Andreas J Winter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/643229/publications.pdf

Version: 2024-02-01

216 papers

14,630 citations

23567 58 h-index 20961 115 g-index

220 all docs 220 docs citations

times ranked

220

4691 citing authors

#	Article	IF	CITATIONS
1	Entanglement and the foundations of statistical mechanics. Nature Physics, 2006, 2, 754-758.	16.7	763
2	Operational Resource Theory of Coherence. Physical Review Letters, 2016, 116, 120404.	7.8	700
3	Distillation of secret key and entanglement from quantum states. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2005, 461, 207-235.	2.1	592
4	Information causality as a physical principle. Nature, 2009, 461, 1101-1104.	27.8	545
5	Quantum, classical, and total amount of correlations in a quantum state. Physical Review A, 2005, 72, .	2.5	475
6	Monogamy of quantum entanglement and other correlations. Physical Review A, 2004, 69, .	2.5	456
7	Quantum mechanical evolution towards thermal equilibrium. Physical Review E, 2009, 79, 061103.	2.1	420
8	"Squashed entanglement― An additive entanglement measure. Journal of Mathematical Physics, 2004, 45, 829-840.	1.1	361
9	Partial quantum information. Nature, 2005, 436, 673-676.	27.8	345
10	Entropic uncertainty relations—a survey. New Journal of Physics, 2010, 12, 025009.	2.9	343
11	Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched Rényi Relative Entropy. Communications in Mathematical Physics, 2014, 331, 593-622.	2.2	324
12	Operational interpretations of quantum discord. Physical Review A, 2011, 83, .	2.5	306
13	Coding theorem and strong converse for quantum channels. IEEE Transactions on Information Theory, 1999, 45, 2481-2485.	2.4	295
14	Structure of States Which Satisfy Strong Subadditivity of Quantum Entropy with Equality. Communications in Mathematical Physics, 2004, 246, 359-374.	2.2	293
15	Strong converse for identification via quantum channels. IEEE Transactions on Information Theory, 2002, 48, 569-579.	2.4	290
16	Aspects of Generic Entanglement. Communications in Mathematical Physics, 2006, 265, 95-117.	2.2	288
17	Quantum information processing and communication. European Physical Journal D, 2005, 36, 203-228.	1.3	272
18	Randomizing Quantum States: Constructions and Applications. Communications in Mathematical Physics, 2004, 250, 371-391.	2.2	262

#	Article	IF	Citations
19	Everything You Always Wanted to Know About LOCC (But Were Afraid to Ask). Communications in Mathematical Physics, 2014, 328, 303-326.	2.2	222
20	All Nonclassical Correlations Can Be Activated into Distillable Entanglement. Physical Review Letters, 2011, 106, 220403.	7.8	220
21	Graph-Theoretic Approach to Quantum Correlations. Physical Review Letters, 2014, 112, 040401.	7.8	213
22	Quantum State Merging and Negative Information. Communications in Mathematical Physics, 2006, 269, 107-136.	2,2	199
23	Tight Uniform Continuity Bounds for Quantum Entropies: Conditional Entropy, Relative Entropy Distance and Energy Constraints. Communications in Mathematical Physics, 2016, 347, 291-313.	2.2	167
24	The mother of all protocols: restructuring quantum information's family tree. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2009, 465, 2537-2563.	2.1	150
25	A Resource Framework for Quantum Shannon Theory. IEEE Transactions on Information Theory, 2008, 54, 4587-4618.	2.4	142
26	Quantum Nonlocality and Beyond: Limits from Nonlocal Computation. Physical Review Letters, 2007, 99, 180502.	7.8	138
27	Remote Preparation of Quantum States. IEEE Transactions on Information Theory, 2005, 51, 56-74.	2.4	129
28	Distinguishability of Quantum States Under Restricted Families of Measurements with an Application to Quantum Data Hiding. Communications in Mathematical Physics, 2009, 291, 813-843.	2.2	128
29	The Quantum Reverse Shannon Theorem and Resource Tradeoffs for Simulating Quantum Channels. IEEE Transactions on Information Theory, 2014, 60, 2926-2959.	2.4	122
30	Entanglement of assistance and multipartite state distillation. Physical Review A, 2005, 72, .	2.5	113
31	Entanglement and Coherence in Quantum State Merging. Physical Review Letters, 2016, 116, 240405.	7.8	113
32	Zero-Error Communication via Quantum Channels, Noncommutative Graphs, and a Quantum Lov \tilde{A}_i sz Number. IEEE Transactions on Information Theory, 2013, 59, 1164-1174.	2.4	111
33	Counterexamples to the Maximal p-Norm Multiplicativity Conjecture for all p > 1. Communications in Mathematical Physics, 2008, 284, 263-280.	2.2	108
34	A Decoupling Approach to the Quantum Capacity. Open Systems and Information Dynamics, 2008, 15, 7-19.	1.2	107
35	Quantum Network Communicationâ€"The Butterfly and Beyond. IEEE Transactions on Information Theory, 2010, 56, 3478-3490.	2.4	99
36	Quantum privacy and quantum wiretap channels. Problems of Information Transmission, 2004, 40, 318-336.	0.5	98

