
Satdarshan P Monga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432907/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Chronic Activation of LXRÎ \pm Sensitizes Mice to Hepatocellular Carcinoma. Hepatology Communications, 2022, 6, 1123-1139.	2.0	5
2	Role of YAP1 Signaling in Biliary Development, Repair, and Disease. Seminars in Liver Disease, 2022, 42, 017-033.	1.8	7
3	Role and Regulation of Wnt/β-Catenin in Hepatic Perivenous Zonation and Physiological Homeostasis. American Journal of Pathology, 2022, 192, 4-17.	1.9	14
4	YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma. Advances in Cancer Research, 2022, , 283-317.	1.9	4
5	LiverClear: A versatile protocol for mouse liver tissue clearing. STAR Protocols, 2022, 3, 101178.	0.5	1
6	Inhibition of p53 Sulfoconjugation Prevents Oxidative Hepatotoxicity and Acute Liver Failure. Gastroenterology, 2022, 162, 1226-1241.	0.6	14
7	β-Catenin Sustains and Is Required for YES-associated Protein Oncogenic Activity in Cholangiocarcinoma. Gastroenterology, 2022, 163, 481-494.	0.6	13
8	Spatial transcriptomics reveals differences among genetic models of disruption in the Wntâ€betaâ€catenin signaling in hepatocytes. FASEB Journal, 2022, 36, .	0.2	0
9	Investigating Susceptibility of êžµâ€cateninâ€mutated Hepatocellular Carcinoma to Checkpoint Inhibitors. FASEB Journal, 2022, 36, .	0.2	0
10	NOTCH-YAP1/TEAD-DNMT1 Axis Drives Hepatocyte Reprogramming Into Intrahepatic Cholangiocarcinoma. Gastroenterology, 2022, 163, 449-465.	0.6	23
11	Investigating the therapeutic efficacy of a novel mTORC1 inhibitor, RMCâ€6272, on liver tumors with bâ€catenin activation. FASEB Journal, 2022, 36, .	0.2	0
12	Understanding Molecular Heterogeneity in Hepatocellular Carcinoma. FASEB Journal, 2022, 36, .	0.2	0
13	In the Absence of YAP, TAZ Contributes to Hepatocyte Adaptation in Chronic Cholestasis in Females. FASEB Journal, 2022, 36, .	0.2	Ο
14	A Quantitative Systems Pharmacology Platform Reveals NAFLD Pathophysiological States and Targeting Strategies. Metabolites, 2022, 12, 528.	1.3	3
15	Yesâ€Associated Protein Is Crucial for Constitutive Androstane Receptorâ€Driven Hepatocyte Proliferation But Not for Induction of Drug Metabolism Genes in Mice. Hepatology, 2021, 73, 2005-2022.	3.6	13
16	A Fbxo48 inhibitor prevents pAMPKα degradation and ameliorates insulin resistance. Nature Chemical Biology, 2021, 17, 298-306.	3.9	16
17	Progressive Familial Intrahepatic Cholestasis: Is It Time to Transition to Genetic Cholestasis?. Journal of Pediatric Gastroenterology and Nutrition, 2021, 72, 641-643.	0.9	4
18	Scaffolding Protein IQGAP1 Is Dispensable, but Its Overexpression Promotes Hepatocellular Carcinoma via YAP1 Signaling. Molecular and Cellular Biology, 2021, 41, .	1.1	10

#	Article	IF	CITATIONS
19	\hat{l}^2 -Catenin Activation in Hepatocellular Cancer: Implications in Biology and Therapy. Cancers, 2021, 13, 1830.	1.7	16
20	Dual β-Catenin and γ-Catenin Loss in Hepatocytes Impacts Their Polarity through Altered Transforming Growth Factor-β and Hepatocyte Nuclear Factor 4α Signaling. American Journal of Pathology, 2021, 191, 885-901.	1.9	3
21	Wnt/-Catenin Signaling and Liver Regeneration: Circuit, Biology, and Opportunities. Gene Expression, 2021, 20, 189-199.	0.5	17
22	Nuclear factor erythroid 2–related factor 2 and β atenin Coactivation in Hepatocellular Cancer: Biological and Therapeutic Implications. Hepatology, 2021, 74, 741-759.	3.6	32
23	TBX3 functions as a tumor suppressor downstream of activated CTNNB1 mutants during hepatocarcinogenesis. Journal of Hepatology, 2021, 75, 120-131.	1.8	22
24	Compensatory hepatic adaptation accompanies permanent absence of intrahepatic biliary network due to YAP1 loss in liver progenitors. Cell Reports, 2021, 36, 109310.	2.9	17
25	β-Catenin-NF-βB-CFTR interactions in cholangiocytes regulate inflammation and fibrosis during ductular reaction. ELife, 2021, 10, .	2.8	9
26	Liver Progenitors and Adult Cell Plasticity in Hepatic Injury and Repair: Knowns and Unknowns. Annual Review of Pathology: Mechanisms of Disease, 2020, 15, 23-50.	9.6	99
