Yukio Ouchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432959/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Dependence of indium–tin–oxide work function on surface cleaning method as studied by ultraviolet and x-ray photoemission spectroscopies. Journal of Applied Physics, 2000, 87, 295-298.	2.5	490
2	Electronic structures of organic molecular materials for organic electroluminescent devices studied by ultraviolet photoemission spectroscopy. Journal of Applied Physics, 1998, 83, 4928-4938.	2.5	129
3	Orientational ordering of alkyl chain at the air/liquid interface of ionic liquids studied by sum frequency vibrational spectroscopy. Chemical Physics Letters, 2004, 389, 321-326.	2.6	125
4	Local Structure at the Air/Liquid Interface of Room-Temperature Ionic Liquids Probed by Infraredâ^'Visible Sum Frequency Generation Vibrational Spectroscopy:Â 1-Alkyl-3-methylimidazolium Tetrafluoroboratesâ€. Journal of Physical Chemistry B, 2007, 111, 4860-4866.	2.6	119
5	Double layer structure and adsorption/desorption hysteresis of neat ionic liquid on Pt electrode surface — an in-situ IR-visible sum-frequency generation spectroscopic study. Electrochemistry Communications, 2010, 12, 672-675.	4.7	117
6	Interfacial Restructuring of Ionic Liquids Determined by Sum-Frequency Generation Spectroscopy and X-Ray Reflectivity. Journal of Physical Chemistry C, 2008, 112, 19649-19654.	3.1	116
7	Ultraviolet photoelectron spectroscopy and inverse photoemission spectroscopy of [6,6]-phenyl-C61-butyric acid methyl ester in gas and solid phases. Journal of Applied Physics, 2008, 104, .	2.5	105
8	Determination of electron affinity of electron accepting molecules. Applied Physics A: Materials Science and Processing, 2009, 95, 309-313.	2.3	104
9	Surface Structural Study on Ionic Liquids Using Metastable Atom Electron Spectroscopy. Journal of Physical Chemistry C, 2009, 113, 19237-19243.	3.1	79
10	Soft X-ray Absorption and X-ray Photoelectron Spectroscopic Study of Tautomerism in Intramolecular Hydrogen Bonds ofN-Salicylideneaniline Derivatives. Journal of the American Chemical Society, 1997, 119, 6336-6344.	13.7	67
11	Anion Configuration at the Air/Liquid Interface of Ionic Liquid [bmim]OTf Studied by Sum-Frequency Generation Spectroscopy. Journal of Physical Chemistry B, 2008, 112, 11936-11941.	2.6	66
12	Impact of Groundâ€6tate Charge Transfer and Polarization Energy Change on Energy Band Offsets at Donor/Acceptor Interface in Organic Photovoltaics. Advanced Functional Materials, 2010, 20, 715-721.	14.9	59
13	Atmospheric effect of air, N2, O2, and water vapor on the ionization energy of titanyl phthalocyanine thin film studied by photoemission yield spectroscopy. Journal of Applied Physics, 2007, 102, 103704.	2.5	57
14	Surface Nanocrystallization of an Ionic Liquid. Physical Review Letters, 2012, 108, 055502.	7.8	39
15	Intermolecular band dispersion in highly ordered monolayer and multilayer films of pentacene on Cu(110). Physica Status Solidi (B): Basic Research, 2008, 245, 793-798.	1.5	34
16	SOFT X-RAY ABSORPTION SPECTRA OF THE LITHIUM PHTHALOCYANINE RADICAL. Surface Review and Letters, 2002, 09, 441-446.	1.1	32
17	Nonlinear vibrational spectroscopic studies on water/ionic liquid([C _n mim]TFSA: n = 4, 8) interfaces. Faraday Discussions, 2012, 154, 289-301.	3.2	27
18	Atmospheric Effect on the Ionization Energy of Titanyl Phthalocyanine Thin Film as Studied by Photoemission Yield Spectroscopy. Molecular Crystals and Liquid Crystals, 2006, 455, 219-225.	0.9	23

		Үикіо Оисні		
#	Article		IF	CITATIONS
19	Alkyl-chain dividing layer at an alcohol/ionic liquid buried interface studied by sum-freque generation vibrational spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 129 High-Energy Spectroscopic Studies of the Electronic Structures of Organic Systems Form	ency 943. ned from	2.8	22
20	Carbon and Fluorine by UPS, Vacuum-UV Optical Spectroscopy, and NEXAFS: Poly(hexafluoro-1,3-butadiene) [C(CF ₃) = C(CF ₃] _{<i>n< Fluorinated Graphites (CF, C₂F, and C₆F), Perfluoroalkanes <i><i>n</i></i></i>} F2. Poly(tetrafluoroethylene) (CF ₂)	, >n-C _{ _{<i>n</i>}}		
	, , , , , , , , , , , , , , , , , , , ,			
			<u></u>	