#	Article	IF	CITATIONS
37	Localization and its consequences for quantum walk algorithms and quantum communication. Physical Review A, 2007, 76, .	2.5	96
38	Are Random Pure States Useful for Quantum Computation?. Physical Review Letters, 2009, 102, 190502.	7.8	92
39	Generalized laws of thermodynamics in the presence of correlations. Nature Communications, 2017, 8, 2180.	12.8	92
40	Improving Zero-Error Classical Communication with Entanglement. Physical Review Letters, 2010, 104, 230503.	7.8	90
41	Relating Quantum Privacy and Quantum Coherence: An Operational Approach. Physical Review Letters, 2004, 93, 080501.	7.8	88
42	Microcanonical and resource-theoretic derivations of the thermal state of a quantum system with noncommuting charges. Nature Communications, 2016, 7, 12051.	12.8	87
43	Quantum Correlation without Classical Correlations. Physical Review Letters, 2008, 101, 070502.	7.8	84
44	Distilling Common Randomness From Bipartite Quantum States. IEEE Transactions on Information Theory, 2004, 50, 3183-3196.	2.4	82
45	The capacity of the quantum multiple-access channel. IEEE Transactions on Information Theory, 2001, 47, 3059-3065.	2.4	80
46	A Family of Quantum Protocols. Physical Review Letters, 2004, 93, 230504.	7.8	79
47	Classical data compression with quantum side information. Physical Review A, 2003, 68, .	2.5	76
48	Private Capacity of Quantum Channels is Not Additive. Physical Review Letters, 2009, 103, 120501.	7.8	75
49	Entanglement-Assisted Capacity of Quantum Multiple-Access Channels. IEEE Transactions on Information Theory, 2008, 54, 3078-3090.	2.4	74
50	Resource theory of coherence: Beyond states. Physical Review A, 2017, 95, .	2.5	74
51	Universal Recovery Maps and Approximate Sufficiency of Quantum Relative Entropy. Annales Henri Poincare, 2018, 19, 2955-2978.	1.7	70
52	The Quantum Capacity With Symmetric Side Channels. IEEE Transactions on Information Theory, 2008, 54, 4208-4217.	2.4	68
53	Quantum privacy and quantum wiretap channels. Problems of Information Transmission, 2004, 40, 318-336.	0.5	66
54	Robustness of Quantum Markov Chains. Communications in Mathematical Physics, 2007, 277, 289-304.	2.2	65

