
Sameer Velankar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6433994/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 2022, 50, D439-D444.	6.5	3,692
2	Highly accurate protein structure prediction for the human proteome. Nature, 2021, 596, 590-596.	13.7	1,773
3	Protein Data Bank: the single global archive for 3D macromolecular structure data. Nucleic Acids Research, 2019, 47, D520-D528.	6.5	671
4	Protein Data Bank (PDB): The Single Global Macromolecular Structure Archive. Methods in Molecular Biology, 2017, 1607, 627-641.	0.4	592
5	Mol* Viewer: modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Research, 2021, 49, W431-W437.	6.5	515
6	PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nature Methods, 2011, 8, 528-529.	9.0	274
7	EMDataBank.org: unified data resource for CryoEM. Nucleic Acids Research, 2011, 39, D456-D464.	6.5	246
8	SIFTS: Structure Integration with Function, Taxonomy and Sequences resource. Nucleic Acids Research, 2012, 41, D483-D489.	6.5	238
9	Validation of Structures in the Protein Data Bank. Structure, 2017, 25, 1916-1927.	1.6	210
10	Modeling protein–protein and protein–peptide complexes: CAPRI 6th edition. Proteins: Structure, Function and Bioinformatics, 2017, 85, 359-377.	1.5	198
11	SIFTS: updated Structure Integration with Function, Taxonomy and Sequences resource allows 40-fold increase in coverage of structure-based annotations for proteins. Nucleic Acids Research, 2019, 47, D482-D489.	6.5	165
12	Outcome of the First wwPDB Hybrid/Integrative Methods Task Force Workshop. Structure, 2015, 23, 1156-1167.	1.6	159
13	Prediction of homoprotein and heteroprotein complexes by protein docking and templateâ€based modeling: A CASPâ€CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2016, 84, 323-348.	1.5	148
14	LiteMol suite: interactive web-based visualization of large-scale macromolecular structure data. Nature Methods, 2017, 14, 1121-1122.	9.0	137
15	Remediation of the protein data bank archive. Nucleic Acids Research, 2007, 36, D426-D433.	6.5	136
16	UniChem: a unified chemical structure cross-referencing and identifier tracking system. Journal of Cheminformatics, 2013, 5, 3.	2.8	133
17	PDBe: Protein Data Bank in Europe. Nucleic Acids Research, 2014, 42, D285-D291.	6.5	133
18	PDBe: improved accessibility of macromolecular structure data from PDB and EMDB. Nucleic Acids Research, 2016, 44, D385-D395.	6.5	131

SAMEER VELANKAR

#	Article	IF	CITATIONS
19	OneDep: Unified wwPDB System for Deposition, Biocuration, and Validation of Macromolecular Structures in the PDB Archive. Structure, 2017, 25, 536-545.	1.6	130
20	BioJS: an open source JavaScript framework for biological data visualization. Bioinformatics, 2013, 29, 1103-1104.	1.8	110
21	The chemical component dictionary: complete descriptions of constituent molecules in experimentally determined 3D macromolecules in the Protein Data Bank. Bioinformatics, 2015, 31, 1274-1278.	1.8	110
22	PDBe: Protein Data Bank in Europe. Nucleic Acids Research, 2010, 38, D308-D317.	6.5	108
23	The complex portal - an encyclopaedia of macromolecular complexes. Nucleic Acids Research, 2015, 43, D479-D484.	6.5	100
24	Blind prediction of homo―and heteroâ€protein complexes: The CASP13â€CAPRI experiment. Proteins: Structure, Function and Bioinformatics, 2019, 87, 1200-1221.	1.5	99
25	Modeling proteinâ€protein, proteinâ€peptide, and proteinâ€oligosaccharide complexes: CAPRI 7th edition. Proteins: Structure, Function and Bioinformatics, 2020, 88, 916-938.	1.5	96
26	Implementing an X-ray validation pipeline for the Protein Data Bank. Acta Crystallographica Section D: Biological Crystallography, 2012, 68, 478-483.	2.5	88
27	PDBe-KB: a community-driven resource for structural and functional annotations. Nucleic Acids Research, 2020, 48, D344-D353.	6.5	87
28	Community-wide evaluation of methods for predicting the effect of mutations on protein-protein interactions. Proteins: Structure, Function and Bioinformatics, 2013, 81, 1980-1987.	1.5	87
29	PDBe: improved findability of macromolecular structure data in the PDB. Nucleic Acids Research, 2020, 48, D335-D343.	6.5	86
30	The challenge of modeling protein assemblies: the CASP12 APRI experiment. Proteins: Structure, Function and Bioinformatics, 2018, 86, 257-273.	1.5	85
31	PDB-Dev: a Prototype System for Depositing Integrative/Hybrid Structural Models. Structure, 2017, 25, 1317-1318.	1.6	84
32	PDBe: towards reusable data delivery infrastructure at protein data bank in Europe. Nucleic Acids Research, 2018, 46, D486-D492.	6.5	76
33	Prediction of protein assemblies, the next frontier: The <scp>CASP14â€CAPRI</scp> experiment. Proteins: Structure, Function and Bioinformatics, 2021, 89, 1800-1823.	1.5	73
34	PDBe: Protein Data Bank in Europe. Nucleic Acids Research, 2011, 39, D402-D410.	6.5	64
35	Polymyxins and quinazolines are LSD1/KDM1A inhibitors with unusual structural features. Science Advances, 2016, 2, e1601017.	4.7	61
36	Genome3D: a UK collaborative project to annotate genomic sequences with predicted 3D structures based on SCOP and CATH domains. Nucleic Acids Research, 2012, 41, D499-D507.	6.5	53

