Anders Thygesen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6434244/publications.pdf

Version: 2024-02-01

54 papers

3,065 citations

172457 29 h-index 51 g-index

54 all docs 54 docs citations

54 times ranked 3961 citing authors

#	Article	IF	CITATIONS
1	Cell wall configuration and ultrastructure of cellulose crystals in green seaweeds. Cellulose, 2021, 28, 2763-2778.	4.9	6
2	Valorization of municipal organic waste into purified lactic acid. Bioresource Technology, 2021, 342, 125933.	9.6	19
3	Microstructural and carbohydrate compositional changes induced by enzymatic saccharification of green seaweed from West Africa. Algal Research, 2020, 47, 101894.	4.6	7
4	Direct separation of acetate and furfural from xylose by nanofiltration of birch pretreated liquor: Effect of process conditions and separation mechanism. Separation and Purification Technology, 2020, 239, 116546.	7.9	12
5	A biorefinery approach to bioethanol and bioelectricity co-production from tropical seaweeds. Journal of Applied Phycology, 2019, 31, 3899-3913.	2.8	18
6	Effective production of succinic acid from coconut water (Cocos nucifera) by metabolically engineered Escherichia coli with overexpression of Bacillus subtilis pyruvate carboxylase. Biotechnology Reports (Amsterdam, Netherlands), 2019, 24, e00378.	4.4	14
7	Green seaweeds (Ulva fasciata sp.) as nitrogen source for fungal cellulase production. World Journal of Microbiology and Biotechnology, 2019, 35, 82.	3.6	8
8	Systematically redesigning and optimizing the expression of D-lactate dehydrogenase efficiently produces high-optical-purity D-lactic acid in Saccharomyces cerevisiae. Biochemical Engineering Journal, 2019, 144, 217-226.	3.6	9
9	Elucidating field retting mechanisms of hemp fibres for biocomposites: Effects of microbial actions and interactions on the cellular micro-morphology and ultrastructure of hemp stems and bast fibres. BioResources, 2019, 14, 4047-4084.	1.0	15
10	Enzymatic production of wheat and ryegrass derived xylooligosaccharides and evaluation of their in vitro effect on pig gut microbiota. Biomass Conversion and Biorefinery, 2018, 8, 497-507.	4.6	17
11	Efficient One-Step Fusion PCR Based on Dual-Asymmetric Primers and Two-Step Annealing. Molecular Biotechnology, 2018, 60, 92-99.	2.4	6
12	Seaweed Bioethanol Production: A Process Selection Review on Hydrolysis and Fermentation. Fermentation, 2018, 4, 99.	3.0	75
13	Cellulase production by white-rot basidiomycetous fungi: solid-state versus submerged cultivation. Applied Microbiology and Biotechnology, 2018, 102, 5827-5839.	3.6	39
14	Green synthesis of gold and silver nanoparticles from Cannabis sativa (industrial) Tj ETQq0 13, 3571-3591.	0 0 rgBT / 6.7	Overlock 10 165
15	Enhanced production of succinic acid from methanol–organosolv pretreated Strophanthus preussii by recombinant Escherichia coli. Bioprocess and Biosystems Engineering, 2018, 41, 1497-1508.	3.4	7
16	Oxidation of lignin in hemp fibres by laccase: Effects on mechanical properties of hemp fibres and unidirectional fibre/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2017, 95, 377-387.	7.6	27
17	Comparison of traditional field retting and Phlebia radiata Cel 26 retting of hemp fibres for fibre-reinforced composites. AMB Express, 2017, 7, 58.	3.0	38
18	Targeted pre-treatment of hemp bast fibres for optimal performance in biocomposite materials: A review. Industrial Crops and Products, 2017, 108, 660-683.	5.2	126

