
Michael B Smith

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432476/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structures and biological activity of phosphorylated dihydroceramides of Porphyromonas gingivalis. Journal of Lipid Research, 2004, 45, 2317-2330.	4.2	56
2	Stereoselective Synthesis of N-Augenyl Lactams. Synthetic Communications, 1987, 17, 729-740.	2.1	46
3	Regioselective One-Pot Bromination of Aromatic Amines1. Organic Letters, 2002, 4, 2321-2323.	4.6	42
4	Imaging tumor hypoxia by near-infrared fluorescence tomography. Journal of Biomedical Optics, 2011, 16, 066009.	2.6	35
5	Deposition and hydrolysis of serine dipeptide lipids of Bacteroidetes bacteria in human arteries: relationship to atherosclerosis. Journal of Lipid Research, 2017, 58, 1999-2007.	4.2	35
6	Synthesis and fluorescent characteristics of imidazole–indocyanine green conjugates. Dyes and Pigments, 2011, 89, 9-15.	3.7	30
7	Targeting tumor hypoxia: a third generation 2-nitroimidazole-indocyanine dye-conjugate with improved fluorescent yield. Organic and Biomolecular Chemistry, 2015, 13, 11220-11227.	2.8	30
8	Targeting tumor hypoxia with 2-nitroimidazole-indocyanine green dye conjugates. Journal of Biomedical Optics, 2013, 18, 066009.	2.6	29
9	Structures and biological activities of novel phosphatidylethanolamine lipids of Porphyromonas gingivalis. Journal of Lipid Research, 2006, 47, 844-853.	4.2	28
10	<i>N</i> -DIENYL AMIDES AND LACTAMS: PREPARATION AND DIELS-ALDER REACTIVITY. Organic Preparations and Procedures International, 1990, 22, 315-397.	1.3	27
11	Enhanced conductivity in sorbitol-treated PEDOT–PSS. Observation of an in situ cyclodehydration reaction. Synthetic Metals, 2010, 160, 2284-2289.	3.9	27
12	Phagosomal Copper-Promoted Oxidative Attack on Intracellular <i>Mycobacterium tuberculosis</i> . ACS Infectious Diseases, 2018, 4, 1623-1634.	3.8	27
13	A Mild and Facile Route to ω-Amino Esters. Synthetic Communications, 1988, 18, 1625-1636.	2.1	24
14	Structurally modified indocyanine green dyes. Modification of the polyene linker. Dyes and Pigments, 2013, 99, 275-283.	3.7	22
15	Structural confirmation of the dihydrosphinganine and fatty acid constituents of the dental pathogen Porphyromonas gingivalis. Organic and Biomolecular Chemistry, 2007, 5, 3826.	2.8	21
16	Preparation and Reactions of 1,1-Di(Phenylthio)Cyclobutane Derivatives from 1-(Phenylthio)-1-Cyclopropane Carbinols. Synthetic Communications, 1992, 22, 2273-2285.	2.1	20
17	An Unexpectedly Facile Cyclization of Polyhydric Alcohols. Organic Letters, 2009, 11, 3722-3725.	4.6	18
18	Glycine Lipids of Porphyromonas gingivalis Are Agonists for Toll-Like Receptor 2. Infection and Immunity, 2020, 88	2.2	17

#	Article	IF	CITATIONS
19	Fused quinoline heterocycles VI: Synthesis of 5 <i>H</i> -1-thia-3,5,6-triazaaceanthrylenes and 5 <i>H</i> -1-thia-3,4,5,6-tetraazaaceanthrylenes. Journal of Heterocyclic Chemistry, 2005, 42, 567-574.	2.6	15
20	A novel phosphoglycerol serine-glycine lipodipeptide of Porphyromonas gingivalis is a TLR2 ligand. Journal of Lipid Research, 2020, 61, 1645-1657.	4.2	15
21	An Improved, Preparative Route to Phenyl Vinyl Sulfide Via Phase Transfer Catalysis. Synthetic Communications, 1986, 16, 85-90.	2.1	14
