Carlos A Coello Coello

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6432130/publications.pdf

Version: 2024-02-01

491 papers 30,222 citations

20817 60 h-index 153 g-index

508 all docs 508 docs citations

508 times ranked

13966 citing authors

#	Article	IF	CITATIONS
1	Handling multiple objectives with particle swarm optimization. IEEE Transactions on Evolutionary Computation, 2004, 8, 256-279.	10.0	3,484
2	Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer Methods in Applied Mechanics and Engineering, 2002, 191, 1245-1287.	6.6	1,867
3	Evolutionary Algorithms for Solving Multi-Objective Problems. Genetic Algorithms and Evolutionary Computation, 2002, , .	0.3	1,478
4	Use of a self-adaptive penalty approach for engineering optimization problems. Computers in Industry, 2000, 41, 113-127.	9.9	1,045
5	A Comprehensive Survey of Evolutionary-Based Multiobjective Optimization Techniques. Knowledge and Information Systems, 1999, 1, 269-308.	3.2	1,019
6	Evolutionary multi-objective optimization: a historical view of the field. IEEE Computational Intelligence Magazine, 2006, $1,28\text{-}36$.	3.2	911
7	MOPSO: a proposal for multiple objective particle swarm optimization., 0,,.		879
8	Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm and Evolutionary Computation, 2011, 1, 173-194.	8.1	863
9	Constraint-handling in genetic algorithms through the use of dominance-based tournament selection. Advanced Engineering Informatics, 2002, 16, 193-203.	8.0	717
10	Solving Multiobjective Optimization Problems Using an Artificial Immune System. Genetic Programming and Evolvable Machines, 2005, 6, 163-190.	2.2	702
11	An updated survey of GA-based multiobjective optimization techniques. ACM Computing Surveys, 2000, 32, 109-143.	23.0	555
12	A Simple Multimembered Evolution Strategy to Solve Constrained Optimization Problems. IEEE Transactions on Evolutionary Computation, 2005, 9, 1-17.	10.0	513
13	Using the Averaged Hausdorff Distance as a Performance Measure in Evolutionary Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 2012, 16, 504-522.	10.0	508
14	Improving PSO-Based Multi-objective Optimization Using Crowding, Mutation and â^-Dominance. Lecture Notes in Computer Science, 2005, , 505-519.	1.3	486
15	Bio-inspired computation: Where we stand and what's next. Swarm and Evolutionary Computation, 2019, 48, 220-250.	8.1	430
16	A comparative study of differential evolution variants for global optimization. , 2006, , .		401
17	SMPSO: A new PSO-based metaheuristic for multi-objective optimization. , 2009, , .		393
18	An empirical study about the usefulness of evolution strategies to solve constrained optimization problems. International Journal of General Systems, 2008, 37, 443-473.	2.5	382

#	Article	IF	Citations
19	A Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part I. IEEE Transactions on Evolutionary Computation, 2014, 18, 4-19.	10.0	319
20	CONSTRAINT-HANDLING USING AN EVOLUTIONARY MULTIOBJECTIVE OPTIMIZATION TECHNIQUE. Civil Engineering and Environmental Systems, 2000, 17, 319-346.	0.9	310
21	A Survey on Multiobjective Evolutionary Algorithms for the Solution of the Portfolio Optimization Problem and Other Finance and Economics Applications. IEEE Transactions on Evolutionary Computation, 2013, 17, 321-344.	10.0	254
22	Cultured differential evolution for constrained optimization. Computer Methods in Applied Mechanics and Engineering, 2006, 195, 4303-4322.	6.6	237
23	g-dominance: Reference point based dominance for multiobjective metaheuristics. European Journal of Operational Research, 2009, 197, 685-692.	5.7	234
24	TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION. Engineering Optimization, 2000, 32, 275-308.	2.6	231
25	Efficient evolutionary optimization through the use of a cultural algorithm. Engineering Optimization, 2004, 36, 219-236.	2.6	206
26	Multiobjective optimization of trusses using genetic algorithms. Computers and Structures, 2000, 75, 647-660.	4.4	204
27	Particle Swarm Optimization With a Balanceable Fitness Estimation for Many-Objective Optimization Problems. IEEE Transactions on Evolutionary Computation, 2018, 22, 32-46.	10.0	202
28	Pareto-adaptive Îμ-dominance. Evolutionary Computation, 2007, 15, 493-517.	3.0	192
29	On the Influence of the Number of Objectives on the Hardness of a Multiobjective Optimization Problem. IEEE Transactions on Evolutionary Computation, 2011, 15, 444-455.	10.0	191
30	A Study of the Parallelization of a Coevolutionary Multi-objective Evolutionary Algorithm. Lecture Notes in Computer Science, 2004, , 688-697.	1.3	179
31	HCS: A New Local Search Strategy for Memetic Multiobjective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation, 2010, 14, 112-132.	10.0	163
32	Survey of Multiobjective Evolutionary Algorithms for Data Mining: Part II. IEEE Transactions on Evolutionary Computation, 2014, 18, 20-35.	10.0	158
33	A survey of multi-objective metaheuristics applied to structural optimization. Structural and Multidisciplinary Optimization, 2014, 49, 537-558.	3.5	157
34	A Tutorial On the design, experimentation and application of metaheuristic algorithms to real-World optimization problems. Swarm and Evolutionary Computation, 2021, 64, 100888.	8.1	154
35	Use of cooperative coevolution for solving large scale multiobjective optimization problems., 2013,,.		153
36	Handling constraints using multiobjective optimization concepts. International Journal for Numerical Methods in Engineering, 2004, 59, 1989-2017.	2.8	144