#	Article	IF	CITATIONS
55	Uncertainty, Monogamy, and Locking of Quantum Correlations. IEEE Transactions on Information Theory, 2005, 51, 3159-3165.	2.4	64
56	ON THE EXISTENCE OF PHYSICAL TRANSFORMATIONS BETWEEN SETS OF QUANTUM STATES. International Journal of Quantum Information, 2004, 02, $11-21$.	1.1	62
57	??Extrinsic?? and ??Intrinsic?? Data in Quantum Measurements: Asymptotic Convex Decomposition of Positive Operator Valued Measures. Communications in Mathematical Physics, 2004, 244, 157-185.	2.2	62
58	Should Entanglement Measures be Monogamous or Faithful?. Physical Review Letters, 2016, 117, 060501.	7.8	62
59	Gaussian quantum resource theories. Physical Review A, 2018, 98, .	2.5	61
60	Commitment Capacity of Discrete Memoryless Channels. Lecture Notes in Computer Science, 2003, , 35-51.	1.3	61
61	How to Quantify a Dynamical Quantum Resource. Physical Review Letters, 2019, 123, 150401.	7.8	59
62	On the dimension of subspaces with bounded Schmidt rank. Journal of Mathematical Physics, 2008, 49,	1.1	57
63	Measuring polynomial invariants of multiparty quantum states. Physical Review A, 2004, 69, .	2.5	56
64	Using and reusing coherence to realize quantum processes. Quantum - the Open Journal for Quantum Science, 0, 2, 100.	0.0	56
65	Schur Complement Inequalities for Covariance Matrices and Monogamy of Quantum Correlations. Physical Review Letters, 2016, 117, 220502.	7.8	55
66	Strong Converse Rates for Quantum Communication. IEEE Transactions on Information Theory, 2017, 63, 715-727.	2.4	54
67	Interferometric visibility and coherence. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 473, 20170170.	2.1	52
68	Efficient Quantum Pseudorandomness with Nearly Time-Independent Hamiltonian Dynamics. Physical Review X, 2017, 7, .	8.9	52
69	First and Second Law of Quantum Thermodynamics: A Consistent Derivation Based on a Microscopic Definition of Entropy. PRX Quantum, 2021, 2, .	9.2	50
70	Equilibration Time Scales of Physically Relevant Observables. Physical Review X, 2017, 7, .	8.9	47
71	Remarks on Additivity of the Holevo Channel Capacity and of the Entanglement of Formation. Communications in Mathematical Physics, 2004, 246, 427-442.	2.2	46
72	Zero-Error Channel Capacity and Simulation Assisted by Non-Local Correlations. IEEE Transactions on Information Theory, 2011, 57, 5509-5523.	2.4	46

#	Article	IF	CITATIONS
73	On the Oblivious-Transfer Capacity of Noisy Resources. IEEE Transactions on Information Theory, 2008, 54, 2572-2581.	2.4	45
74	On the Quantum Chromatic Number of a Graph. Electronic Journal of Combinatorics, 2007, 14, .	0.4	44
75	Ultimate Data Hiding in Quantum Mechanics and Beyond. Communications in Mathematical Physics, 2018, 361, 661-708.	2.2	43
76	Thermodynamics as a Consequence of Information Conservation. Quantum - the Open Journal for Quantum Science, 0, 3, 121.	0.0	43
77	Communication cost of entanglement transformations. Physical Review A, 2003, 67, .	2.5	41
78	Higher entropic uncertainty relations for anti-commuting observables. Journal of Mathematical Physics, 2008, 49, 062105.	1.1	41
79	On the speed of fluctuations around thermodynamic equilibrium. New Journal of Physics, 2010, 12, 055021.	2.9	41
80	Entanglement of the Antisymmetric State. Communications in Mathematical Physics, 2012, 311, 397-422.	2.2	41
81	A New Inequality for the von Neumann Entropy. Communications in Mathematical Physics, 2005, 259, 129-138.	2.2	40
82	QUANTUM LOCKING OF CLASSICAL CORRELATIONS AND QUANTUM DISCORD OF CLASSICAL-QUANTUM STATES. International Journal of Quantum Information, 2011, 09, 1643-1651.	1.1	40
83	One-Shot Coherence Distillation: Towards Completing the Picture. IEEE Transactions on Information Theory, 2019, 65, 6441-6453.	2.4	40
84	Counterexamples to Additivity of Minimum Output p-Rényi Entropy for p Close to 0. Communications in Mathematical Physics, 2008, 284, 281-290.	2.2	39
85	Tensor Rank and Stochastic Entanglement Catalysis for Multipartite Pure States. Physical Review Letters, 2010, 105, 200501.	7.8	39
86	Limitations on quantum key repeaters. Nature Communications, 2015, 6, 6908.	12.8	38
87	Approximate Degradable Quantum Channels. IEEE Transactions on Information Theory, 2017, 63, 7832-7844.	2.4	38
88	Estimating quantum chromatic numbers. Journal of Functional Analysis, 2016, 270, 2188-2222.	1.4	37
89	Relative Entropy and Squashed Entanglement. Communications in Mathematical Physics, 2014, 326, 63-80.	2.2	36
90	Non-Gaussian operations on bosonic modes of light: Photon-added Gaussian channels. Physical Review A, 2017, 95, .	2.5	36