22	Polymer-mediated cyclodehydration of alditols and ketohexoses. Carbohydrate Research, 2011, 346, 1662-1670.	2.3	13
23	Structural verification via convergent total synthesis of dipeptide–lipids isolated from Porphyromonas gingivalis. Tetrahedron, 2016, 72, 7557-7569.	1.9	13
24	Preparation of 5-Alkenyl- and 5-Dienyl-2-pyrrolidinone Derivatives. Synthetic Communications, 1992, 22, 2865-2873.	2.1	9
25	Preparation and Epoxidation of Conjugated Lactams: Influence of Ring Size on Epoxidation. Synthetic Communications, 1995, 25, 1265-1275.	2.1	9
26	Nâ€Benzylâ€5â€hydroxyâ€3â€pyrrolidinâ€2â€one by Hydrogen Peroxide Oxidation ofNâ€Benzylâ€3â€phenylselenoâ€2â€pyrrolidinone. Synthetic Communications, 2007, 37, 813-819.	2.1	9
27	An Improved Reduction of the Ester Moiety in N-Substituted Pyroglutamates. Synthetic Communications, 1989, 19, 2859-2868.	2.1	8
28	CYCLZATION OF ω-HALONITRILES WITH ORGANOLITHIUMS. Organic Preparations and Procedures International, 1989, 21, 297-301.	1.3	8
29	N-SULFONYL LACTAMSviaSULFONATION OF LACTIM ETHERS. Organic Preparations and Procedures International, 1992, 24, 147-157.	1.3	8
30	A General N-Alkylation Procedure for Ethyl Pyroglutamate. Synthetic Communications, 1996, 26, 1827-1838.	2.1	8
31	Synthesis of 5S-(1-Oxoalkyl and Aryl)-2-pyrrolidinone Derivatives1. Synthetic Communications, 1998, 28, 1649-1659.	2.1	8
32	Synthesis of a 4-nitroimidazole indocyanine dye-conjugate and imaging of tumor hypoxia in BALB/c tumor-bearing female mice. Dyes and Pigments, 2016, 126, 251-260.	3.7	8
33	Anchimeric Assistance in the N-Alkylation of 5-alkoxymethyl-2-pyrrolidinone Derivatives. Synthetic Communications, 1992, 22, 2935-2940.	2.1	7
34	A Facile One-Step Synthesis of Ethyl 2-(L,L-Dialkyl and Arylmethyl) Malonates. Synthetic Communications, 1999, 29, 343-350.	2.1	7
35	Chemical reactions of the conducting polymer poly(3,4-ethylene dioxythiophene) and alcohols. Journal of Polymer Science Part A, 2007, 45, 2328-2333.	2.3	7
36	2-Dienylphenacyloxazolones and an intramolecular Diels–Alder approach to the A–B–C ring system of phenanthridone alkaloids. Tetrahedron, 2009, 65, 8781-8785.	1.9	7

#	Article	IF	CITATIONS
37	Simultaneous Determination of Absolute Configuration and Quantity of Lipopeptides Using Chiral Liquid Chromatography/Mass Spectrometry and Diastereomeric Internal Standards. Analytical Chemistry, 2017, 89, 3583-3589.	6.5	7
38	An Improved, Preparative Route to 1-Cyclopropyl-1-Haloethanes. Synthetic Communications, 1983, 13, 593-599.	2.1	6
39	5R-Methyl-1-chloromethyl-2-pyrrolidinone: Determining Enantiomeric Excess in Chiral Nonracemic Amines1. Synthetic Communications, 1998, 28, 1641-1648.	2.1	6
40	Convergent synthesis of a deuteriumâ€labeled serine dipeptide lipid for analysis of biological samples. Journal of Labelled Compounds and Radiopharmaceuticals, 2017, 60, 274-285.	1.0	5
41	Diels-Alder Reactions of N-Alkenyl-Iminium Salts: A Novel Route to Indolizidine Derivatives. Synthetic Communications, 1993, 23, 253-262.	2.1	4
42	Chemical stability of conducting polymers: Friedel–Crafts reactions of alcohols with poly(3,4-ethylenedioxythiophene) (PEDOT). Polymer, 2007, 48, 4328-4336.	3.8	4
43	Synthetic Approaches to 2-Pyrrolidinone-5-carboxaldehyde. Synthetic Communications, 1996, 26, 3137-3150.	2.1	3