#	Article	IF	CITATIONS
37	Coevolutionary Multiobjective Evolutionary Algorithms: Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation, 2018, 22, 851-865.	10.0	139
38	Handling preferences in evolutionary multiobjective optimization: a survey. , 0 , , .		132
39	Optimal Power Flow Subject to Security Constraints Solved With a Particle Swarm Optimizer. IEEE Transactions on Power Systems, 2008, 23, 33-40.	6.5	127
40	Multiobjective Evolutionary Algorithms in Aeronautical and Aerospace Engineering. IEEE Transactions on Evolutionary Computation, 2012, 16, 662-694.	10.0	124
41	An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends. , 0, , .		123
42	Evolutionary multi-objective optimization: some current research trends and topics that remain to be explored. Frontiers of Computer Science, 2009, 3, 18-30.	0.6	123
43	MOSES: A MULTIOBJECTIVE OPTIMIZATION TOOL FOR ENGINEERING DESIGN. Engineering Optimization, 1999, 31, 337-368.	2.6	117
44	Multiobjective structural optimization using a microgenetic algorithm. Structural and Multidisciplinary Optimization, 2005, 30, 388-403.	3.5	117
45	Microgenetic multiobjective reconfiguration algorithm considering power losses and reliability indices for medium voltage distribution network. IET Generation, Transmission and Distribution, 2009, 3, 825-840.	2.5	113
46	Multiple trial vectors in differential evolution for engineering design. Engineering Optimization, 2007, 39, 567-589.	2.6	112
47	Hybridizing a genetic algorithm with an artificial immune system for global optimization. Engineering Optimization, 2004, 36, 607-634.	2.6	111
48	Improved Metaheuristic Based on the R2 Indicator for Many-Objective Optimization., 2015,,.		108
49	Useful Infeasible Solutions in Engineering Optimization with Evolutionary Algorithms. Lecture Notes in Computer Science, 2005, , 652-662.	1.3	107
50	A Study of Multiobjective Metaheuristics When Solving Parameter Scalable Problems. IEEE Transactions on Evolutionary Computation, 2010, 14, 618-635.	10.0	107
51	Multi-Objective Particle Swarm Optimizers: An Experimental Comparison. Lecture Notes in Computer Science, 2009, , 495-509.	1.3	101
52	Evolutionary multiobjective optimization: open research areas and some challenges lying ahead. Complex & Intelligent Systems, 2020, 6, 221-236.	6.5	99
53	Multi-objective Optimization Using Differential Evolution: A Survey of the State-of-the-Art. Studies in Computational Intelligence, 2008, , 173-196.	0.9	97
54	Evolutionary Multiobjective Optimization in Materials Science and Engineering. Materials and Manufacturing Processes, 2009, 24, 119-129.	4.7	96