27	No Zones Left Behind: Democratic Hepatocytes Contribute to Liver Homeostasis and Repair. Cell Stem Cell, 2020, 26, 2-3.	5.2	13
28	Inflammation and Ectopic Fat Deposition in the Aging Murine Liver Is Influenced by CCR2. American Journal of Pathology, 2020, 190, 372-387.	1.9	22
29	Functional compensation precedes recovery of tissue mass following acute liver injury. Nature Communications, 2020, 11, 5785.	5.8	56
30	Inside-Out or Outside-In: Choosing the Right Model of Hepatocellular Cancer. Gene Expression, 2020, 20, 139-145.	0.5	6
31	Impaired mitochondrial medium-chain fatty acid oxidation drives periportal macrovesicular steatosis in sirtuin-5 knockout mice. Scientific Reports, 2020, 10, 18367.	1.6	21
32	Depletion of hepatic forkhead box O1 does not affect cholelithiasis in male and female mice. Journal of Biological Chemistry, 2020, 295, 7003-7017.	1.6	2
33	Blocking integrin α4β7-mediated CD4 T cell recruitment to the intestine and liver protects mice from western diet-induced non-alcoholic steatohepatitis. Journal of Hepatology, 2020, 73, 1013-1022.	1.8	47
34	BCL9/BCL9L in hepatocellular carcinoma: will it or Wnt it be the next therapeutic target?. Hepatology International, 2020, 14, 460-462.	1.9	3
35	Impaired Bile Secretion Promotes Hepatobiliary Injury in Sickle Cell Disease. Hepatology, 2020, 72, 2165-2181.	3.6	12
36	Hepatic Stellate Cell–Specific Platelet-Derived Growth Factor Receptor-α Loss Reduces Fibrosis and Promotes Repair after Hepatocellular Injury. American Journal of Pathology, 2020, 190, 2080-2094.	1.9	10

#	Article	IF	CITATIONS
37	An epigenetic perspective on liver regeneration. Epigenomics, 2020, 12, 381-384.	1.0	1
38	P-selectin–deficient mice to study pathophysiology of sickle cell disease. Blood Advances, 2020, 4, 266-273.	2.5	19
39	Beta-catenin mutations in hepatocellular cancer, tumor cell metabolism, and the response of these tumors to mTOR inhibition Journal of Clinical Oncology, 2020, 38, 583-583.	0.8	2
40	Hepatocyte-derived intrahepatic cholangiocarcinoma requires Yap and Sox9: A clinical and preclinical analysis Journal of Clinical Oncology, 2020, 38, 582-582.	0.8	0
41	Functional Compensation Precedes Recovery of Tissue Mass Following Acute Liver Injury. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
42	Concomitant NFE2L2 and CTNNB1 mutations in a subset of HCC patients: Synergy between Nrf2 and Wnt pathway in hepatocarcinogenesis. FASEB Journal, 2020, 34, 1-1.	0.2	0
43	Investigating the role of Fzdâ€7 in liver donation and regeneration. FASEB Journal, 2020, 34, 1-1.	0.2	Ο
44	Hepatic Zonation Now on Hormones!. Hepatology, 2019, 69, 1339-1342.	3.6	6
45	Defective HNF4alpha-dependent gene expression as a driver of hepatocellular failure in alcoholic hepatitis. Nature Communications, 2019, 10, 3126.	5.8	124
46	Aryl Hydrocarbon Receptor Signaling Prevents Activation of Hepatic Stellate Cells and Liver Fibrogenesis in Mice. Gastroenterology, 2019, 157, 793-806.e14.	0.6	67
47	Recent Developments and Therapeutic Strategies against Hepatocellular Carcinoma. Cancer Research, 2019, 79, 4326-4330.	0.4	99
48	Inhibiting Glutamine-Dependent mTORC1 Activation Ameliorates Liver Cancers Driven by β-Catenin Mutations. Cell Metabolism, 2019, 29, 1135-1150.e6.	7.2	92
49	Impaired Ribosomal Biogenesis by Noncanonical Degradation of <i>β</i> -Catenin during Hyperammonemia. Molecular and Cellular Biology, 2019, 39, .	1.1	18
50	β-Catenin Activation Promotes Immune Escape and Resistance to Anti–PD-1 Therapy in Hepatocellular Carcinoma. Cancer Discovery, 2019, 9, 1124-1141.	7.7	498
51	Elimination of Wnt Secretion From Stellate Cells Is Dispensable for Zonation and Development of Liver Fibrosis Following Hepatobiliary Injury. Gene Expression, 2019, 19, 121-136.	0.5	11
52	Notch Inhibition Promotes Differentiation of Liver Progenitor Cells into Hepatocytes via <i>sox9b</i> Repression in Zebrafish. Stem Cells International, 2019, 2019, 1-11.	1.2	29
