0.8	15
385	Competitive addition and substitution reactions in the interaction of CpWOs3(CO)9(μ-O)(μ3-CCH2Tol) with phosphorus donors. The crystal structure of CpWOs3(CO)8(PPh2Me)(μ-O)(μ3-CCH2Tol). Journal of Organometallic Chemistry, 1989, 372, 273-285.	0.8	9

 $_{\rm 386}$ $\,$ The site selectivity of hydridge ligand in tungsten-triosmium clusters: the crystal structure and the

#	Article	IF	CITATIONS
397	Photochemical preparation of transition-metal carbonyl compounds with 1,1,2,2-tetrafluoro-1,2-disilacyclobutenes as ligands. Inorganic Chemistry, 1981, 20, 3456-3460.	1.9	15
398	Crystal and molecular structure of (1,1,4,4-tetrafluoro-2-tert-butyl-1,4-disilabut-2-ene)molybdenum(II) pentacarbonyl. Inorganic Chemistry, 1981, 20, 199-204.	1.9	18
399	Pyridyl Azolate Based Luminescent Complexes: Strategic Design, Photophysics, and Applications. , 0, , 185-220.		0