#	Article	lF	Citations
55	An External Archive-Guided Multiobjective Particle Swarm Optimization Algorithm. IEEE Transactions on Cybernetics, 2017, 47, 2794-2808.	9.5	96
56	A Clustering-Based Evolutionary Algorithm for Many-Objective Optimization Problems. IEEE Transactions on Evolutionary Computation, 2019, 23, 391-405.	10.0	91
57	Using Clustering Techniques to Improve the Performance of a Multi-objective Particle Swarm Optimizer. Lecture Notes in Computer Science, 2004, , 225-237.	1.3	90
58	Indicator-based Multi-objective Evolutionary Algorithms. ACM Computing Surveys, 2021, 53, 1-35.	23.0	89
59	A simple genetic algorithm for the design of reinforced concrete beams. Engineering With Computers, 1997, 13, 185-196.	6.1	88
60	Recent Trends in Evolutionary Multiobjective Optimization. , 2005, , 7-32.		85
61	A hybrid Differential Evolution—Tabu Search algorithm for the solution of Job-Shop Scheduling Problems. Applied Soft Computing Journal, 2013, 13, 462-474.	7.2	82
62	A multi-objective particle swarm optimizer based on decomposition. , 2011, , .		81
63	Multiobjective Location of Automatic Voltage Regulators in a Radial Distribution Network Using a Micro Genetic Algorithm. IEEE Transactions on Power Systems, 2007, 22, 404-412.	6.5	78
64	Multimodal Multiobjective Evolutionary Optimization With Dual Clustering in Decision and Objective Spaces. IEEE Transactions on Evolutionary Computation, 2021, 25, 130-144.	10.0	78
65	MOMBI: A new metaheuristic for many-objective optimization based on the R2 indicator. , 2013, , .		76
66	On the use of particle swarm optimization with multimodal functions. , 0, , .		75
67	Ranking Methods for Many-Objective Optimization. Lecture Notes in Computer Science, 2009, , 633-645.	1.3	72
68	Optimal design of reinforced concrete beams using genetic algorithms. Expert Systems With Applications, 1997, 12, 101-108.	7.6	68
69	Comparison of metamodeling techniques in evolutionary algorithms. Soft Computing, 2017, 21, 5647-5663.	3.6	65
70	Design of combinational logic circuits through an evolutionary multiobjective optimization approach. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2002, 16, 39-53.	1.1	64
71	Computing the Set of Epsilon-Efficient Solutions in Multiobjective Space Mission Design. Journal of Aerospace Computing, Information, and Communication, 2011, 8, 53-70.	0.8	63
72	Use of an Artificial Immune System for Job Shop Scheduling. Lecture Notes in Computer Science, 2003, , 1-10.	1.3	62

#	Article	IF	Citations
73	A Review of Techniques for Handling Expensive Functions in Evolutionary Multi-Objective Optimization. Adaptation, Learning, and Optimization, 2010, , 29-59.	0.6	62
74	An Algorithm Based on Differential Evolution for Multi-Objective Problems. International Journal of Computational Intelligence Research, 2005, 1 , .	0.3	62
75	Increasing selective pressure towards the best compromise in evolutionary multiobjective optimization: The extended NOSGA method. Information Sciences, 2011, 181, 44-56.	6.9	61
76	Consolidated optimization algorithm for resource-constrained project scheduling problems. Information Sciences, 2017, 418-419, 346-362.	6.9	61
77	DEMORS: A hybrid multi-objective optimization algorithm using differential evolution and rough set theory for constrained problems. Computers and Operations Research, 2010, 37, 470-480.	4.0	60
78	Adaptive composite operator selection and parameter control for multiobjective evolutionary algorithm. Information Sciences, 2016, 339, 332-352.	6.9	60
79	Using multi-objective evolutionary algorithms for single-objective constrained and unconstrained optimization. Annals of Operations Research, 2016, 240, 217-250.	4.1	59
80	Computing Gap Free Pareto Front Approximations with Stochastic Search Algorithms. Evolutionary Computation, 2010, 18, 65-96.	3.0	57
81	Parallel Approaches for Multiobjective Optimization. Lecture Notes in Computer Science, 2008, , 349-372.	1.3	57
82	Using multi-objective evolutionary algorithms for single-objective optimization. 4or, 2013, 11, 201-228.	1.6	55
83	Convergence of stochastic search algorithms to finite size pareto set approximations. Journal of Global Optimization, 2008, 41, 559-577.	1.8	54
84	Decomposition-based modern metaheuristic algorithms for multi-objective optimal power flow – A comparative study. Engineering Applications of Artificial Intelligence, 2014, 32, 10-20.	8.1	54
85	An Evolutionary Multiobjective Model and Instance Selection for Support Vector Machines With Pareto-Based Ensembles. IEEE Transactions on Evolutionary Computation, 2017, 21, 863-877.	10.0	54
86	Simple Feasibility Rules and Differential Evolution for Constrained Optimization. Lecture Notes in Computer Science, 2004, , 707-716.	1.3	53
87	An adaptive immune-inspired multi-objective algorithm with multiple differential evolution strategies. Information Sciences, 2018, 430-431, 46-64.	6.9	53
88	Evolutionary multiobjective optimization using an outranking-based dominance generalization. Computers and Operations Research, 2010, 37, 390-395.	4.0	52
89	Use of Particle Swarm Optimization to Design Combinational Logic Circuits. Lecture Notes in Computer Science, 2003, , 398-409.	1.3	50
90	Solving constrained optimization problems with a hybrid particle swarm optimization algorithm. Engineering Optimization, 2011, 43, 843-866.	2.6	50