#	Article	IF	Citations
91	Fundamental limits on key rates in device-independent quantum key distribution. New Journal of Physics, 2020, 22, 023039.	2.9	36
92	Indistinguishability-enabled coherence for quantum metrology. Physical Review A, 2019, 100, .	2.5	35
93	Implications of superstrong non-locality for cryptography. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2006, 462, 1919-1932.	2.1	34
94	Full Security of Quantum Key Distribution From No-Signaling Constraints. IEEE Transactions on Information Theory, 2014, 60, 4973-4986.	2.4	34
95	No-Signalling-Assisted Zero-Error Capacity of Quantum Channels and an Information Theoretic Interpretation of the Lovšsz Number. IEEE Transactions on Information Theory, 2016, 62, 891-914.	2.4	34
96	State Discrimination With Post-Measurement Information. IEEE Transactions on Information Theory, 2008, 54, 4183-4198.	2.4	33
97	Logarithmic coherence: Operational interpretation of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>â,,"</mml:mi><mml:mn>1<td>nnഉ.ജിന്നനി</td><td>:msab></td></mml:mn></mml:msub></mml:math>	nn ഉ .ജിന്നനി	:m s ab>
98	What does an experimental test of quantum contextuality prove or disprove?. Journal of Physics A: Mathematical and Theoretical, 2014, 47, 424031.	2.1	32
99	Random Quantum Codes from Gaussian Ensembles and an Uncertainty Relation. Open Systems and Information Dynamics, 2008, 15, 71-89.	1.2	31
100	Trading quantum for classical resources in quantum data compression. Journal of Mathematical Physics, 2002, 43, 4404-4444.	1.1	30
101	Entangling and Disentangling Power of Unitary Transformations Are Not Equal. Physical Review Letters, 2009, 103, 030501.	7.8	29
102	Secret, public and quantum correlation cost of triples of random variables., 2005,,.		28
103	"Pretty Strong―Converse for the Quantum Capacity of Degradable Channels. IEEE Transactions on Information Theory, 2014, 60, 317-333.	2.4	28
104	Unitary 2-designs from random $\langle i \rangle X \langle i \rangle$ - and $\langle i \rangle Z \langle i \rangle$ -diagonal unitaries. Journal of Mathematical Physics, 2017, 58, .	1.1	28
105	On the Oblivious Transfer Capacity of Noisy Correlations. , 2006, , .		26
106	Quantum State Cloning Using Deutschian Closed Timelike Curves. Physical Review Letters, 2013, 111, 190401.	7.8	26
107	Error exponents for entanglement concentration. Journal of Physics A, 2003, 36, 527-553.	1.6	25
108	Optimal Superdense Coding of Entangled States. IEEE Transactions on Information Theory, 2006, 52, 3635-3641.	2.4	25

#	Article	IF	CITATIONS
109	"Hyperbits― The information quasiparticles. Physical Review A, 2012, 85, .	2.5	25
110	Infinitely Many Constrained Inequalities for the von Neumann Entropy. IEEE Transactions on Information Theory, 2012, 58, 3657-3663.	2.4	25
111	Quantum Rate-Distortion Coding With Auxiliary Resources. IEEE Transactions on Information Theory, 2013, 59, 6755-6773.	2.4	25
112	The structure of Rényi entropic inequalities. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2013, 469, 20120737.	2.1	24
113	Many-Body Quantum Magic. PRX Quantum, 2022, 3, .	9.2	24
114	Inequalities for the ranks of multipartite quantum states. Linear Algebra and Its Applications, 2014, 452, 153-171.	0.9	23
115	Squashed Entanglement, \$\$mathbf {k}\$\$ k -Extendibility, Quantum Markov Chains, and Recovery Maps. Foundations of Physics, 2018, 48, 910-924.	1.3	23
116	Entropic Proofs of Singleton Bounds for Quantum Error-Correcting Codes. IEEE Transactions on Information Theory, 2022, 68, 3942-3950.	2.4	23
117	Quantum Channel Capacities With Passive Environment Assistance. IEEE Transactions on Information Theory, 2016, 62, 1733-1747.	2.4	22
118	Efficient Protocols Achieving the Commitment Capacity of Noisy Correlations. , 2006, , .		20
119	Entanglement and separability of quantum harmonic oscillator systems at finite temperature. Quantum Information and Computation, 2008, 8, 245-262.	0.3	20
120	On the reversible extraction of classical information from a quantum source. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2001, 457, 2019-2039.	2.1	19
121	Nonmalleable encryption of quantum information. Journal of Mathematical Physics, 2009, 50, .	1.1	19
122	On the Chernoff Distance for Asymptotic LOCC Discrimination of Bipartite Quantum States. Communications in Mathematical Physics, 2009, 285, 161-174.	2.2	19
123	Weak Decoupling Duality and Quantum Identification. IEEE Transactions on Information Theory, 2012, 58, 4914-4929.	2.4	19
124	Quantum reference frames and their applications to thermodynamics. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2018, 376, 20180111.	3.4	19
125	How Many Copies are Needed for State Discrimination?. IEEE Transactions on Information Theory, 2012, 58, 1-2.	2.4	18
126	Distinguishing Multi-Partite States by Local Measurements. Communications in Mathematical Physics, 2013, 323, 555-573.	2.2	18

