LÃ;szlÃ³ Hunyady

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6433573/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Functional Rescue of a Nephrogenic Diabetes Insipidus Causing Mutation in the V2 Vasopressin Receptor by Specific Antagonist and Agonist Pharmacochaperones. Frontiers in Pharmacology, 2022, 13, 811836.	3.5	6
2	Computational drug repurposing against SARS-CoV-2 reveals plasma membrane cholesterol depletion as key factor of antiviral drug activity. PLoS Computational Biology, 2022, 18, e1010021.	3.2	8
3	A general method for quantifying ligand binding to unmodified receptors using Gaussia luciferase. Journal of Biological Chemistry, 2021, 296, 100366.	3.4	8
4	Angiotensin II-Induced Cardiac Effects Are Modulated by Endocannabinoid-Mediated CB1 Receptor Activation. Cells, 2021, 10, 724.	4.1	9
5	Impact of Medium-Sized Extracellular Vesicles on the Transduction Efficiency of Adeno-Associated Viruses in Neuronal and Primary Astrocyte Cell Cultures. International Journal of Molecular Sciences, 2021, 22, 4221.	4.1	3
6	Disruption of the NOX5 Gene Aggravates Atherosclerosis in Rabbits. Circulation Research, 2021, 128, 1320-1322.	4.5	15
7	Biased Coupling to β-Arrestin of Two Common Variants of the CB2 Cannabinoid Receptor. Frontiers in Endocrinology, 2021, 12, 714561.	3.5	10
8	Optimization of the Heterologous Expression of the Cannabinoid Type-1 (CB1) Receptor. Frontiers in Endocrinology, 2021, 12, 740913.	3.5	2
9	PharmacoSTORM nanoscale pharmacology reveals cariprazine binding on Islands of Calleja granule cells. Nature Communications, 2021, 12, 6505.	12.8	24
10	Characterization of Type 1 Angiotensin II Receptor Activation Induced Dual-Specificity MAPK Phosphatase Gene Expression Changes in Rat Vascular Smooth Muscle Cells. Cells, 2021, 10, 3538.	4.1	6
11	Editorial: Hormone Action and Signal Transduction in Endocrine Physiology and Disease. Frontiers in Endocrinology, 2020, 11, 589.	3.5	0
12	The Role of β-Arrestin Proteins in Organization of Signaling and Regulation of the AT1 Angiotensin Receptor. Frontiers in Endocrinology, 2019, 10, 519.	3.5	34
13	Development of Nonspecific BRET-Based Biosensors to Monitor Plasma Membrane Inositol Lipids in Living Cells. Methods in Molecular Biology, 2019, 1949, 23-34.	0.9	5
14	Nephrogenic Diabetes Insipidus. Experientia Supplementum (2012), 2019, 111, 317-339.	0.9	5
15	Novel mechanisms of G-protein-coupled receptors functions: AT1 angiotensin receptor acts as a signaling hub and focal point of receptor cross-talk. Best Practice and Research in Clinical Endocrinology and Metabolism, 2018, 32, 69-82.	4.7	43
16	Control of myogenic tone and agonist induced contraction of intramural coronary resistance arterioles by cannabinoid type 1 receptors and endocannabinoids. Prostaglandins and Other Lipid Mediators, 2018, 134, 77-83.	1.9	11
17	Heterologous phosphorylation–induced formation of a stability lock permits regulation of inactive receptors by β-arrestins. Journal of Biological Chemistry, 2018, 293, 876-892.	3.4	45
18	Differential manipulation of arrestin-3 binding to basal and agonist-activated G protein-coupled receptors. Cellular Signalling, 2017, 36, 98-107.	3.6	13