53	Bloodâ€Bile Barrier: Morphology, Regulation, and Pathophysiology. Gene Expression, 2019, 19, 69-87.	0.5	32
54	Dynamics and predicted drug response of a gene network linking dedifferentiation with beta-catenin dysfunction in hepatocellular carcinoma. Journal of Hepatology, 2019, 71, 323-332.	1.8	11

#	Article	IF	CITATIONS
55	Axis inhibition protein 1 (Axin1) Deletion–Induced Hepatocarcinogenesis Requires Intact βâ€Catenin but Not Notch Cascade in Mice. Hepatology, 2019, 70, 2003-2017.	3.6	33
56	TEA Domain Transcription Factor 4 ls the Major Mediator of Yes-Associated Protein Oncogenic Activity in Mouse and Human Hepatoblastoma. American Journal of Pathology, 2019, 189, 1077-1090.	1.9	25
57	β-Catenin and Yes-Associated Protein 1 Cooperate in Hepatoblastoma Pathogenesis. American Journal of Pathology, 2019, 189, 1091-1104.	1.9	37
58	Hepatocyteâ€Specific βâ€Catenin Deletion During Severe Liver Injury Provokes Cholangiocytes to Differentiate Into Hepatocytes. Hepatology, 2019, 69, 742-759.	3.6	102
59	Loss of Wnt Secretion by Macrophages Promotes Hepatobiliary Injury after Administration of 3,5-Diethoxycarbonyl-1, 4-Dihydrocollidine Diet. American Journal of Pathology, 2019, 189, 590-603.	1.9	24
60	Updates on hepatic homeostasis and the many tiers of hepatobiliary repair. Nature Reviews Gastroenterology and Hepatology, 2019, 16, 84-86.	8.2	3
61	Hdac1 Regulates Differentiation of Bipotent Liver Progenitor Cells During Regeneration via Sox9b and Cdk8. Gastroenterology, 2019, 156, 187-202.e14.	0.6	59
62	Loss of hepatocyte β-catenin protects mice from experimental porphyria-associated liver injury. Journal of Hepatology, 2019, 70, 108-117.	1.8	29
63	Lymphocyte Specific Proteinâ€1 Suppresses Hepatocarcinogenesis Driven by Mutant βâ€catenin and Met Overexpression. FASEB Journal, 2019, 33, 126.11.	0.2	0
64	mTOR Inhibition Delays Hepatoblastoma Growth in a Relevant Mouse Model. FASEB Journal, 2019, 33, 662.66.	0.2	0
65	Hepatocyteâ€Specific βâ€catenin Deletion During Severe Liver Injury Provokes Cholangiocytes to Differentiate into Hepatocytes. FASEB Journal, 2019, 33, 369.2.	0.2	0
66	NFE2L2 synergizes with betaâ€catenin gene mutations to induce HCC in patients and mice. FASEB Journal, 2019, 33, 126.12.	0.2	1
67	FGF19 and Met coâ€activation in murine liver induces HCC: Biological and clinical relevance. FASEB Journal, 2019, 33, 496.36.	0.2	0
68	Significant neutrophil accumulation, IL-18 deposition, and active inflammasome in tumor regions of human pancreatic ductal adenocarcinoma Journal of Clinical Oncology, 2019, 37, e15754-e15754.	0.8	0
69	Lipid metabolic reprogramming in hepatic ischemia–reperfusion injury. Nature Medicine, 2018, 24, 6-7.	15.2	27
70	Identification of a unique loss-of-function mutation in IGF1R and a crosstalk between IGF1R and Wnt∫l²-catenin signaling pathways. Biochimica Et Biophysica Acta - Molecular Cell Research, 2018, 1865, 920-931.	1.9	15
71	Bromodomain and Extraterminal (BET) Proteins Regulate Hepatocyte Proliferation in Hepatocyte-Driven Liver Regeneration. American Journal of Pathology, 2018, 188, 1389-1405.	1.9	10
72	βâ€Catenin regulation of farnesoid X receptor signaling and bile acid metabolism during murine cholestasis. Hepatology, 2018, 67, 955-971.	3.6	49

#	Article	IF	CITATIONS
73	Dual catenin loss in murine liver causes tight junctional deregulation and progressive intrahepatic cholestasis. Hepatology, 2018, 67, 2320-2337.	3.6	40
74	Wnt/β-Catenin Signaling in Liver Development, Homeostasis, and Pathobiology. Annual Review of Pathology: Mechanisms of Disease, 2018, 13, 351-378.	9.6	288
75	The Effect of Selective c-MET Inhibitor on Hepatocellular Carcinoma in the MET-Active, β-Catenin-Mutated Mouse Model. Gene Expression, 2018, 18, 135-147.	0.5	19
76	Oncogenic potential of N-terminal deletion and S45Y mutant β-catenin in promoting hepatocellular carcinoma development in mice. BMC Cancer, 2018, 18, 1093.	1.1	17
77	Dysregulated Bile Transporters and Impaired Tight Junctions During Chronic Liver Injury in Mice. Gastroenterology, 2018, 155, 1218-1232.e24.	0.6	53