#	Article	IF	CITATIONS
127	Potential Capacities of Quantum Channels. IEEE Transactions on Information Theory, 2016, 62, 1415-1424.	2.4	18
128	Stochastic thermodynamics with arbitrary interventions. Physical Review E, 2019, 100, 022135.	2.1	18
129	On the Distributed Compression of Quantum Information. IEEE Transactions on Information Theory, 2006, 52, 4349-4357.	2.4	17
130	Bounds on Entanglement-Assisted Source-Channel Coding via the LovÃ;sz (vartheta) Number and Its Variants. IEEE Transactions on Information Theory, 2014, 60, 7330-7344.	2.4	17
131	Classical capacities of quantum channels with environment assistance. Problems of Information Transmission, 2016, 52, 214-238.	0.5	17
132	Compression of quantum-measurement operations. Physical Review A, 2001, 64, .	2.5	16
133	Pure-state transformations and catalysis under operations that completely preserve positivity of partial transpose. Physical Review A, 2008, 78, .	2.5	16
134	Quantum-to-classical rate distortion coding. Journal of Mathematical Physics, 2013, 54, .	1,1	16
135	Extendibility Limits the Performance of Quantum Processors. Physical Review Letters, 2019, 123, 070502.	7.8	16
136	Constant Compositions in the Sphere Packing Bound for Classical-Quantum Channels. IEEE Transactions on Information Theory, 2017, , $1\text{-}1$.	2.4	15
137	Universal Gaps for XOR Games from Estimates on Tensor Norm Ratios. Communications in Mathematical Physics, 2020, 375, 679-724.	2.2	15
138	Scalable programmable quantum gates and a new aspect of the additivity problem for the classical capacity of quantum channels. Journal of Mathematical Physics, 2002, 43, 4341-4352.	1,1	14
139	Highly Entangled States with Almost No Secrecy. Physical Review Letters, 2010, 104, 240405.	7.8	14
140	Strong converse for the classical capacity of the pure-loss bosonic channel. Problems of Information Transmission, 2014, 50, 117-132.	0.5	14
141	From Log-Determinant Inequalities to Gaussian Entanglement via Recoverability Theory. IEEE Transactions on Information Theory, 2017, 63, 7553-7568.	2.4	14
142	Secure and Robust Identification via Classical-Quantum Channels. IEEE Transactions on Information Theory, 2019, 65, 6734-6749.	2.4	13
143	Convexity and Operational Interpretation of the Quantum Information Bottleneck Function., 2019,,.		12
144	Quantum learning of classical stochastic processes: The completely positive realization problem. Journal of Mathematical Physics, 2016, 57, .	1.1	12