#	Article	IF	CITATIONS
91	Differential Evolution performances for the solution of mixed-integer constrained process engineering problems. Applied Soft Computing Journal, 2011, 11, 399-409.	7.2	50
92	Constrained Optimization via Multiobjective Evolutionary Algorithms. Natural Computing Series, 2008, , 53-75.	2.2	50
93	Application of the non-outranked sorting genetic algorithm to public project portfolio selection. Information Sciences, 2013, 228, 131-149.	6.9	49
94	Including preferences into a multiobjective evolutionary algorithm to deal with many-objective engineering optimization problems. Information Sciences, 2014, 277, 1-20.	6.9	49
95	Towards automated evolutionary design of combinational circuits. Computers and Electrical Engineering, 2000, 27, 1-28.	4.8	48
96	Applications of multi-objective evolutionary algorithms in economics and finance: A survey. , 2007, , .		47
97	Online Objective Reduction to Deal with Many-Objective Problems. Lecture Notes in Computer Science, 2009, , 423-437.	1.3	46
98	Promising infeasibility and multiple offspring incorporated to differential evolution for constrained optimization. , 2005, , .		44
99	Boundary Search for Constrained Numerical Optimization Problems With an Algorithm Inspired by the Ant Colony Metaphor. IEEE Transactions on Evolutionary Computation, 2009, 13, 350-368.	10.0	43
100	Evolutionary multiobjective optimization in dynamic environments: A set of novel benchmark functions. , 2014, , .		43
101	A Review of Features and Limitations of Existing Scalable Multiobjective Test Suites. IEEE Transactions on Evolutionary Computation, 2019, 23, 130-142.	10.0	42
102	Using a new GA-based multiobjective optimization technique for the design of robot arms. Robotica, 1998, 16, 401-414.	1.9	41
103	Evolutionary multiobjective optimization using a cultural algorithm., 0, , .		41
104	The directed search method for multi-objective memetic algorithms. Computational Optimization and Applications, 2016, 63, 305-332.	1.6	41
105	Multi-Objective Combinatorial Optimization: Problematic and Context. Studies in Computational Intelligence, 2010, , 1-21.	0.9	41
106	Hybridizing evolutionary strategies with continuation methods for solving multi-objective problems. Engineering Optimization, 2008, 40, 383-402.	2.6	40
107	Solving timetabling problems using a cultural algorithm. Applied Soft Computing Journal, 2011, 11, 337-344.	7.2	40
108	Improving the vector generation strategy of Differential Evolution for large-scale optimization. Information Sciences, 2015, 323, 106-129.	6.9	39

