Zhenhui Zhong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6433240/publications.pdf Version: 2024-02-01

ZHENHULZHONG

#	Article	IF	CITATIONS
1	A DNA methylation reader complex that enhances gene transcription. Science, 2018, 362, 1182-1186.	12.6	181
2	RNA-directed DNA methylation involves co-transcriptional small-RNA-guided slicing of polymerase V transcripts in Arabidopsis. Nature Plants, 2018, 4, 181-188.	9.3	106
3	PacBio Sequencing Reveals Transposable Elements as a Key Contributor to Genomic Plasticity and Virulence Variation in Magnaporthe oryzae. Molecular Plant, 2017, 10, 1465-1468.	8.3	100
4	Mechanistic insights into plant SUVH family H3K9 methyltransferases and their binding to context-biased non-CG DNA methylation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8793-E8802.	7.1	89
5	DNA methylation-linked chromatin accessibility affects genomic architecture in <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	70
6	Population genomic analysis of the rice blast fungus reveals specific events associated with expansion of three main clades. ISME Journal, 2018, 12, 1867-1878.	9.8	63
7	Directional Selection from Host Plants Is a Major Force Driving Host Specificity in Magnaporthe Species. Scientific Reports, 2016, 6, 25591.	3.3	62
8	Arabidopsis SWR1-associated protein methyl-CpG-binding domain 9 is required for histone H2A.Z deposition. Nature Communications, 2019, 10, 3352.	12.8	60
9	Efficient and accurate determination of genome-wide DNA methylation patterns in Arabidopsis thaliana with enzymatic methyl sequencing. Epigenetics and Chromatin, 2020, 13, 42.	3.9	60
10	Mechanism of siRNA production by a plant Dicer-RNA complex in dicing-competent conformation. Science, 2021, 374, 1152-1157.	12.6	58
11	Arabidopsis MORC proteins function in the efficient establishment of RNA directed DNA methylation. Nature Communications, 2021, 12, 4292.	12.8	28
12	NAP1-RELATED PROTEIN1 and 2 negatively regulate H2A.Z abundance in chromatin in Arabidopsis. Nature Communications, 2020, 11, 2887.	12.8	25
13	Methylmalonateâ€semialdehyde dehydrogenase mediated metabolite homeostasis essentially regulate conidiation, polarized germination and pathogenesis in <i>Magnaporthe oryzae</i> . Environmental Microbiology, 2017, 19, 4256-4277.	3.8	23
14	The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis. Nature Communications, 2020, 11, 2798.	12.8	22
15	Two different subcellular-localized Acetoacetyl-CoA acetyltransferases differentiate diverse functions in Magnaporthe oryzae. Fungal Genetics and Biology, 2015, 83, 58-67.	2.1	20
16	Ectopic targeting of CG DNA methylation in Arabidopsis with the bacterial SssI methyltransferase. Nature Communications, 2021, 12, 3130.	12.8	20
17	Putative RhoGAP proteins orchestrate vegetative growth, conidiogenesis and pathogenicity of the rice blast fungus Magnaporthe oryzae. Fungal Genetics and Biology, 2014, 67, 37-50.	2.1	17
18	Evolutionary analysis of plant jacalin-related lectins (JRLs) family and expression of rice JRLs in response to Magnaporthe oryzae. Journal of Integrative Agriculture, 2018, 17, 1252-1266.	3.5	16

ZHENHUI ZHONG

#	Article	IF	CITATIONS
19	Whole genome and transcriptome analysis reveal adaptive strategies and pathogenesis of Calonectria pseudoreteaudii to Eucalyptus. BMC Genomics, 2018, 19, 358.	2.8	15
20	Carbon catabolite repressor MoCreA is required for the asexual development and pathogenicity of the rice blast fungus. Fungal Genetics and Biology, 2021, 146, 103496.	2.1	15
21	Comparative genomic analysis revealed rapid differentiation in the pathogenicity-related gene repertoires between Pyricularia oryzae and Pyricularia penniseti isolated from a Pennisetum grass. BMC Genomics, 2018, 19, 927.	2.8	14
22	The role of ATXR6 expression in modulating genome stability and transposable element repression in <>Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
23	Genome-wide analysis of RNA-interference pathway in Brassica napus, and the expression profile of BnAGOs in response to Sclerotinia sclerotiorum infection. European Journal of Plant Pathology, 2016, 146, 565-579.	1.7	10
24	Bayogenin 3â€Oâ€cellobioside confers nonâ€cultivarâ€specific defence against the rice blast fungus Pyricularia oryzae. Plant Biotechnology Journal, 2021, 19, 589-601.	8.3	10
25	Expression Divergence as an Evolutionary Alternative Mechanism Adopted by Two Rice Subspecies Against Rice Blast Infection. Rice, 2019, 12, 12.	4.0	9
26	Divergence of a genomic island leads to the evolution of melanization in a halophyte root fungus. ISME Journal, 2021, 15, 3468-3479.	9.8	9
27	Mutations in DNA polymerase l´ subunit 1 co-segregate with CMD2-type resistance to Cassava Mosaic Geminiviruses. Nature Communications, 2022, 13, .	12.8	8
28	Genetic Variation Bias toward Noncoding Regions and Secreted Proteins in the Rice Blast Fungus Magnaporthe oryzae. MSystems, 2020, 5, .	3.8	7
29	Emergence of a hybrid PKSâ€NRPS secondary metabolite cluster in a clonal population of the rice blast fungus Magnaporthe oryzae. Environmental Microbiology, 2020, 22, 2709-2723.	3.8	6
30	Evolution and Regulation of a Large Effector Family of <i>Pyricularia oryzae</i> . Molecular Plant-Microbe Interactions, 2021, 34, 255-269.	2.6	3
31	Genomic landscape of a relict fir-associated fungus reveals rapid convergent adaptation towards endophytism. ISME Journal, 2022, 16, 1294-1305.	9.8	3
32	Genome Sequence Resource of Magnaporthe oryzae Laboratory Strain 2539. Molecular Plant-Microbe Interactions, 2020, 33, 1029-1031.	2.6	2
33	A SYBR Gold-based Label-free in vitro Dicing Assay. Bio-protocol, 2022, 12, e4382.	0.4	1
34	<i>HAG</i> effector evolution in <i>Pyricularia</i> species and plant cell death suppression by <i>HAG4</i> . Molecular Plant-Microbe Interactions, 2022, , .	2.6	0