78	Hepatocyte Wnts Are Dispensable During Diethylnitrosamine and Carbon Tetrachloride-Induced Injury and Hepatocellular Cancer. Gene Expression, 2018, 18, 209-219.	0.5	10
79	High Frequency of β-Catenin Mutations in Mouse Hepatocellular Carcinomas Induced by a Nongenotoxic Constitutive Androstane Receptor Agonist. American Journal of Pathology, 2018, 188, 2497-2507.	1.9	13
80	Hepatocyte-Derived Lipocalin 2 Is a Potential Serum Biomarker Reflecting Tumor Burden in Hepatoblastoma. American Journal of Pathology, 2018, 188, 1895-1909.	1.9	7
81	Endothelial Wnts regulate βâ€catenin signaling in murine liver zonation and regeneration: A sequel to the Wnt–Wnt situation. Hepatology Communications, 2018, 2, 845-860.	2.0	98
82	Novel Genetic Activation Screening in Liver Repopulation and Cancer: Now CRISPR Than Ever!. Hepatology, 2018, 68, 408-411.	3.6	1
83	Novel Advances in Understanding of Molecular Pathogenesis of Hepatoblastoma: A Wnt/β-Catenin Perspective. Gene Expression, 2017, 17, 141-154.	0.5	82
84	MAN2A1–FER Fusion Gene Is Expressed by Human Liver and Other Tumor Types and Has Oncogenic Activity in Mice. Gastroenterology, 2017, 153, 1120-1132.e15.	0.6	44
85	Pre-clinical and clinical investigations of metabolic zonation in liver diseases: The potential of microphysiology systems. Experimental Biology and Medicine, 2017, 242, 1605-1616.	1.1	66
86	Update on the Mechanisms of Liver Regeneration. Seminars in Liver Disease, 2017, 37, 141-151.	1.8	62
87	Mice lacking liver-specific β-catenin develop steatohepatitis and fibrosis after iron overload. Journal of Hepatology, 2017, 67, 360-369.	1.8	33
88	Targeting βâ€catenin in hepatocellular cancers induced by coexpression of mutant βâ€catenin and Kâ€Ras in mice. Hepatology, 2017, 65, 1581-1599.	3.6	67
89	Platelet-Derived Growth Factor Receptor α Contributes to Human Hepatic Stellate Cell Proliferation and Migration. American Journal of Pathology, 2017, 187, 2273-2287.	1.9	37
90	Thyroid Hormone Receptor-β Agonist GC-1 Inhibits Met-β-Catenin–Driven Hepatocellular Cancer. American Journal of Pathology, 2017, 187, 2473-2485.	1.9	19

#	Article	IF	CITATIONS
91	Role and Regulation of p65/β-Catenin Association During Liver Injury and Regeneration: A "Complex― Relationship. Gene Expression, 2017, 17, 219-235.	0.5	14
92	Editorial. Gene Expression, 2016, 17, 1-5.	0.5	0
93	Thyroid Hormone Receptor β Agonist Induces β-Catenin-Dependent Hepatocyte Proliferation in Mice: Implications in Hepatic Regeneration. Gene Expression, 2016, 17, 19-34.	0.5	42
94	Diverse Basis of β-Catenin Activation in Human Hepatocellular Carcinoma: Implications in Biology and Prognosis. PLoS ONE, 2016, 11, e0152695.	1.1	18
95	Modeling a human hepatocellular carcinoma subset in mice through coexpression of met and pointâ€mutant βâ€catenin. Hepatology, 2016, 64, 1587-1605.	3.6	92
96	Wnt signaling regulates hepatobiliary repair following cholestatic liver injury in mice. Hepatology, 2016, 64, 1652-1666.	3.6	76
97	Direct Pharmacological Inhibition of β-Catenin by RNA Interference in Tumors of Diverse Origin. Molecular Cancer Therapeutics, 2016, 15, 2143-2154.	1.9	43
98	Terminal regions of β-catenin are critical for regulating its adhesion and transcription functions. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 2345-2357.	1.9	14
99	Coordinated Activities of Multiple Myc-dependent and Myc-independent Biosynthetic Pathways in Hepatoblastoma. Journal of Biological Chemistry, 2016, 291, 26241-26251.	1.6	48
100	Role of Î ² -catenin in development of bile ducts. Differentiation, 2016, 91, 42-49.	1.0	34
101	Postponing the Hypoglycemic Response to Partial Hepatectomy Delays Mouse Liver Regeneration. American Journal of Pathology, 2016, 186, 587-599.	1.9	28
102	Bromodomain and extraterminal (BET) proteins regulate biliary-driven liver regeneration. Journal of Hepatology, 2016, 64, 316-325.	1.8	38
103	Muc1 enhances the β-catenin protective pathway during ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2016, 310, F569-F579.	1.3	26
