Oliver Dieste Blanco

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432378/publications.pdf

Version: 2024-02-01

25 papers 405 citations

840776 11 h-index 752698 20 g-index

26 all docs 26 docs citations

times ranked

26

468 citing authors

#	Article	IF	CITATIONS
1	Low temperature decomposition of $U(IV)$ and $Th(IV)$ oxalates to nanograined oxide powders. Journal of Nuclear Materials, 2015, 460, 200-208.	2.7	66
2	Insights into the sonochemical synthesis and properties of salt-free intrinsic plutonium colloids. Scientific Reports, 2017, 7, 43514.	3.3	42
3	A low-temperature synthesis method for AnO ₂ nanocrystals (An = Th, U, Np, and Pu) and associate solid solutions. CrystEngComm, 2018, 20, 4614-4622.	2.6	40
4	Hydrothermal decomposition of actinide(IV) oxalates: a new aqueous route towards reactive actinide oxide nanocrystals. Open Chemistry, 2016, 14, 170-174.	1.9	35
5	Probing the local structure of nanoscale actinide oxides: a comparison between PuO ₂ and ThO ₂ nanoparticles rules out PuO _{2+x} hypothesis. Nanoscale Advances, 2020, 2, 214-224.	4.6	33
6	Further insights into the chemistry of the Bi–U–O system. Dalton Transactions, 2016, 45, 7847-7855.	3.3	27
7	Structural investigations of (La,Pu)PO4 monazite solid solutions: XRD and XAFS study. Journal of Nuclear Materials, 2017, 493, 404-411.	2.7	24
8	Raman study of the oxidation in (U, Pu)O 2 as a function of Pu content. Journal of Nuclear Materials, 2017, 495, 484-491.	2.7	23
9	TEM study of alpha-damaged plutonium and americium dioxides. Journal of Materials Research, 2015, 30, 1544-1554.	2.6	20
10	Innovative preparation route for uranium carbide using citric acid as a carbon source. Ceramics International, 2016, 42, 16710-16717.	4.8	16
11	Synthesis and characterization of nanocrystalline U1-Pu O2(+) mixed oxides. Materials Today Advances, 2020, 8, 100105.	5.2	12
12	Melting behaviour of uranium-americium mixed oxides under different atmospheres. Journal of Chemical Thermodynamics, 2020, 140, 105896.	2.0	10
13	Nanocomposites of silver nanoparticles embedded in glass nanofibres obtained by laser spinning. Nanoscale, 2013, 5, 3948.	5.6	9
14	Plutonium and Americium Aluminate Perovskites. Inorganic Chemistry, 2019, 58, 9118-9126.	4.0	9
15	Nonconventional Production of Glass Nanofibers by Laser Spinning. Journal of the American Ceramic Society, 2014, 97, 3116-3121.	3.8	7
16	Synthesis, Characterization, and Stability of Americium Phosphate, AmPO ₄ . Inorganic Chemistry, 2020, 59, 6595-6602.	4.0	6
17	Charge Distribution in U _{1–<i>x</i>} Ce _{<i>x</i>} O _{2+<i>y</i>} Nanoparticles. Inorganic Chemistry, 2021, 60, 14550-14556.	4.0	6
18	Influence of the working conditions on nanofiber diameters obtained by laser spinning. Applied Physics A: Materials Science and Processing, 2011, 104, 1217-1222.	2.3	5

#	Article	IF	CITATIONS
19	Uranium–plutonium partitioning in aerosols produced from (U,Pu)O2 mixed oxide by laser heating. Journal of Aerosol Science, 2020, 148, 105588.	3.8	4
20	TEM-EELS analyses of protactinium. Materials Research Express, 2019, 6, 026307.	1.6	3
21	Uranium Carbide Fibers with Nano-Grains as Starting Materials for ISOL Targets. Nanomaterials, 2020, 10, 2458.	4.1	3
22	Self-irradiation-induced disorder in (U238Pu)O2. MRS Advances, 2021, 6, 213.	0.9	3
23	SUPERFACT: A Model Fuel for Studying the Evolution of the Microstructure of Spent Nuclear Fuel during Storage/Disposal. Materials, 2021, 14, 6538.	2.9	2
24	AnO2 Nanocrystals via Hydrothermal Decomposition of Actinide Oxalates., 0,,.		0
25	Advancing the Production Routes of Nanosized Actinide Oxides Solid Solutions. , 0, , .		0