LÃiszlÃ³ Hunyady

#	Article	IF	CITATIONS
19	Angiotensin type 1A receptor regulates β-arrestin binding of the β2-adrenergic receptor via heterodimerization. Molecular and Cellular Endocrinology, 2017, 442, 113-124.	3.2	22
20	Plasma membrane phosphatidylinositol 4-phosphate and 4,5-bisphosphate determine the distribution and function of K-Ras4B but not H-Ras proteins. Journal of Biological Chemistry, 2017, 292, 18862-18877.	3.4	25
21	Signaling Interactions in the Adrenal Cortex. Frontiers in Endocrinology, 2016, 7, 17.	3.5	26
22	BRET-monitoring of the dynamic changes of inositol lipid pools in living cells reveals a PKC-dependent PtdIns4P increase upon EGF and M3 receptor activation. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 177-187.	2.4	44
23	Endocannabinoid-mediated modulation of Gq/11 protein-coupled receptor signaling-induced vasoconstriction and hypertension. Molecular and Cellular Endocrinology, 2015, 403, 46-56.	3.2	31
24	Investigation of the Fate of Type I Angiotensin Receptor after Biased Activation. Molecular Pharmacology, 2015, 87, 972-981.	2.3	26
25	Mutations in the â€~DRY' motif of the CB1 cannabinoid receptor result in biased receptor variants. Journal of Molecular Endocrinology, 2015, 54, 75-89.	2.5	33
26	Mutation in the V2 vasopressin receptor gene, AVPR2, causes nephrogenic syndrome of inappropriate diuresis. Kidney International, 2015, 88, 1070-1078.	5.2	47
27	Measurement of Inositol 1,4,5-Trisphosphate in Living Cells Using an Improved Set of Resonance Energy Transfer-Based Biosensors. PLoS ONE, 2015, 10, e0125601.	2.5	19
28	Characterization of the Inherited I130N Substitution in V2 Vasopressin Receptor Revealed a Gainâ€ofâ€Function Mutation Leading to NSIAD. FASEB Journal, 2015, 29, 809.8.	0.5	0
29	Improved Methodical Approach for Quantitative BRET Analysis of G Protein Coupled Receptor Dimerization. PLoS ONE, 2014, 9, e109503.	2.5	32
30	Altered Agonist Sensitivity of a Mutant V2 Receptor Suggests a Novel Therapeutic Strategy for Nephrogenic Diabetes Insipidus. Molecular Endocrinology, 2014, 28, 634-643.	3.7	15
31	Distribution and Apoptotic Function of Outer Membrane Proteins Depend on Mitochondrial Fusion. Molecular Cell, 2014, 54, 870-878.	9.7	48
32	Angiotensin II-induced activation of central AT1 receptors exerts endocannabinoid-mediated gastroprotective effect in rats. Molecular and Cellular Endocrinology, 2014, 382, 971-978.	3.2	13
33	Hypothyroidism-associated missense mutation impairs NADPH oxidase activity and intracellular trafficking of Duox2. Free Radical Biology and Medicine, 2014, 73, 190-200.	2.9	19
34	Differential β-arrestin2 requirements for constitutive and agonist-induced internalization of the CB1 cannabinoid receptor. Molecular and Cellular Endocrinology, 2013, 372, 116-127.	3.2	43
35	Differential βâ€arrestin2 requirements of constitutive and agonistâ€induced internalization of the CB1 cannabinoid receptor. FASEB Journal, 2013, 27, 1172.9.	0.5	0
36	The Effect of Phosphatidylinositol 4,5â€bisphosphate Depletion on the Internalization of G Protein coupled Receptors. FASEB Journal, 2013, 27, 1050.2.	0.5	0