104	Abnormal lipid processing but normal long-term repopulation potential of <i>mycâ^'/â^'</i> hepatocytes. Oncotarget, 2016, 7, 30379-30395.	0.8	39
105	Valproic Acid Limits Pancreatic Recovery after Pancreatitis by Inhibiting Histone Deacetylases and Preventing Acinar Redifferentiation Programs. American Journal of Pathology, 2015, 185, 3304-3315.	1.9	29
106	PDGFRα in Liver Pathophysiology: Emerging Roles in Development, Regeneration, Fibrosis, and Cancer. Gene Expression, 2015, 16, 109-127.	0.5	28
107	Complete response of Ctnnb1-mutated tumours to \hat{l}^2 -catenin suppression by locked nucleic acid antisense in a mouse hepatocarcinogenesis model. Journal of Hepatology, 2015, 62, 380-387.	1.8	34
108	β-Catenin Signaling and Roles in Liver Homeostasis, Injury, and Tumorigenesis. Gastroenterology, 2015, 148, 1294-1310.	0.6	369

#	Article	IF	CITATIONS
109	WNT5A Inhibits Hepatocyte Proliferation and Concludes β-Catenin Signaling in Liver Regeneration. American Journal of Pathology, 2015, 185, 2194-2205.	1.9	29
110	Muc1 is protective during kidney ischemia-reperfusion injury. American Journal of Physiology - Renal Physiology, 2015, 308, F1452-F1462.	1.3	35
111	ADAR1 Prevents Liver Injury from Inflammation and Suppresses Interferon Production in Hepatocytes. American Journal of Pathology, 2015, 185, 3224-3237.	1.9	41
112	Mice with Hepatic Loss of the Desmosomal Protein Î ³ -Catenin Are Prone to Cholestatic Injury and Chemical Carcinogenesis. American Journal of Pathology, 2015, 185, 3274-3289.	1.9	12
113	Parenchymal Plateletâ€Đerived Growth Factor Receptor Alpha Expression Is Dispensable For Hepatic Fibrosis During Chronic Liver Injury. FASEB Journal, 2015, 29, 53.7.	0.2	0
114	Activating βâ€catenin Mutations And AKT Synergize To Promote Lipogenic Liver Tumors In Mice. FASEB Journal, 2015, 29, 611.8.	0.2	0
115	Mice Lacking βâ€catenin In Liver Develop Hepatic Fibrosis In Response To Iron Overload. FASEB Journal, 2015, 29, 611.6.	0.2	0
116	Câ€Met And βâ€catenin Coâ€delivery By Hydrodynamic Tail Vein Injection Promotes HCC Development In Mice. FASEB Journal, 2015, 29, 45.10.	0.2	0
117	Role of Leukocyte Cell-Derived Chemotaxin 2 as a Biomarker in Hepatocellular Carcinoma. PLoS ONE, 2014, 9, e98817.	1.1	28
118	Pro-Regenerative Signaling after Acetaminophen-Induced Acute Liver Injury in Mice Identified Using a Novel Incremental Dose Model. American Journal of Pathology, 2014, 184, 3013-3025.	1.9	143
119	Tri-iodothyronine induces hepatocyte proliferation by protein kinase a-dependent Î ² -catenin activation in rodents. Hepatology, 2014, 59, 2309-2320.	3.6	62
120	β-Catenin signaling in hepatocellular cancer: Implications in inflammation, fibrosis, and proliferation. Cancer Letters, 2014, 343, 90-97.	3.2	71
121	Beta-catenin signaling in murine liver zonation and regeneration: A Wnt-Wnt situation!. Hepatology, 2014, 60, 964-976.	3.6	205
122	Hepatic Regenerative Medicine. American Journal of Pathology, 2014, 184, 306-308.	1.9	5
123	Identification and Characterization of a Novel Small-Molecule Inhibitor of β-Catenin Signaling. American Journal of Pathology, 2014, 184, 2111-2122.	1.9	32
124	Role and Regulation of PDGFRα Signaling in Liver Development and Regeneration. American Journal of Pathology, 2013, 182, 1648-1658.	1.9	25
125	γ-Catenin at Adherens Junctions: Mechanism and Biologic Implications in Hepatocellular Cancer after β-Catenin Knockdown. Neoplasia, 2013, 15, 421-IN19.	2.3	43
126	A general path for large-scale solubilization of cellular proteins: From membrane receptors to multiprotein complexes. Protein Expression and Purification, 2013, 87, 111-119.	0.6	17

#	Article	IF	CITATIONS
127	Beta-catenin-NF-κB interactions in murine hepatocytes: A complex to die for. Hepatology, 2013, 57, 763-774.	3.6	64
128	PanIN-Specific Regulation of Wnt Signaling by HIF2α during Early Pancreatic Tumorigenesis. Cancer Research, 2013, 73, 4781-4790.	0.4	40
129	Activation of the Transcription Factor GL11 by WNT Signaling Underlies the Role of SULFATASE 2 as a Regulator of Tissue Regeneration. Journal of Biological Chemistry, 2013, 288, 21389-21398.	1.6	31
