Kenichi G N Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432540/publications.pdf Version: 2024-02-01

KENICHI C. N. SUZUKI

#	Article	IF	CITATIONS
1	Ultrafine Membrane Compartments for Molecular Diffusion as Revealed by Single Molecule Techniques. Biophysical Journal, 2004, 86, 4075-4093.	0.5	400
2	Dynamic Organizing Principles of the Plasma Membrane that Regulate Signal Transduction: Commemorating the Fortieth Anniversary of Singer and Nicolson's Fluid-Mosaic Model. Annual Review of Cell and Developmental Biology, 2012, 28, 215-250.	9.4	394
3	Full characterization of GPCR monomer–dimer dynamic equilibrium by single molecule imaging. Journal of Cell Biology, 2011, 192, 463-480.	5.2	310
4	Hierarchical mesoscale domain organization of the plasma membrane. Trends in Biochemical Sciences, 2011, 36, 604-615.	7.5	299
5	GPI-anchored receptor clusters transiently recruit Lyn and G \hat{i} ± for temporary cluster immobilization and Lyn activation: single-molecule tracking study 1. Journal of Cell Biology, 2007, 177, 717-730.	5.2	292
6	Membrane molecules mobile even after chemical fixation. Nature Methods, 2010, 7, 865-866.	19.0	287
7	Rapid Hop Diffusion of a G-Protein-Coupled Receptor in the Plasma Membrane as Revealed by Single-Molecule Techniques. Biophysical Journal, 2005, 88, 3659-3680.	0.5	247
8	Transient GPI-anchored protein homodimers are units for raft organization and function. Nature Chemical Biology, 2012, 8, 774-783.	8.0	234
9	Dynamic recruitment of phospholipase Cγ at transiently immobilized GPI-anchored receptor clusters induces IP3–Ca2+ signaling: single-molecule tracking study 2. Journal of Cell Biology, 2007, 177, 731-742.	5.2	206
10	Raft-based interactions of gangliosides with a GPI-anchored receptor. Nature Chemical Biology, 2016, 12, 402-410.	8.0	165
11	Confined diffusion of transmembrane proteins and lipids induced by the same actin meshwork lining the plasma membrane. Molecular Biology of the Cell, 2016, 27, 1101-1119.	2.1	165
12	Hierarchical organization of the plasma membrane: Investigations by singleâ€molecule tracking vs. fluorescence correlation spectroscopy. FEBS Letters, 2010, 584, 1814-1823.	2.8	157
13	Membrane mechanisms for signal transduction: The coupling of the meso-scale raft domains to membrane-skeleton-induced compartments and dynamic protein complexes. Seminars in Cell and Developmental Biology, 2012, 23, 126-144.	5.0	127
14	Both MHC Class II and its GPI-Anchored Form Undergo Hop Diffusion as Observed by Single-Molecule Tracking. Biophysical Journal, 2008, 95, 435-450.	0.5	109
15	Raft-based sphingomyelin interactions revealed by new fluorescent sphingomyelin analogs. Journal of Cell Biology, 2017, 216, 1183-1204.	5.2	108
16	Defining raft domains in the plasma membrane. Traffic, 2020, 21, 106-137.	2.7	94
17	Super-long single-molecule tracking reveals dynamic-anchorage-induced integrin function. Nature Chemical Biology, 2018, 14, 497-506.	8.0	93
18	Ultrafast Diffusion of a Fluorescent Cholesterol Analog in Compartmentalized Plasma Membranes. Traffic, 2014, 15, 583-612.	2.7	77

