Yang Jiao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432738/publications.pdf Version: 2024-02-01

VANCHAO

#	Article	IF	CITATIONS
1	Seleniumâ€Doped Carbon Quantum Dots for Freeâ€Radical Scavenging. Angewandte Chemie - International Edition, 2017, 56, 9910-9914.	13.8	276
2	Highly Fluorescent Chiral N‣â€Đoped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angewandte Chemie - International Edition, 2018, 57, 2377-2382.	13.8	249
3	Supramolecular free radicals: near-infrared organic materials with enhanced photothermal conversion. Chemical Science, 2015, 6, 3975-3980.	7.4	174
4	Dissipative Supramolecular Polymerization Powered by Light. CCS Chemistry, 2019, 1, 335-342.	7.8	93
5	Molecular engineering of polymeric supra-amphiphiles. Chemical Society Reviews, 2019, 48, 989-1003.	38.1	90
6	A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie - International Edition, 2016, 55, 8933-8937.	13.8	69
7	The Rise and Promise of Molecular Nanotopology. CCS Chemistry, 2021, 3, 1542-1572.	7.8	61
8	Tuning the Energy Gap by Supramolecular Approaches: Towards Nearâ€Infrared Organic Assemblies and Materials. Small, 2016, 12, 24-31.	10.0	56
9	Highly Fluorescent Chiral N‧â€Doped Carbon Dots from Cysteine: Affecting Cellular Energy Metabolism. Angewandte Chemie, 2018, 130, 2401-2406.	2.0	52
10	Ring-in-Ring(s) Complexes Exhibiting Tunable Multicolor Photoluminescence. Journal of the American Chemical Society, 2020, 142, 16849-16860.	13.7	52
11	Electron-catalysed molecular recognition. Nature, 2022, 603, 265-270.	27.8	51
12	A Donor–Acceptor [2]Catenane for Visible Light Photocatalysis. Journal of the American Chemical Society, 2021, 143, 8000-8010.	13.7	47
13	Seleniumâ€Đoped Carbon Quantum Dots for Freeâ€Radical Scavenging. Angewandte Chemie, 2017, 129, 10042-10046.	2.0	45
14	Artificial Molecular Pump Operating in Response to Electricity and Light. Journal of the American Chemical Society, 2020, 142, 14443-14449.	13.7	45
15	Highly Efficient Supramolecular Catalysis by Endowing the Reaction Intermediate with Adaptive Reactivity. Angewandte Chemie - International Edition, 2018, 57, 6077-6081.	13.8	44
16	Giant Conductance Enhancement of Intramolecular Circuits through Interchannel Gating. Matter, 2020, 2, 378-389.	10.0	43
17	Single-Molecule Charge Transport through Positively Charged Electrostatic Anchors. Journal of the American Chemical Society, 2021, 143, 2886-2895.	13.7	43
18	High-Efficiency Gold Recovery Using Cucurbit[6]uril. ACS Applied Materials & Interfaces, 2020, 12, 38768-38777.	8.0	41

Yang Jiao

#	Article	IF	CITATIONS
19	Visible-Light Photoinduced Electron Transfer Promoted by Cucurbit[8]uril-Enhanced Charge Transfer Interaction: Toward Improved Activity of Photocatalysis. ACS Applied Materials & Interfaces, 2017, 9, 22635-22640.	8.0	39
20	Weak bonding strategies for achieving regio- and site-selective transformations. CheM, 2022, 8, 414-438.	11.7	39
21	pH-Induced Charge-Reversal Amphiphile with Cancer Cell-Selective Membrane-Disrupting Activity. ACS Applied Materials & Interfaces, 2018, 10, 21191-21197.	8.0	34
22	Selective Photodimerization in a Cyclodextrin Metal–Organic Framework. Journal of the American Chemical Society, 2021, 143, 9129-9139.	13.7	34
23	Stabilizing the Naphthalenediimide Radical within a Tetracationic Cyclophane. Journal of the American Chemical Society, 2019, 141, 16915-16922.	13.7	30
24	Regulating morphologies and near-infrared photothermal conversion of perylene bisimide <i>via</i> sequence-dependent peptide self-assembly. Chemical Communications, 2018, 54, 2208-2211.	4.1	26
25	Organic Counteranion Co-assembly Strategy for the Formation of γ-Cyclodextrin-Containing Hybrid Frameworks. Journal of the American Chemical Society, 2020, 142, 2042-2050.	13.7	26
26	Electron-Catalyzed Dehydrogenation in a Single-Molecule Junction. Journal of the American Chemical Society, 2021, 143, 8476-8487.	13.7	25
27	Molecular-Pump-Enabled Synthesis of a Daisy Chain Polymer. Journal of the American Chemical Society, 2020, 142, 10308-10313.	13.7	24
28	A supramolecular radical cation: folding-enhanced electrostatic effect for promoting radical-mediated oxidation. Chemical Science, 2018, 9, 5015-5020.	7.4	21
29	Suit[3]ane. Journal of the American Chemical Society, 2020, 142, 20152-20160.	13.7	20
30	A Supramolecularly Activated Radical Cation for Accelerated Catalytic Oxidation. Angewandte Chemie, 2016, 128, 9079-9083.	2.0	19
31	Highly Stable Organic Bisradicals Protected by Mechanical Bonds. Journal of the American Chemical Society, 2020, 142, 7190-7197.	13.7	17
32	Radical-Enriched Artificial Melanin. Chemistry of Materials, 2020, 32, 5759-5767.	6.7	17
33	Fluorescence Quenching by Redox Molecular Pumping. Journal of the American Chemical Society, 2022, 144, 3572-3579.	13.7	17
34	Cucurbit[7]uril promoted Fenton oxidation by modulating the redox property of catalysts. Chemical Communications, 2019, 55, 14127-14130.	4.1	16
35	Tuning radical interactions in trisradical tricationic complexes by varying host-cavity sizes. Chemical Science, 2020, 11, 107-112.	7.4	14
36	Syntheses of three-dimensional catenanes under kinetic control. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2118573119.	7.1	12

Yang Jiao

#	Article	IF	CITATIONS
37	Highly Efficient Supramolecular Catalysis by Endowing the Reaction Intermediate with Adaptive Reactivity. Angewandte Chemie, 2018, 130, 6185-6189.	2.0	11
38	Radically Enhanced Dual Recognition. Angewandte Chemie - International Edition, 2021, 60, 25454-25462.	13.8	10
39	Temperatureâ€Triggered Supramolecular Assembly of Organic Semiconductors. Advanced Materials, 2022, 34, e2101487.	21.0	8
40	Cucurbit[7]uril-Modulated H/D Exchange of α-Carbonyl Hydrogen: Deceleration in Alkali and Acceleration in Acid Conditions. Langmuir, 2022, 38, 541-546.	3.5	5
41	Radically Enhanced Dual Recognition. Angewandte Chemie, 0, , .	2.0	4
42	Innenrücktitelbild: Radically Enhanced Dual Recognition (Angew. Chem. 48/2021). Angewandte Chemie, 2021, 133, 25787-25787.	2.0	0