#	Article	IF	CITATIONS
145	Addendum to "Strong converse for identification via quantum channels". IEEE Transactions on Information Theory, 2003, 49, 346.	2.4	11
146	Quantum Coding Theorem from Privacy and Distinguishability. Open Systems and Information Dynamics, 2008, 15, 47-69.	1.2	11
147	Distributed Compression of Correlated Classical-Quantum Sources or: The Price of Ignorance. IEEE Transactions on Information Theory, 2020, 66, 5620-5633.	2.4	11
148	Activation of indistinguishability-based quantum coherence for enhanced metrological applications with particle statistics imprint. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	11
149	The usefulness of uselessness. Nature, 2010, 466, 1053-1054.	27.8	10
150	On Zero-Error Communication via Quantum Channels in the Presence of Noiseless Feedback. IEEE Transactions on Information Theory, 2016, 62, 5260-5277.	2.4	10
151	All phase-space linear bosonic channels are approximately Gaussian dilatable. New Journal of Physics, 2018, 20, 113012.	2.9	10
152	Reference Frames Which Separately Store Noncommuting Conserved Quantities. Physical Review Letters, 2020, 125, 090601.	7.8	10
153	Information Theoretically Secure Oblivious Polynomial Evaluation: Model, Bounds, and Constructions. Lecture Notes in Computer Science, 2004, , 62-73.	1.3	10
154	Rates for bit commitment and coin tossing from noisy correlation., 0,,.		9
155	All Inequalities for the Relative Entropy. Communications in Mathematical Physics, 2006, 269, 223-238.	2.2	9
156	Fully Quantum Arbitrarily Varying Channels: Random Coding Capacity and Capacity Dichotomy. , 2018, , .		9
157	Distributed Private Randomness Distillation. Physical Review Letters, 2019, 123, 170501.	7.8	9
158	Quantum Finite State Transducers. Lecture Notes in Computer Science, 2001, , 233-242.	1.3	9
159	Coping with uncertainty. Nature Physics, 2010, 6, 640-641.	16.7	8
160	Weak Locking Capacity of Quantum Channels Can be Much Larger Than Private Capacity. Journal of Cryptology, 2017, 30, 1-21.	2.8	8
161	Resource theory of unextendibility and nonasymptotic quantum capacity. Physical Review A, 2021, 104, .	2.5	8
162	A family of quantum protocols. , 0, , .		7

#	Article	IF	CITATIONS
163	Strong converse rates for quantum communication. , 2015, , .		7
164	Strong Converse for the Classical Capacity of Optical Quantum Communication Channels. IEEE Transactions on Information Theory, 2015, 61, 1842-1850.	2.4	7
165	Perfect Strategies for Non-Local Games. Mathematical Physics Analysis and Geometry, 2020, 23, 1.	1.0	7
166	On the fidelity of two pure states. Journal of Physics A, 2001, 34, 7095-7101.	1.6	6
167	Constant compositions in the sphere packing bound for classical-quantum channels. , 2014, , .		6
168	Every entangled state provides an advantage in classical communication. Journal of Mathematical Physics, 2019, 60, 072201.	1.1	6
169	Entanglement-Assisted Quantum Data Compression. , 2019, , .		6
170	Decoupling with random diagonal unitaries. Quantum - the Open Journal for Quantum Science, 0, 1, 18.	0.0	6
171	Another Algebraic Proof of Bondy's Theorem on Induced Subsets. Journal of Combinatorial Theory - Series A, 2000, 89, 145-147.	0.8	5
172	Identification via Quantum Channels. Lecture Notes in Computer Science, 2013, , 217-233.	1.3	5
173	Witnessing entanglement by proxy. New Journal of Physics, 2016, 18, 015002.	2.9	5
174	A new property of the Lov \tilde{A}_1 'sz number and duality relations between graph parameters. Discrete Applied Mathematics, 2017, 216, 489-501.	0.9	5
175	Multi-User Distillation of Common Randomness and Entanglement from Quantum States. , 2020, , .		5
176	Programmability of covariant quantum channels. Quantum - the Open Journal for Quantum Science, 0, 5, 488.	0.0	5
177	All tight correlation Bell inequalities have quantum violations. Physical Review Research, 2020, 2, .	3.6	5
178	Usefulness of adaptive strategies in asymptotic quantum channel discrimination. Physical Review A, 2022, 105, .	2.5	5
179	Distilling common randomness from bipartite quantum states. , 2003, , .		4
180	The Private and Public Correlation Cost of Three Random Variables With Collaboration. IEEE Transactions on Information Theory, 2016, 62, 2034-2043.	2.4	4