130	Wnt drives stem cell-mediated repair response after hepatic injury. Hepatology, 2013, 58, 1847-1850.	3.6	2
131	β-Catenin Knockdown in Liver Tumor Cells by a Cell Permeable Gamma Guanidine-based Peptide Nucleic Acid. Current Cancer Drug Targets, 2013, 13, 867-878.	0.8	37
132	Wnt5a inhibits $\hat{I}^2 a \in c$ atenin signaling and proliferation in hepatocyte cultures: Implications in liver regeneration. FASEB Journal, 2013, 27, .	0.2	0
133	Absence of betaâ€catenin in liver attenuates bile duct injury. FASEB Journal, 2013, 27, 387.3.	0.2	0
134	Calpain Induces N-terminal Truncation of β-Catenin in Normal Murine Liver Development. Journal of Biological Chemistry, 2012, 287, 22789-22798.	1.6	33
135	High-mobility group box 1 activates caspase-1 and promotes hepatocellular carcinoma invasiveness and metastases. Hepatology, 2012, 55, 1863-1875.	3.6	200
136	β-Catenin is essential for ethanol metabolism and protection against alcohol-mediated liver steatosis in mice. Hepatology, 2012, 55, 931-940.	3.6	47
137	Cell cycle–related kinase links androgen receptor and β-catenin signaling in hepatocellular carcinoma: Why are men at a loss?. Hepatology, 2012, 55, 970-974.	3.6	19
138	β-Catenin Loss in Hepatocytes Promotes Hepatocellular Cancer after Diethylnitrosamine and Phenobarbital Administration to Mice. PLoS ONE, 2012, 7, e39771.	1.1	27
139	Platelet Derived Growth factor Receptor α (PDGFRα) in Liver Development. FASEB Journal, 2012, 26, 145.1.	0.2	0
140	Role of PDGFRα in liver regeneration using hepatocytespecific knockout mice. FASEB Journal, 2012, 26, 274.9.	0.2	0
141	Cell proliferation in liver in response to iron overload is dependent on βâ€catenin in male mice. FASEB Journal, 2012, 26, 145.3.	0.2	0
142	Antisense oligonucleotide therapy: combating aberrant β atenin in hepatocellular carcinoma using peptide nucleic acids without transfecting agents. FASEB Journal, 2012, 26, 397.5.	0.2	0
143	Wnt/βâ€catenin pathway is activated by thyroid hormone and is required for its hepatomitogenic activity. FASEB Journal, 2012, 26, .	0.2	0
144	Development of novel small molecules targeting β atenin driven hepatocellular carcinoma. FASEB Journal, 2012, 26, 405.3.	0.2	0

#	Article	IF	CITATIONS
145	Structural and functional implications of plakoglobin compensation due to βâ€catenin loss in the liver. FASEB Journal, 2012, 26, 145.15.	0.2	0
146	Elucidating the role of β atenin in hepatocellular tumor angiogenesis. FASEB Journal, 2012, 26, 48.5.	0.2	0
147	Role of Wnt/β-catenin signaling in liver metabolism and cancer. International Journal of Biochemistry and Cell Biology, 2011, 43, 1021-1029.	1.2	138
148	Pegylated interferon alpha targets Wnt signaling by inducing nuclear export of β-catenin. Journal of Hepatology, 2011, 54, 506-512.	1.8	29
149	Hepatocyte γ-catenin compensates for conditionally deleted β-catenin at adherens junctions. Journal of Hepatology, 2011, 55, 1256-1262.	1.8	42
150	Beta-catenin signaling, liver regeneration and hepatocellular cancer: Sorting the good from the bad. Seminars in Cancer Biology, 2011, 21, 44-58.	4.3	220
151	Spontaneous repopulation of β-catenin null livers with β-catenin-positive hepatocytes after chronic murine liver injury. Hepatology, 2011, 54, 1333-1343.	3.6	29
152	Betaâ€catenin signaling in hepatic development and progenitors: Which way does the WNT blow?. Developmental Dynamics, 2011, 240, 486-500.	0.8	71
153	A truncated beta atenin species promotes hepatocyte differentiation in late fetal liver development. FASEB Journal, 2011, 25, 115.1.	0.2	1
154	PDGFRα in Liver Development & amp; Regeneration. FASEB Journal, 2011, 25, 115.4.	0.2	0
155	Role of HGF phosphorylation of betaâ€catenin at Y654 in embryonic mouse liver development. FASEB Journal, 2011, 25, 998.4.	0.2	Ο
156	Accelerated liver regeneration and hepatocarcinogenesis in mice overexpressing serine-45 mutant β-catenin. Hepatology, 2010, 51, 1603-1613.	3.6	133