SAMEER VELANKAR

#	Article	IF	CITATIONS
37	The Protein Data Bank Archive. Methods in Molecular Biology, 2021, 2305, 3-21.	0.4	49
38	The ELIXIR Core Data Resources: fundamental infrastructure for the life sciences. Bioinformatics, 2020, 36, 2636-2642.	1.8	47
39	Announcing mandatory submission of PDBx/mmCIF format files for crystallographic depositions to the Protein Data Bank (PDB). Acta Crystallographica Section D: Structural Biology, 2019, 75, 451-454.	1.1	46
40	PDBe-KB: collaboratively defining the biological context of structural data. Nucleic Acids Research, 2022, 50, D534-D542.	6.5	46
41	Worldwide Protein Data Bank biocuration supporting open access to high-quality 3D structural biology data. Database: the Journal of Biological Databases and Curation, 2018, 2018, .	1.4	45
42	Validation of ligands in macromolecular structures determined by X-ray crystallography. Acta Crystallographica Section D: Structural Biology, 2018, 74, 228-236.	1.1	45
43	Genome3D: exploiting structure to help users understand their sequences. Nucleic Acids Research, 2015, 43, D382-D386.	6.5	42
44	NMR Exchange Format: a unified and open standard for representation of NMR restraint data. Nature Structural and Molecular Biology, 2015, 22, 433-434.	3.6	40
45	PDBx/mmCIF Ecosystem: Foundational Semantic Tools for Structural Biology. Journal of Molecular Biology, 2022, 434, 167599.	2.0	39
46	Unconventional interactions between water and heterocyclic nitrogens in protein structures. Proteins: Structure, Function and Bioinformatics, 2004, 57, 1-8.	1.5	38
47	The impact of structural bioinformatics tools and resources on SARS-CoV-2 research and therapeutic strategies. Briefings in Bioinformatics, 2021, 22, 742-768.	3.2	29
48	The archiving and dissemination of biological structure data. Current Opinion in Structural Biology, 2016, 40, 17-22.	2.6	28
49	Enhanced validation of small-molecule ligands and carbohydrates in the Protein Data Bank. Structure, 2021, 29, 393-400.e1.	1.6	28
50	The Protein Data Bank in Europe (PDBe): bringing structure to biology. Acta Crystallographica Section D: Biological Crystallography, 2011, 67, 324-330.	2.5	27
51	Finding enzyme cofactors in Protein Data Bank. Bioinformatics, 2019, 35, 3510-3511.	1.8	20
52	The EBI enzyme portal. Nucleic Acids Research, 2013, 41, D773-D780.	6.5	19
53	Characterizing and explaining the impact of disease-associated mutations in proteins without known structures or structural homologs. Briefings in Bioinformatics, 2022, 23, .	3.2	18
54	The role of structural bioinformatics resources in the era of integrative structural biology. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 710-721.	2.5	17

SAMEER VELANKAR

#	Article	IF	CITATIONS
55	Modernized uniform representation of carbohydrate molecules in the Protein Data Bank. Glycobiology, 2021, 31, 1204-1218.	1.3	17
56	Patterns of database citation in articles and patents indicate long-term scientific and industry value of biological data resources. F1000Research, 2016, 5, 160.	0.8	16
57	Worldwide Protein Data Bank validation information: usage and trends. Acta Crystallographica Section D: Structural Biology, 2018, 74, 237-244.	1.1	15
58	BinaryClF and ClFTools—Lightweight, efficient and extensible macromolecular data management. PLoS Computational Biology, 2020, 16, e1008247.	1.5	15
59	Genome3D: integrating a collaborative data pipeline to expand the depth and breadth of consensus protein structure annotation. Nucleic Acids Research, 2020, 48, D314-D319.	6.5	13
60	PDBe aggregated API: programmatic access to an integrative knowledge graph of molecular structure data. Bioinformatics, 2021, 37, 3950-3952.	1.8	12
61	A community proposal to integrate structural bioinformatics activities in ELIXIR (3D-Bioinfo) Tj ETQq1 1 0.78431	4 rgBT /O\ 0.8	verlock 10 Tf 12
62	Structural biology data archiving – where we are and what lies ahead. FEBS Letters, 2018, 592, 2153-2167.	1.3	11
63	Straightforward and complete deposition of NMR data to the PDBe. Journal of Biomolecular NMR, 2010, 48, 85-92.	1.6	7
64	New restraints and validation approaches for nucleic acid structures in <i>PDB-REDO</i> . Acta Crystallographica Section D: Structural Biology, 2021, 77, 1127-1141.	1.1	6
65	Whither structural biologists?. IUCrJ, 2022, 9, 399-400.	1.0	6
66	High-performance macromolecular data delivery and visualization for the web. Acta Crystallographica Section D: Structural Biology, 2020, 76, 1167-1173.	1.1	3
67	West-Life: A Virtual Research Environment for structural biology. Journal of Structural Biology: X, 2019, 1, 100006.	0.7	2
68	Automatic annotation of protein residues in published papers. Acta Crystallographica Section F, Structural Biology Communications, 2019, 75, 665-672.	0.4	2
69	PDBeCIF: an open-source mmCIF/CIF parsing and processing package. BMC Bioinformatics, 2021, 22, 383.	1.2	2
70	Cover Image, Volume 85, Issue 3. Proteins: Structure, Function and Bioinformatics, 2017, 85, C1.	1.5	0