
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6433359/publications.pdf Version: 2024-02-01

Ιται Χανιαι

#	Article	IF	CITATIONS
1	A Single-Cell Transcriptomic Map of the Human and Mouse Pancreas Reveals Inter- and Intra-cell Population Structure. Cell Systems, 2016, 3, 346-360.e4.	2.9	1,098
2	CEL-Seq: Single-Cell RNA-Seq by Multiplexed Linear Amplification. Cell Reports, 2012, 2, 666-673.	2.9	1,071
3	Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics, 2005, 21, 650-659.	1.8	971
4	CEL-Seq2: sensitive highly-multiplexed single-cell RNA-Seq. Genome Biology, 2016, 17, 77.	3.8	900
5	Exploring tissue architecture using spatial transcriptomics. Nature, 2021, 596, 211-220.	13.7	593
6	Integrating microarray-based spatial transcriptomics and single-cell RNA-seq reveals tissue architecture in pancreatic ductal adenocarcinomas. Nature Biotechnology, 2020, 38, 333-342.	9.4	517
7	A Distinct Gene Module for Dysfunction Uncoupled from Activation in Tumor-Infiltrating T Cells. Cell, 2016, 166, 1500-1511.e9.	13.5	315
8	Rewiring of the Yeast Transcriptional Network Through the Evolution of Motif Usage. Science, 2005, 309, 938-940.	6.0	268
9	The mid-developmental transition and the evolution of animal body plans. Nature, 2016, 531, 637-641.	13.7	231
10	Widespread ectopic expression of olfactory receptor genes. BMC Genomics, 2006, 7, 121.	1.2	216
11	Developmental Milestones Punctuate Gene Expression in the Caenorhabditis Embryo. Developmental Cell, 2012, 22, 1101-1108.	3.1	207
12	Mapping Gene Expression in Two Xenopus Species: Evolutionary Constraints and Developmental Flexibility. Developmental Cell, 2011, 20, 483-496.	3.1	187
13	Spatiotemporal transcriptomics reveals the evolutionary history of the endoderm germ layer. Nature, 2015, 519, 219-222.	13.7	160
14	Alternative splicing and gene duplication are inversely correlated evolutionary mechanisms. Nature Genetics, 2005, 37, 588-589.	9.4	139
15	Remarkably Divergent Regions Punctuate the Genome Assembly of the <i>Caenorhabditis elegans</i> Hawaiian Strain CB4856. Genetics, 2015, 200, 975-989.	1.2	136
16	Predictome: a database of putative functional links between proteins. Nucleic Acids Research, 2002, 30, 306-309.	6.5	129
17	Getting Started in Gene Expression Microarray Analysis. PLoS Computational Biology, 2009, 5, e1000543.	1.5	127
18	Incongruent Expression Profiles between Human and Mouse Orthologous Genes Suggest Widespread Neutral Evolution of Transcription Control. OMICS A Journal of Integrative Biology, 2004, 8, 15-24.	1.0	124

#	Article	IF	CITATIONS
19	Spatially resolved transcriptomics reveals the architecture of the tumor-microenvironment interface. Nature Communications, 2021, 12, 6278.	5.8	112
20	Widespread Transcriptional Scanning in the Testis Modulates Gene Evolution Rates. Cell, 2020, 180, 248-262.e21.	13.5	111
21	A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 2037-2042.	3.3	105
22	A genomic bias for genotype–environment interactions in <i>C. elegans</i> . Molecular Systems Biology, 2012, 8, 587.	3.2	94
23	Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification. Physical Review Letters, 2000, 85, 2641-2644.	2.9	84
24	The genomic determinants of genotype × environment interactions in gene expression. Trends in Genetics, 2013, 29, 479-487.	2.9	82
25	scDual-Seq: mapping the gene regulatory program of Salmonella infection by host and pathogen single-cell RNA-sequencing. Genome Biology, 2017, 18, 200.	3.8	82
26	Natural RNA interference directs a heritable response to the environment. Scientific Reports, 2014, 4, 7387.	1.6	81
27	Evolution of gene fusions: horizontal transfer versus independent events. Genome Biology, 2002, 3, research0024.1.	13.9	78
28	Gene length and expression level shape genomic novelties. Genome Research, 2014, 24, 1497-1503.	2.4	73
29	Identifying functional links between genes using conserved chromosomal proximity. Trends in Genetics, 2002, 18, 176-179.	2.9	67
30	Developmental constraints shape the evolution of the nematode mid-developmental transition. Nature Ecology and Evolution, 2017, 1, 113.	3.4	67
31	Dynamic and Widespread IncRNA Expression in a Sponge and the Origin of Animal Complexity. Molecular Biology and Evolution, 2015, 32, 2367-2382.	3.5	66
32	The Stress-Like Cancer Cell State Is a Consistent Component of Tumorigenesis. Cell Systems, 2020, 11, 536-546.e7.	2.9	65
33	Similar gene expression profiles do not imply similar tissue functions. Trends in Genetics, 2006, 22, 132-138.	2.9	59
34	Comparison of diverse developmental transcriptomes reveals that coexpression of gene neighbors is not evolutionarily conserved. Genome Research, 2009, 19, 2214-2220.	2.4	56
35	A periodic table of cell types. Development (Cambridge), 2019, 146, .	1.2	54
36	BLIND ordering of large-scale transcriptomic developmental timecourses. Development (Cambridge), 2014, 141, 1161-1166.	1.2	51