157	Conditional β-catenin loss in mice promotes chemical hepatocarcinogenesis: Role of oxidative stress and platelet-derived growth factor receptor α/phosphoinositide 3-kinase signaling. Hepatology, 2010, 52, 954-965.	3.6	82
158	The Nitric Oxide DonorS-Nitrosoglutathione Reduces Apoptotic Primary Liver Cell Loss in a Three-Dimensional Perfusion Bioreactor Culture Model Developed for Liver Support. Tissue Engineering - Part A, 2010, 16, 861-866.	1.6	7
159	Liver-Specific Î ² -Catenin Knockout Mice Exhibit Defective Bile Acid and Cholesterol Homeostasis and Increased Susceptibility to Diet-Induced Steatohepatitis. American Journal of Pathology, 2010, 176, 744-753.	1.9	108
160	Disparate Cellular Basis of Improved Liver Repair in β-Catenin-Overexpressing Mice After Long-Term Exposure to 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine. American Journal of Pathology, 2010, 177, 1812-1822.	1.9	36
161	Loss of Beta atenin leads to compensatory changes in adherens and other junctions. FASEB Journal, 2010, 24, 348.1.	0.2	0
162	Non anonical Wnt Signaling in Embryonic Liver Development. FASEB Journal, 2010, 24, 749.1.	0.2	0

#	Article	IF	CITATIONS
163	βâ€Catenin and PDGFRα signaling: Two Divergent mechanisms of hepatocellular carcinoma. FASEB Journal, 2010, 24, 349.4.	0.2	0
164	Activation of the Wnt/β atenin pathway leads to enhanced proliferation and liver regeneration in mice. FASEB Journal, 2010, 24, 236.1.	0.2	0
165	Repopulation of βâ€catenin null liver with βâ€catenin positive progenitor cells and tumor formation after longâ€ŧerm exposure to DDC. FASEB Journal, 2010, 24, 349.6.	0.2	0
166	A Truncated Beta atenin Species Promotes Hepatocyte Differentiation in Late Embryonic Liver Development FASEB Journal, 2010, 24, 39.7.	0.2	0
167	Wnt/β-Catenin Signaling Promotes Renal Interstitial Fibrosis. Journal of the American Society of Nephrology: JASN, 2009, 20, 765-776.	3.0	510
168	Î ² -Catenin Regulates Vitamin C Biosynthesis and Cell Survival in Murine Liver. Journal of Biological Chemistry, 2009, 284, 28115-28127.	1.6	38
169	Wnt/β-Catenin Signaling Promotes Podocyte Dysfunction and Albuminuria. Journal of the American Society of Nephrology: JASN, 2009, 20, 1997-2008.	3.0	356
170	Unique phenotype of hepatocellular cancers with exon-3 mutations in beta-catenin gene. Hepatology, 2009, 49, 821-831.	3.6	144
171	Enhanced liver regeneration following changes induced by hepatocyte-specific genetic ablation of integrin-linked kinase. Hepatology, 2009, 50, 844-851.	3.6	147
172	Beta-Catenin Activation Promotes Liver Regeneration after Acetaminophen-Induced Injury. American Journal of Pathology, 2009, 175, 1056-1065.	1.9	143
173	Wnt/β-catenin signaling mediates oval cell response in rodents. Hepatology, 2008, 47, 288-295.	3.6	157
174	β-Catenin deletion in hepatoblasts disrupts hepatic morphogenesis and survival during mouse development. Hepatology, 2008, 47, 1667-1679.	3.6	170
175	Wnt/β-catenin signaling in hepatic organogenesis. Organogenesis, 2008, 4, 92-99.	0.4	93
176	Regulation of serâ€45 mutated beta atenin in transgenic mouse livers. FASEB Journal, 2008, 22, 465.12.	0.2	0
177	Enhanced liver regeneration in transgenic mice overexpressing stable βâ€catenin. FASEB Journal, 2008, 22, 465.10.	0.2	0
178	Regucalcin/SMPâ€30 is regulated by βâ€catenin in the liver. FASEB Journal, 2008, 22, 1124.6.	0.2	0
179	Using Tyrosine 654 Phosphorylation of Betaâ€Catenin to Predict HCC Pathology. FASEB Journal, 2008, 22, 1124.7.	0.2	0
180	Beta atenin Expression in Pediatric Malignancies. FASEB Journal, 2008, 22, 1124.9.	0.2	0

#	Article	IF	CITATIONS
181	Pegylatedâ€Interferon 2α (Pegâ€IFN) suppresses βâ€catenin signaling in liver. FASEB Journal, 2008, 22, 321.4.	0.2	Ο
182	Induction of Nuclear Translocation of Constitutive Androstane Receptor by Peroxisome Proliferator-activated Receptor α Synthetic Ligands in Mouse Liver. Journal of Biological Chemistry, 2007, 282, 36766-36776.	1.6	32
183	Platelet-derived growth factor receptor-α: a novel therapeutic target in human hepatocellular cancer. Molecular Cancer Therapeutics, 2007, 6, 1932-1941.	1.9	96