Үикіо Оисні

#	Article	IF	CITATIONS
37	Electronic structure of <i>n</i> -cycloparaphenylenes directly observed by photoemission spectroscopy. Physical Chemistry Chemical Physics, 2021, 23, 8361-8367.	2.8	3
38	UV Photoemission Study of Interfaces Related to Organic EL Devices. Materials Research Society Symposia Proceedings, 1997, 488, 719.	0.1	2
39	Ultrathin-film differential-thermal-analysis apparatus with simultaneous photoemission measurements. Review of Scientific Instruments, 2000, 71, 1788-1792.	1.3	2
40	Atmospheric Doping Effect on the Interfacial Electronic Structure of Titanyl Phthalocyanine Film. Molecular Crystals and Liquid Crystals, 2006, 455, 227-233.	0.9	2
41	Interfacial Structure at Ionic-liquid/Molecular-liquid Interfaces Probed by Sum-Frequency Generation Vibrational Spectroscopy. ACS Symposium Series, 2010, , 305-316.	0.5	2
42	Topological Surface State of Bi 2 Se 3 Modified by Adsorption of Organic Donor Molecule Tetrathianaphthacene. Advanced Materials Interfaces, 2020, 7, 2000524.	3.7	2
43	Effect of configuration of the branching terminal group on the stability of antiferroelectric liquid crystals. Ferroelectrics, 1996, 178, 287-296.	0.6	1
44	A Self-Assembled Monolayer of a Thiophene Monomer. Molecular Crystals and Liquid Crystals, 1998, 322, 197-202.	0.3	1
45	Ultrahigh Vacuum Seebeck Effect and Conductivity Measurements on N-Doping of C60 Films. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	1
46	Current Characteristics of Pristine and Tetrathianaphthacene-Doped Tris(8-Hydroxyquinoline) Aluminum (ALQ3) Thin Films. Molecular Crystals and Liquid Crystals, 2006, 455, 339-346.	0.9	1
47	Reply to the â€ [~] Comment on "Bi-layering at ionic liquid surfaces: a sum-frequency generation vibrational spectroscopy- and molecular dynamics simulation-based studyâ€â€™ by M. Deutsch, O. M. Magnussen, J. Haddad, D. Pontoni, B. M. Murphy and B. M. Ocko, <i>Phys. Chem. Chem. Phys.</i> , 2021, DOI: 10.1039/DOCP04882H_Physical Chemistry Chemical Physics. 2021, 23.5028-5030	2.8	1
48	Electronic Structure of Organic/Metal Interfaces Studied by UPS and Kelvin Probe. Materials Research Society Symposia Proceedings, 1999, 582, 83.	0.1	0
49	Oriented Growth of Model Molecules of Polyethylene and Poly(tetrafluoroethylene) (n-C44H90 and) Tj ETQq1 1 Relation. Materials Research Society Symposia Proceedings, 2002, 734, 451.	0.784314 0.1	rgBT /Overic 0
50	The Effect of Atmospheric Doping on the Interfacial Electronic Structure of Phthalocyanine Thin Films as Studied by UPS. Materials Research Society Symposia Proceedings, 2005, 871, 1.	0.1	0
51	The Electronic Structure and the Energy Level Alignment at the Interface Between Organic Molecules and Metals. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
52	Electronic Structure of Ionic Liquids Studied by UV Photoemission and Inverse Photoemission Spectroscopy. Materials Research Society Symposia Proceedings, 2006, 965, 1.	0.1	0
53	Displacement Current Measurement of MIS Devices with Ionic Liquids to Explore Carrier Behaviors in Model Interfaces of Organic Devices. Materials Research Society Symposia Proceedings, 2011, 1286, 39.	0.1	0
54	IV-SFG Studies on Surfaces and Interfaces of Ionic Liquids. Hyomen Kagaku, 2013, 34, 173-178.	0.0	0

Үикіо Оисні

#	Article	IF	CITATIONS
55	Impact on electronic structure of donor/acceptor blend in organic photovoltaics by decontamination of molybdenum-oxide surface. Journal of Applied Physics, 2018, 123, 205501.	2.5	0
56	Spontaneous Orientation of Alq3 Molecule in Evaporated Film and Its Vanishment by Light Irradiation. Materials Research Society Symposia Proceedings, 2003, 771, 791.	0.1	0
57	Title is missing!. Shinku/Journal of the Vacuum Society of Japan, 2004, 47, 516-521.	0.2	0
58	Ultraviolet Photoelectron Spectroscopy (UPS) Measurements of Cyanine Dye Films Fabricated by Solution Jet Beam Deposition Method. E-Journal of Surface Science and Nanotechnology, 2005, 3, 444-447.	0.4	0
59	IV-SFG and MAES Studies The Surface Structure of Ionic Liquids at Room Temperature. Hyomen Kagaku, 2007, 28, 304-310.	0.0	0