LÃiszlÂ³ Hunyady

#	Article	IF	CITATIONS
37	Acute depletion of plasma membrane Phosphatidylinositol 4,5-bisphosphate impairs specific steps in G protein-coupled receptor endocytosis. Journal of Cell Science, 2012, 125, 2185-97.	2.0	44
38	Angiotensin II Induces Vascular Endocannabinoid Release, Which Attenuates Its Vasoconstrictor Effect via CB1 Cannabinoid Receptors. Journal of Biological Chemistry, 2012, 287, 31540-31550.	3.4	47
39	Acute depletion of plasma membrane phosphatidylinositol 4,5-bisphosphate impairs specific steps in endocytosis of the G-protein-coupled receptor. Journal of Cell Science, 2012, 125, 3013-3013.	2.0	13
40	Mapping of the Localization of Type 1 Angiotensin Receptor in Membrane Microdomains Using Bioluminescence Resonance Energy Transfer-based Sensors. Journal of Biological Chemistry, 2012, 287, 9090-9099.	3.4	21
41	Allosteric interactions within the AT1 angiotensin receptor homodimer: Role of the conserved DRY motif. Biochemical Pharmacology, 2012, 84, 477-485.	4.4	38
42	Study of the Compartmentalization of Type 1 Angiotensin Receptor Using Bioluminescence Resonance Energy Transferâ€based Sensors. FASEB Journal, 2012, 26, lb174.	0.5	0
43	Demonstration of Angiotensin II-induced Ras Activation in the trans-Golgi Network and Endoplasmic Reticulum Using Bioluminescence Resonance Energy Transfer-based Biosensors. Journal of Biological Chemistry, 2011, 286, 5319-5327.	3.4	7
44	Functional interactions within the angiotensin AT1 receptor oligomers ―the role of the conserved DRY motif. FASEB Journal, 2011, 25, lb406.	0.5	0
45	Detection of angiotensin Ilâ€induced Ras activation in the transâ€Golgi network and the endoplasmic reticulum using BRETâ€based biosensors. FASEB Journal, 2011, 25, lb131.	0.5	0
46	Paracrine Transactivation of the CB1 Cannabinoid Receptor by AT1 Angiotensin and Other Gq/11 Protein-coupled Receptors. Journal of Biological Chemistry, 2009, 284, 16914-16921.	3.4	53
47	Mechanism of Angiotensin II-induced Superoxide Production in Cells Reconstituted with Angiotensin Type 1 Receptor and the Components of NADPH Oxidase. Journal of Biological Chemistry, 2008, 283, 255-267.	3.4	54
48	The Role of Diacylglycerol Lipase in Constitutive and Angiotensin AT1 Receptor-stimulated Cannabinoid CB1 Receptor Activity. Journal of Biological Chemistry, 2007, 282, 7753-7757.	3.4	70
49	Visualization and Manipulation of Plasma Membrane-Endoplasmic Reticulum Contact Sites Indicates the Presence of Additional Molecular Components within the STIM1-Orai1 Complex. Journal of Biological Chemistry, 2007, 282, 29678-29690.	3.4	228
50	Cross-inhibition of angiotensin AT1 receptors supports the concept of receptor oligomerization. Neurochemistry International, 2007, 51, 261-267.	3.8	19
51	Pleiotropic AT1 Receptor Signaling Pathways Mediating Physiological and Pathogenic Actions of Angiotensin II. Molecular Endocrinology, 2006, 20, 953-970.	3.7	483
52	Unusual presentation of multiple endocrine neoplasia type 1 in a young woman with a novel mutation of the MEN1 gene. Journal of Human Genetics, 2004, 49, 380-386.	2.3	6
53	Intracellular trafficking of hormone receptors. Trends in Endocrinology and Metabolism, 2004, 15, 286-293.	7.1	82
54	The role of the AT1 angiotensin receptor in cardiac hypertrophy: angiotensin II receptor or stretch sensor?. Trends in Endocrinology and Metabolism, 2004, 15, 405-408.	7.1	26

LÃiszlÂ³ Hunyady

#	Article	IF	CITATIONS
55	Structural determinants of agonist-induced signaling and regulation of the angiotensin AT1 receptor. Molecular and Cellular Endocrinology, 2004, 217, 89-100.	3.2	13
56	Agonist induction and conformational selection during activation of a G-protein-coupled receptor. Trends in Pharmacological Sciences, 2003, 24, 81-86.	8.7	60
57	Independent Â-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 10782-10787.	7.1	620
58	The Role of a Conserved Region of the Second Intracellular Loop in AT1 Angiotensin Receptor Activation and Signaling. Endocrinology, 2003, 144, 2220-2228.	2.8	102
59	Angiotensin IV Is a Potent Agonist for Constitutive Active Human AT1 Receptors. Journal of Biological Chemistry, 2002, 277, 23107-23110.	3.4	75
60	β-Arrestin- and Dynamin-Dependent Endocytosis of the AT1 Angiotensin Receptor. Molecular Pharmacology, 2001, 59, 239-247.	2.3	107
61	Mechanisms and functions of AT1 angiotensin receptor internalization. Regulatory Peptides, 2000, 91, 29-44.	1.9	98
62	Agonist-Induced Phosphorylation of the Angiotensin AT _{1a} Receptor Is Localized to a Serine/Threonine-Rich Region of Its Cytoplasmic Tail. Molecular Pharmacology, 1998, 54, 935-941.	2.3	67