#	Article	IF	Citations
19	A Viable Electrode Material for Use in Microbial Fuel Cells for Tropical Regions. Energies, 2016, 9, 35.	3.1	19
20	Cathode Assessment for Maximizing Current Generation in Microbial Fuel Cells Utilizing Bioethanol Effluent as Substrate. Energies, 2016, 9, 388.	3.1	4
21	PCR-Based Seamless Genome Editing with High Efficiency and Fidelity in Escherichia coli. PLoS ONE, 2016, 11, e0149762.	2.5	9
22	Effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of unidirectional hemp/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2016, 90, 724-735.	7.6	63
23	Controlled retting of hemp fibres: Effect of hydrothermal pre-treatment and enzymatic retting on the mechanical properties of unidirectional hemp/epoxy composites. Composites Part A: Applied Science and Manufacturing, 2016, 88, 253-262.	7.6	51
24	Inocula selection in microbial fuel cells based on anodic biofilm abundance of Geobacter sulfurreducens. Chinese Journal of Chemical Engineering, 2016, 24, 379-387.	3.5	13
25	Characterization of cellulose fibers by powder diffraction. Acta Crystallographica Section A: Foundations and Advances, 2015, 71, s508-s508.	0.1	0
26	Effect of harvest time and field retting duration on the chemical composition, morphology and mechanical properties of hemp fibers. Industrial Crops and Products, 2015, 69, 29-39.	5.2	141
27	Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization. Applied Microbiology and Biotechnology, 2015, 99, 4905-4915.	3.6	46
28	Characterization and biological depectinization of hemp fibers originating from different stem sections. Industrial Crops and Products, 2015, 76, 880-891.	5.2	51
29	Thermostability enhancement of an endo-1,4- \hat{l}^2 -galactanase from Talaromyces stipitatus by site-directed mutagenesis. Applied Microbiology and Biotechnology, 2015, 99, 4245-4253.	3.6	20
30	The significance of the initiation process parameters and reactor design for maximizing the efficiency of microbial fuel cells. Applied Microbiology and Biotechnology, 2014, 98, 2415-2427.	3.6	31
31	Bio-oil Treated by Cultivation of Saccharomyces cerevisiae (QH01). BioResources, 2014, 9, .	1.0	2
32	Bio-oil based biorefinery strategy for the production of succinic acid. Biotechnology for Biofuels, 2013, 6, 74.	6.2	39
33	Pretreatment of the macroalgae Chaetomorpha linum for the production of bioethanol – Comparison of five pretreatment technologies. Bioresource Technology, 2013, 140, 36-42.	9.6	122
34	Electric power generation by a submersible microbial fuel cell equipped with a membrane electrode assembly. Bioresource Technology, 2012, 118, 412-417.	9.6	28
35	SSF Fermentation of Rape Straw and the Effects of Inhibitory Stress on Yeast., 2012,,.		2
36	Mechanical processing of bast fibres: The occurrence of damage and its effect on fibre structure. Industrial Crops and Products, 2012, 39, 7-11.	5.2	61

#	Article	IF	CITATIONS
37	Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate. Biomass and Bioenergy, 2011, 35, 4732-4739.	5.7	44
38	Cellulosic Fibers: Effect of Processing on Fiber Bundle Strength. Journal of Natural Fibers, 2011, 8, 161-175.	3.1	51
39	Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC). Applied Microbiology and Biotechnology, 2011, 89, 855-865.	3.6	29
40	Anaerobic digestion of waste activated sludge-comparison of thermal pretreatments with thermal inter-stage treatments. Journal of Chemical Technology and Biotechnology, 2011, 86, 238-245.	3.2	54
41	Integration of Microbial Electrolysis Cells (MECs) in the Biorefinery for Production of Ethanol, H2 and Phenolics. Waste and Biomass Valorization, 2010, 1, 9-20.	3.4	31
42	Plant fibre composites – porosity and stiffness. Composites Science and Technology, 2009, 69, 1057-1069.	7.8	136
43	Identification and characterization of fermentation inhibitors formed during hydrothermal treatment and following SSF of wheat straw. Applied Microbiology and Biotechnology, 2009, 83, 447-455.	3.6	97
44	The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresource Technology, 2009, 100, 1186-1191.	9.6	89
45	Hydrothermal treatment of wheat straw at pilot plant scale using a three-step reactor system aiming at high hemicellulose recovery, high cellulose digestibility and low lignin hydrolysis. Bioresource Technology, 2008, 99, 4221-4228.	9.6	155
46	Effects of thermal and enzymatic treatments and harvesting time on the microbial quality and chemical composition of fibre hemp (Cannabis sativa L.). Biomass and Bioenergy, 2008, 32, 392-399.	5.7	36
47	Plant fibre composites – porosity and volumetric interaction. Composites Science and Technology, 2007, 67, 1584-1600.	7.8	111
48	Comparison of composites made from fungal defibrated hemp with composites of traditional hemp yarn. Industrial Crops and Products, 2007, 25, 147-159.	5.2	49
49	Hemp Fiber Microstructure and Use of Fungal Defibration to Obtain Fibers for Composite Materials. Journal of Natural Fibers, 2006, 2, 19-37.	3.1	59
50	Effects of chemical–physical pre-treatment processes on hemp fibres for reinforcement of composites and for textiles. Industrial Crops and Products, 2006, 24, 113-118.	5.2	72
51	Preliminary Results on Optimization of Pilot Scale Pretreatment of Wheat Straw Used in Coproduction of Bioethanol and Electricity., 2006, 129-132, 448-460.		28
52	On the determination of crystallinity and cellulose content in plant fibres. Cellulose, 2005, 12, 563-576.	4.9	614
53	Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw. Enzyme and Microbial Technology, 2003, 32, 606-615.	3.2	91
54	Crystal structure of Methanobacterium thermoautotrophicum conserved protein MTH1020 reveals an NTN-hydrolase fold. Proteins: Structure, Function and Bioinformatics, 2002, 48, 141-143.	2.6	9