184	R-Etodolac decreases β-catenin levels along with survival and proliferation of hepatoma cells. Journal of Hepatology, 2007, 46, 849-857.	1.8	67
185	Human fetal hepatocyte behavior in dynamic 3D perfusion culture bioreactors. Journal of Organ Dysfunction, 2007, 3, 183-192.	0.3	2
186	siRNA-Mediated β-Catenin Knockdown in Human Hepatoma Cells Results in Decreased Growth and Survival. Neoplasia, 2007, 9, 951-959.	2.3	107
187	Wnt'er in liver: Expression of Wnt and frizzled genes in mouse. Hepatology, 2007, 45, 195-204.	3.6	131
188	WNT/ \hat{l}^2 -catenin signaling in liver health and disease. Hepatology, 2007, 45, 1298-1305.	3.6	449
189	Aberrant Wnt/β-Catenin Signaling in Pancreatic Adenocarcinoma. Neoplasia, 2006, 8, 279-289.	2.3	184
190	β-Catenin regulation during matrigel-induced rat hepatocyte differentiation. Cell and Tissue Research, 2006, 323, 71-79.	1.5	36
191	Tyrosine residues 654 and 670 in β-catenin are crucial in regulation of Met–β-catenin interactions. Experimental Cell Research, 2006, 312, 3620-3630.	1.2	83
192	Hepatic adenomas: Presumed innocent until proven to be beta-catenin mutated. Hepatology, 2006, 43, 401-404.	3.6	34
193	Activation of Wnt/β-catenin pathway during hepatocyte growth factor–induced hepatomegaly in mice. Hepatology, 2006, 44, 992-1002.	3.6	107
194	Transcriptomic and genomic analysis of human hepatocellular carcinomas and hepatoblastomas. Hepatology, 2006, 44, 1012-1024.	3.6	319
195	β-Catenin and Met Deregulation in Childhood Hepatoblastomas. Pediatric and Developmental Pathology, 2005, 8, 435-447.	0.5	53
196	Morpholino oligonucleotide-triggered β-catenin knockdown compromises normal liver regeneration. Journal of Hepatology, 2005, 43, 132-141.	1.8	72
197	Mouse Fetal Liver Cells in Artificial Capillary Beds in Three-Dimensional Four-Compartment Bioreactors. American Journal of Pathology, 2005, 167, 1279-1292.	1.9	53
198	Expression of Notch-1 and its ligand Jagged-1 in rat liver during liver regeneration. Hepatology, 2004, 39, 1056-1065.	3.6	163

#	Article	IF	CITATIONS
199	Wnt impacts growth and differentiation in ex vivo liver development. Experimental Cell Research, 2004, 292, 157-169.	1.2	130
200	Fibroblast Growth Factor Enriches the Embryonic Liver Cultures for Hepatic Progenitors. American Journal of Pathology, 2004, 164, 2229-2240.	1.9	62
201	β-catenin antisense studies in embryonic liver cultures: Role in proliferation, apoptosis, and lineage specification. Gastroenterology, 2003, 124, 202-216.	0.6	216
202	Differential Mitogenic Effects of Single Chain Hepatocyte Growth Factor (HGF)/Scatter Factor and HGF/NK1 following Cleavage by Factor Xa. Journal of Biological Chemistry, 2002, 277, 14109-14115.	1.6	18
203	Changes in WNT/β-catenin pathway during regulated growth in rat liver regeneration. Hepatology, 2001, 33, 1098-1109.	3.6	257
204	The processing and utilization of hepatocyte growth factor/scatter factor following partial hepatectomy in the rat. Hepatology, 2001, 34, 688-693.	3.6	122
205	Smad Proteins and Hepatocyte Growth Factor Control Parallel Regulatory Pathways That Converge on β1-Integrin To Promote Normal Liver Development. Molecular and Cellular Biology, 2001, 21, 5122-5131.	1.1	131
206	Intratumoral Therapy of Cisplatin/Epinephrine Injectable Gel for Palliation in Patients With Obstructive Esophageal Cancer. American Journal of Clinical Oncology: Cancer Clinical Trials, 2000, 23, 386-392.	0.6	58
207	Elf3 encodes a novel 200-kD β-spectrin: role in liver development. Oncogene, 1999, 18, 353-364.	2.6	69
208	Genomic structure, chromosomal mapping, and muscle-specific expression of a PH domain-associated intronless gene, cded/lior. Mammalian Genome, 1999, 10, 62-67.	1.0	6
209	Endoscopic treatment of gastric cancer with intratumoral cisplatin/epinephrine injectable gel: a case report. Gastrointestinal Endoscopy, 1998, 48, 415-417.	0.5	17
210	Praja1, a novel gene encoding a RING-H2 motif in mouse development. Oncogene, 1997, 15, 2361-2368.	2.6	44