KENICHI G N SUZUKI

#	Article	IF	CITATIONS
19	Lipid rafts generate digitalâ€like signal transduction in cell plasma membranes. Biotechnology Journal, 2012, 7, 753-761.	3.5	59
20	Archipelago architecture of the focal adhesion: Membrane molecules freely enter and exit from the focal adhesion zone. Cytoskeleton, 2012, 69, 380-392.	2.0	50
21	Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale organization at the plasma membrane. Molecular Biology of the Cell, 2020, 31, 561-579.	2.1	38
22	High-speed single-molecule imaging reveals signal transduction by induced transbilayer raft phases. Journal of Cell Biology, 2020, 219, .	5.2	35
23	Development of new ganglioside probes and unraveling of raft domain structure by single-molecule imaging. Biochimica Et Biophysica Acta - General Subjects, 2017, 1861, 2494-2506.	2.4	32
24	Evidence of lipid rafts based on the partition and dynamic behavior of sphingomyelins. Chemistry and Physics of Lipids, 2018, 215, 84-95.	3.2	29
25	AMPA receptors in the synapse turnover by monomer diffusion. Nature Communications, 2019, 10, 5245.	12.8	22
26	Single-Molecule Imaging of Receptor–Receptor Interactions. Methods in Cell Biology, 2013, 117, 373-390.	1.1	20
27	Hybrid Soft Nanomaterials Composed of DNA Microspheres and Supramolecular Nanostructures of Semiâ€artificial Glycopeptides. Chemistry - A European Journal, 2019, 25, 11955-11962.	3.3	20
28	Revealing the Raft Domain Organization in the Plasma Membrane by Single-Molecule Imaging of Fluorescent Ganglioside Analogs. Methods in Enzymology, 2018, 598, 267-282.	1.0	19
29	Dual-FRET imaging of IP3 and Ca2+ revealed Ca2+-induced IP3 production maintains long lasting Ca2+ oscillations in fertilized mouse eggs. Scientific Reports, 2019, 9, 4829.	3.3	18
30	Syntheses of Fluorescent Gangliosides for the Studies of Raft Domains. Methods in Enzymology, 2017, 597, 239-263.	1.0	17
31	Development of Fluorescently Labeled SSEA-3, SSEA-4, and Globo-H Glycosphingolipids for Elucidating Molecular Interactions in the Cell Membrane. International Journal of Molecular Sciences, 2019, 20, 6187.	4.1	16
32	New Insights into the Organization of Plasma Membrane and Its Role in SignalÂTransduction. International Review of Cell and Molecular Biology, 2015, 317, 67-96.	3.2	14
33	Development of Fluorescent Ganglioside GD3 and GQ1b Analogs for Elucidation of Raft-Associated Interactions. Journal of Organic Chemistry, 2020, 85, 15998-16013.	3.2	14
34	One-Pot Construction of Multicomponent Supramolecular Materials Comprising Self-Sorted Supramolecular Architectures of DNA and Semi-Artificial Glycopeptides. ACS Applied Bio Materials, 2020, 3, 9082-9092.	4.6	11
35	Single-Molecule Imaging of Signal Transduction via GPI-Anchored Receptors. Methods in Molecular Biology, 2016, 1376, 229-238.	0.9	9
36	Unraveling of Lipid Raft Organization in Cell Plasma Membranes by Single-Molecule Imaging of Ganglioside Probes. Advances in Experimental Medicine and Biology, 2018, 1104, 41-58.	1.6	8

Kenichi G N Suzuki

#	Article	IF	CITATIONS
37	Native prion protein homodimers are destabilized by oligomeric amyloid β 1–42 species as shown by single-molecule imaging. NeuroReport, 2018, 29, 106-111.	1.2	5
38	Construction of a Reductionâ€responsive DNA Microsphere using a Reductionâ€cleavable Spacer based on a Nitrobenzene Scaffold. Chemistry - an Asian Journal, 2022, 17, .	3.3	5
39	Mechanism for signal transduction in the induced-raft domains as revealed by single-molecule tracking. Trends in Glycoscience and Glycotechnology, 2008, 20, 341-351.	0.1	2
40	Functional Reconstitution of Dopamine D2 Receptor into a Supported Model Membrane in a Nanometric Confinement. Advanced Biology, 2021, 5, e2100636.	2.5	1
41	Formation of Supramolecular Nanostructures through in Situ Selfâ€Assembly and Postâ€Assembly Modification of a Biocatalytically Constructed Dipeptide Hydrazide**. Chemistry - A European Journal, 2022, 28, .	3.3	1
42	2P241 Microdomains and compartments in the smooth-muscle cell membrane : single-molecule tracking of phospholopids(Cell biological problems-adhesion, motility, cytoskeleton, signaling, and) Tj ETQq0 0 (0 rg 611 /Ov	erlock 10 Tf 50
43	Membrane Molecules Mobile even after Chemical Fixation. Seibutsu Butsuri, 2011, 51, 226-227.	0.1	Ο
44	2K1512 Enhanced confinement of activated EGF receptor in the plasma membrane compartments revealed by ultra high-speed single-molecule tracking(Cell biology 2,The 48th Annual Meeting of the) Tj ETQq0 C)0 ng/BT/O	vendock 10 Tf :
45	2K1524 Regulation mechanism for signal propagation along the plasma membrane : a single-molecule tracking study(Cell biology 2,The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2011, 51, S93-S94.	0.1	0
46	Induced Raft Domains Working as a Platform for Digital Signal Transduction. Seibutsu Butsuri, 2008, 48, 320-324.	0.1	0
47	New Raft Hypothesis: Mechanisms for Signal Transduction <i>via</i> Rafts in Cell Membranes. Seibutsu Butsuri, 2013, 53, 295-300.	0.1	0
48	Single Molecule Imaging. , 2015, , 557-564.		0
49	Structural Biology of Glycans. , 2019, , 35-63.		Ο