#	Article	IF	CITATIONS
181	"Pretty strong―converse for the private capacity of degraded quantum wiretap channels. , 2016, , .		4
182	Flexible constrained de Finetti reductions and applications. Journal of Mathematical Physics, 2017, 58, 092203.	1.1	4
183	Quantum Enhancement of Randomness Distribution. IEEE Transactions on Information Theory, 2018, 64, 4664-4673.	2.4	4
184	Sandwich theorems and capacity bounds for non-commutative graphs. Journal of Combinatorial Theory - Series A, 2021, 177, 105302.	0.8	4
185	Thermality versus Objectivity: Can They Peacefully Coexist?. Entropy, 2021, 23, 1506.	2.2	4
186	Kaszlikowski <i>etÂal.</i> Reply:. Physical Review Letters, 2010, 104, .	7.8	3
187	Zero-error communication via quantum channels and a quantum Lov& #x00E1; sz & amp; #x003B8; -function. , 2011, , .		3
188	Universal recoverability in quantum information., 2016,,.		3
189	An Alphabet-Size Bound for the Information Bottleneck Function. , 2020, , .		3
190	A Lower Bound on Entanglement-Assisted Quantum Communication Complexity. Lecture Notes in Computer Science, 2007, , 122-133.	1.3	3
191	Title is missing!. Chicago Journal of Theoretical Computer Science, 2016, 22, 1-22.	0.3	3
192	General Mixed-State Quantum Data Compression With and Without Entanglement Assistance. IEEE Transactions on Information Theory, 2022, 68, 3130-3138.	2.4	3
193	Identification via Quantum Channels in the Presence of Prior Correlation and Feedback. Electronic Notes in Discrete Mathematics, 2005, 21, 387.	0.4	2
194	Uncertainty, monogamy and locking of quantum correlations. , 2005, , .		2
195	All Inequalities for the Relative Entropy. , 2006, , .		2
196	Thermodynamics from Information. Fundamental Theories of Physics, 2018, , 799-820.	0.3	2
197	Secure and Robust Identification via Classical-Quantum Channels. , 2018, , .		2
198	Intersection patterns of linear subspaces with the hypercube. Journal of Combinatorial Theory - Series A, 2019, 164, 60-71.	0.8	2

#	Article	IF	CITATIONS
199	Distributed Compression of Correlated Classical-Quantum Sources., 2019,,.		2
200	General Mixed State Quantum Data Compression with and without Entanglement Assistance., 2020,,.		2
201	Infinite-Dimensional Programmable Quantum Processors. PRX Quantum, 2021, 2, .	9.2	2
202	Capacities of Gaussian Quantum Channels With Passive Environment Assistance. IEEE Transactions on Information Theory, 2022, 68, 339-358.	2.4	2
203	Multi-User Distillation of Common Randomness and Entanglement From Quantum States. IEEE Transactions on Information Theory, 2022, 68, 976-988.	2.4	2
204	Scalable programmable quantum gates and a new aspect of the additivity problem for the classical capacity of quantum channels. , 0 , , .		1
205	Towards a strong converse for the quantum capacity (of degradable channels). , 2013, , .		1
206	Strong converse for the capacity of quantum Gaussian channels. , 2014, , .		1
207	Quantum State Redistribution for Ensemble Sources. , 2020, , .		1
208	Discrimination of quantum states under locality constraints in the many-copy setting., 2021,,.		1
209	LOCC protocols with bounded width per round optimize convex functions. Reviews in Mathematical Physics, 2021, 33, 2150013.	1.7	1
210	Strong Converse for the Classical Capacity of Entanglement-Breaking and Hadamard Channels via a Sandwiched RÃ@nyi Relative Entropy. , 0, .		1
211	Random and not-so-random codes for quantum channels. , 2006, , .		0
212	On the Chernoff distance for asymptotic LOCC discrimination of bipartite quantum states., 2008,,.		0
213	Information theoretic principles of universal discrete denoising. , 2017, , .		0
214	A non-distillability criterion for secret correlations. Quantum Information and Computation, 2010, 10, 152-159.	0.3	0
215	Mini-Workshop: Mathematical Physics meets Sparse Recovery. Oberwolfach Reports, 2014, 11, 1047-1073.	0.0	0
216	Information theoretic parameters of noncommutative graphs and convex corners. Illinois Journal of Mathematics, 2022, 66, .	0.1	0