44	Synthesis of Octahydro 1H-Pyrrolo[1,2-a]indol-3-ones Via Intramolecular Diels-Alder Reaction of 5-Substituted N-Dienyl Lactams. Synthetic Communications, 1998, 28, 4233-4239.	2.1	3
45	13C NMR of organosulfur compounds the13C chemical shifts of monocyclic γ- and δ-sultones. Magnetic Resonance in Chemistry, 1982, 19, 129-133.	0.7	2
46	Electron impact study of cyclic 2-alkylimines1. Organic Mass Spectrometry, 1984, 19, 645-646.	1.3	2
47	Electron impact study ofN-alkenyl lactams. Organic Mass Spectrometry, 1988, 23, 285-287.	1.3	2
48	Hypoxia targeted carbon nanotubes as a sensitive contrast agent for photoacoustic imaging of tumors. , 2011, , .		2
49	Single wall carbon nanotube/bis carboxylic acid-ICG as a sensitive contrast agent for in vivo tumor imaging in photoacoustic tomography. , 2013, , .		2
50	Electron impact study of 1,1-dithiophenylcyclobutanes. Organic Mass Spectrometry, 1989, 24, 193-194.	1.3	1
51	Preparation of Aldehydes. Compendium of Organic Synthetic Methods, 2006, , 59-71.	0.0	1
52	Preparation of Aldehydes. Compendium of Organic Synthetic Methods, 2006, , 51-66.	0.0	1
53	Tumor hypoxia fluorescence imaging using 2-nitroimidazole bis -carboxylic acid indocyanine dye conjugate. Proceedings of SPIE, 2011, , .	0.8	1
54	Target tumor hypoxia with 2-nitroimidazole-ICG dye conjugates. Proceedings of SPIE, 2013, , .	0.8	1

#	Article	IF	CITATIONS
55	Biodistribution study of 2-nitroimidazole indocyanine green conjugate dye conjugates. , 2014, , .		1
56	Treasure hunt for peptides with undefined chemical modifications: Proteomics identification of differential albumin adducts of 2â€nitroimidazoleâ€indocyanine green in hypoxic tumor. Journal of Mass Spectrometry, 2020, 55, e4376.	1.6	1
57	Preparation of Alkynes. Compendium of Organic Synthetic Methods, 0, , 1-5.	0.0	1
58	The cyclopropylcarbinyl group in mass spectral fragmentations. Organic Mass Spectrometry, 1984, 19, 649-650.	1.3	0
59	Fused Quinoline Heterocycles. Part 6. Synthesis of 5H-1-Thia-3,5,6-triazaaceanthrylenes and 5H-1-Thia-3,4,5,6-tetraazaaceanthrylenes ChemInform, 2005, 36, no.	0.0	0
60	Preparation of Amides. Compendium of Organic Synthetic Methods, 2006, , 121-140.	0.0	0
61	Preparation of Nitriles. Compendium of Organic Synthetic Methods, 2006, , 258-263.	0.0	0
62	Preparation of Halides and Sulfonates. Compendium of Organic Synthetic Methods, 2006, , 206-218.	0.0	0
63	Preparation of Amines. Compendium of Organic Synthetic Methods, 2006, , 113-138.	0.0	0
64	Preparation of Ketones. Compendium of Organic Synthetic Methods, 2006, , 230-257.	0.0	0
65	Preparation of Alkynes. Compendium of Organic Synthetic Methods, 2006, , 1-5.	0.0	0
66	Preparation of Hydrides. Compendium of Organic Synthetic Methods, 2006, , 219-229.	0.0	0
67	Preparation of Alkenes. Compendium of Organic Synthetic Methods, 2006, , 264-289.	0.0	Ο
68	Preparation of Oxides. Compendium of Organic Synthetic Methods, 2006, , 290-297.	0.0	0
69	Preparation of Difunctional Compounds. Compendium of Organic Synthetic Methods, 2006, , 298-485.	0.0	Ο
70	Preparation of Alkyls, Methylenes and Aryls. Compendium of Organic Synthetic Methods, 2006, , 72-120.	0.0	0
71	Preparation of Amines. Compendium of Organic Synthetic Methods, 2006, , 141-164.	0.0	0