#	Article	IF	CITATIONS
37	Spatial localization of co-regulated genes exceeds genomic gene clustering in the Saccharomyces cerevisiae genome. Nucleic Acids Research, 2013, 41, 2191-2201.	6.5	50
38	Spatiotemporal Gene Expression Analysis of the Caenorhabditis elegans Germline Uncovers a Syncytial Expression Switch. Genetics, 2018, 210, 587-605.	1.2	45
39	A hypothesis is a liability. Genome Biology, 2020, 21, 231.	3.8	45
40	Cooperation between melanoma cell states promotes metastasis through heterotypic cluster formation. Developmental Cell, 2021, 56, 2808-2825.e10.	3.1	37
41	Core promoter T-blocks correlate with gene expression levels in <i>C. elegans</i> . Genome Research, 2011, 21, 707-717.	2.4	36
42	The society of genes: networks of functional links between genes from comparative genomics. Genome Biology, 2002, 3, research0064.1.	13.9	34
43	Night science. Genome Biology, 2019, 20, 179.	3.8	32
44	Pairing of competitive and topologically distinct regulatory modules enhances patterned gene expression. Molecular Systems Biology, 2008, 4, 163.	3.2	28
45	The two languages of science. Genome Biology, 2020, 21, 147.	3.8	26
46	New type of polyubiquitin-like genes with intein-like autoprocessing domains. Trends in Genetics, 2004, 20, 538-542.	2.9	22
47	Modular genes with metazoan-specific domains have increased tissue specificity. Trends in Genetics, 2005, 21, 210-213.	2.9	21
48	The gene regulatory program of <i>Acrobeloides nanus</i> reveals conservation of phylum-specific expression. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4459-4464.	3.3	20
49	Development and Evolution through the Lens of Global Gene Regulation. Trends in Genetics, 2018, 34, 11-20.	2.9	20
50	GeneAnnot: Interfacing GeneCards with high-throughput gene expression compendia. Briefings in Bioinformatics, 2003, 4, 349-360.	3.2	17
51	Novel predictions arise from contradictions. Genome Biology, 2021, 22, 153.	3.8	17
52	Seeing is believing: new methods for in situ single-cell transcriptomics. Genome Biology, 2014, 15, 110.	13.9	16
53	Plasticity and Clonality of Cancer Cell States. Trends in Cancer, 2019, 5, 655-656.	3.8	15
54	CEL-Seq2—Single-Cell RNA Sequencing by Multiplexed Linear Amplification. Methods in Molecular Biology, 2019, 1979, 45-56.	0.4	15

#	Article	IF	CITATIONS
55	Improvisational science. Genome Biology, 2022, 23, 4.	3.8	14
56	Computational biologists: moving to the driver's seat. Genome Biology, 2017, 18, 223.	3.8	12
57	Cancer cell states and emergent properties of the dynamic tumor system. Genome Research, 2021, 31, 1719-1727.	2.4	12
58	Gene expression dynamics are a proxy for selective pressures on alternatively polyadenylated isoforms. Nucleic Acids Research, 2020, 48, 5926-5938.	6.5	11
59	Signatures of medical student applicants and academic success. PLoS ONE, 2020, 15, e0227108.	1.1	11
60	Phylogenetic debugging of a complete human biosynthetic pathway transplanted into yeast. Nucleic Acids Research, 2020, 48, 486-499.	6.5	11
61	An avidin-like domain that does not bind biotin is adopted for oligomerization by the extracellular mosaic protein fibropellin. Protein Science, 2005, 14, 417-423.	3.1	10
62	New skin for the old RNA-Seq ceremony: the age of single-cell multi-omics. Genome Biology, 2017, 18, 159.	3.8	10
63	Renaissance minds in 21st century science. Genome Biology, 2020, 21, 67.	3.8	10
64	Revealing developmental networks by comparative transcriptomics. Transcription, 2010, 1, 154-158.	1.7	9
65	What is the question?. Genome Biology, 2019, 20, 289.	3.8	9
66	Bimodal Evolutionary Developmental miRNA Program in Animal Embryogenesis. Molecular Biology and Evolution, 2018, 35, 646-654.	3.5	8
67	Gene expression levels modulate germline mutation rates through the compound effects of transcription-coupled repair and damage. Human Genetics, 2021, , 1.	1.8	8
68	ELOPER: elongation of paired-end reads as a pre-processing tool for improved <i>de novo</i> genome assembly. Bioinformatics, 2013, 29, 1455-1457.	1.8	6
69	New adventures in spatial transcriptomics. Developmental Cell, 2022, 57, 1209-1210.	3.1	6
70	The data-hypothesis conversation. Genome Biology, 2021, 22, 58.	3.8	5
71	Identifying functional links between genes by evolutionary transcriptomics. Molecular BioSystems, 2012, 8, 2585.	2.9	3
72	Forty years of The Selfish Gene are not enough. Genome Biology, 2016, 17, 39.	3.8	3

#	Article	IF	CITATIONS
73	Single cell biology—a Keystone Symposia report. Annals of the New York Academy of Sciences, 2021, 1506, 74-97.	1.8	3
74	lterations of evolution A (Very) Short History of Life on Earth <i>Henry Gee</i> St. Martin's Press, 2021. 288 pp Science, 2021, 374, 828-828.	6.0	2
75	Quantifying gene duplication. Nature Reviews Genetics, 2022, 23, 196-197.	7.7	2
76	Toward an unbiased evolutionary platform for unraveling <i>Xenopus</i> developmental gene networks. Genesis, 2012, 50, 186-191.	0.8	1
77	It's about time: studying gene regulatory programs across serial organs. Genome Biology, 2017, 18, 30.	3.8	0
78	A molecular handbook for human development. Nature, 2021, 590, 43-44.	13.7	0
79	Neutrality and Selection in the Evolution of Gene Families. , 2006, , 226-235.		Ο