72	Preparation of Esters. Compendium of Organic Synthetic Methods, 2006, , 165-187.	0.0	0

#	Article	IF	CITATIONS
73	Preparation of Ethers, Epoxides and Thioethers. Compendium of Organic Synthetic Methods, 2006, , 188-205.	0.0	Ο
74	Preparation of Amides. Compendium of Organic Synthetic Methods, 2006, , 98-112.	0.0	0
75	Preparation of Alcohols. Compendium of Organic Synthetic Methods, 2006, , 15-58.	0.0	Ο
76	Preparation of Acid Derivatives. Compendium of Organic Synthetic Methods, 2006, , 6-14.	0.0	0
77	Preparation of Ketones. Compendium of Organic Synthetic Methods, 2006, , 205-238.	0.0	Ο
78	Preparation of Ethers, Epoxides, and Thioethers. Compendium of Organic Synthetic Methods, 2006, , 164-180.	0.0	0
79	Preparation of Oxides. Compendium of Organic Synthetic Methods, 2006, , 272-279.	0.0	Ο
80	Preparation of Acetylenes. Compendium of Organic Synthetic Methods, 2006, , 1-7.	0.0	0
81	Preparation of Alkyls, Methylenes, and Aryls. Compendium of Organic Synthetic Methods, 2006, , 67-97.	0.0	Ο
82	Preparation of Halides and Sulfonates. Compendium of Organic Synthetic Methods, 2006, , 181-193.	0.0	0
83	Preparation of Hydrides. Compendium of Organic Synthetic Methods, 2006, , 194-204.	0.0	Ο
84	Preparation of Olefins. Compendium of Organic Synthetic Methods, 2006, , 248-271.	0.0	0
85	Preparation of Difunctional Compounds. Compendium of Organic Synthetic Methods, 2006, , 280-492.	0.0	Ο
86	Preparation of Carboxylic Acids, Acid Halides, and Anhydrides. Compendium of Organic Synthetic Methods, 2006, , 8-18.	0.0	0
87	Preparation of Esters. Compendium of Organic Synthetic Methods, 2006, , 139-163.	0.0	Ο
88	Preparation of Alcohols, Phenols, and Thiols. Compendium of Organic Synthetic Methods, 2006, , 19-50.	0.0	0
89	Preparation of Nitriles. Compendium of Organic Synthetic Methods, 2006, , 239-247.	0.0	Ο
90	Preparation of Ketones. Compendium of Organic Synthetic Methods, 0, , 220-241.	0.0	0

#	Article	IF	CITATIONS
91	Preparation of Difunctional Compounds. Compendium of Organic Synthetic Methods, 0, , 276-559.	0.0	Ο
92	Preparation of Halides and Sulfonates. Compendium of Organic Synthetic Methods, 0, , 200-209.	0.0	0
93	Preparation of Alcohols. Compendium of Organic Synthetic Methods, 0, , 16-53.	0.0	Ο
94	Preparation of Oxides. Compendium of Organic Synthetic Methods, 0, , 267-275.	0.0	0
95	Preparation of Hydrides. Compendium of Organic Synthetic Methods, 0, , 210-219.	0.0	0
96	Preparation of Nitriles. Compendium of Organic Synthetic Methods, 0, , 242-246.	0.0	0
97	Preparation of Acid Derivatives. Compendium of Organic Synthetic Methods, 0, , 6-15.	0.0	0
98	Preparation of Amides. Compendium of Organic Synthetic Methods, 0, , 117-138.	0.0	0
99	Preparation of Aldehydes. Compendium of Organic Synthetic Methods, 0, , 54-65.	0.0	0
100	Preparation of Amines. Compendium of Organic Synthetic Methods, 0, , 139-165.	0.0	0
101	Preparation of Esters. Compendium of Organic Synthetic Methods, 0, , 166-183.	0.0	0
102	Preparation of Alkenes. Compendium of Organic Synthetic Methods, 0, , 247-266.	0.0	0
103	Preparation of Ethers, Epoxides and Thioethers. Compendium of Organic Synthetic Methods, 0, , 184-199.	0.0	0
104	Imaging of Tumor Hypoxia using 4-Nitroimidazole Indocyanine Green Dye–Conjugate in BALB/c Tumor-Bearing Female Mice. , 2016, , .		0