#	Article	IF	CITATIONS
109	Evolutionary multiobjective design of combinational logic circuits. , 0, , .		38
110	A Review of Particle Swarm Optimization Methods Used for Multimodal Optimization. Studies in Computational Intelligence, 2009, , 9-37.	0.9	38
111	A coevolutionary multi-objective evolutionary algorithm. , 0, , .		36
112	A Novel Diversity-Based Replacement Strategy for Evolutionary Algorithms. IEEE Transactions on Cybernetics, 2016, 46, 3233-3246.	9.5	36
113	Handling Constraints in Global Optimization Using an Artificial Immune System. Lecture Notes in Computer Science, 2005, , 234-247.	1.3	36
114	MOEA/D assisted by rbf networks for expensive multi-objective optimization problems. , 2013, , .		35
115	A Diversity-Enhanced Resource Allocation Strategy for Decomposition-Based Multiobjective Evolutionary Algorithm. IEEE Transactions on Cybernetics, 2018, 48, 2388-2401.	9.5	35
116	An Artificial Immune System Heuristic for Generating Short Addition Chains. IEEE Transactions on Evolutionary Computation, 2008, 12, 1-24.	10.0	34
117	Handling Constraints in Genetic Algorithms Using Dominance-based Tournaments. , 2002, , 273-284.		34
118	Multiobjective Optimization Using Ideas from the Clonal Selection Principle. Lecture Notes in Computer Science, 2003, , 158-170.	1.3	33
119	A new multi-objective evolutionary algorithm based on a performance assessment indicator. , 2012, , .		33
120	The Micro Genetic Algorithm 2: Towards Online Adaptation in Evolutionary Multiobjective Optimization. Lecture Notes in Computer Science, 2003, , 252-266.	1.3	33
121	Convergence Analysis of a Multiobjective Artificial Immune System Algorithm. Lecture Notes in Computer Science, 2004, , 226-235.	1.3	32
122	MRMOGA: a new parallel multi-objective evolutionary algorithm based on the use of multiple resolutions. Concurrency Computation Practice and Experience, 2007, 19, 397-441.	2.2	32
123	Convergence speed in multiâ€objective metaheuristics: Efficiency criteria and empirical study. International Journal for Numerical Methods in Engineering, 2010, 84, 1344-1375.	2.8	32
124	Dynamic Constrained Optimization with offspring repair based Gravitational Search Algorithm. , 2013, , .		32
125	A new proposal for multi-objective optimization using differential evolution and rough sets theory. , 2006, , .		31
126	Evolutionary hidden information detection by granulation-based fitness approximation. Applied Soft Computing Journal, 2010, 10, 719-729.	7.2	31

#	Article	lF	Citations
127	Incorporation of implicit decision-maker preferences in multi-objective evolutionary optimization using a multi-criteria classification method. Applied Soft Computing Journal, 2017, 50, 48-57.	7.2	31
128	Self-adaptive penalties for GA-based optimization. , 0, , .		30
129	Solving Hard Multiobjective Optimization Problems Using ε-Constraint with Cultured Differential Evolution. Lecture Notes in Computer Science, 2006, , 543-552.	1.3	30
130	A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization. , $2014, \ldots$		30
131	TWO NEW GA-BASED METHODS FOR MULTIOBJECTIVE OPTIMIZATION. Civil Engineering and Environmental Systems, 1998, 15, 207-243.	0.9	29
132	Optimization with constraints using a cultured differential evolution approach., 2005,,.		29
133	Asymptotic convergence of metaheuristics for multiobjective optimization problems. Soft Computing, 2006, 10, 1001-1005.	3.6	29
134	A ranking method based on the R2 indicator for many-objective optimization. , $2013, \ldots$		29
135	IGD ⁺ -EMOA: A multi-objective evolutionary algorithm based on IGD ⁺ ., 2016, , .		29
136	A new indicator-based many-objective ant colony optimizer for continuous search spaces. Swarm Intelligence, $2017,11,71-100$.	2.2	29
137	Study of preference relations in many-objective optimization. , 2009, , .		28
138	A Hybrid Evolutionary Immune Algorithm for Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation, 2015, , 1-1.	10.0	28
139	A novel multi-objective immune algorithm with a decomposition-based clonal selection. Applied Soft Computing Journal, 2019, 81, 105490.	7.2	28
140	A spatial land-use planning support system based on game theory. Land Use Policy, 2020, 99, 105013.	5.6	28
141	Guest editorial: special issue on evolutionary multiobjective optimization. IEEE Transactions on Evolutionary Computation, 2003, 7, 97-99.	10.0	27
142	Handling Constraints in Particle Swarm Optimization Using a Small Population Size., 2007,, 41-51.		27
143	Multi-objective Evolutionary Algorithms in Real-World Applications: Some Recent Results and Current Challenges. Computational Methods in Applied Sciences (Springer), 2015, , 3-18.	0.3	27
144	Sequence-Based Deterministic Initialization for Evolutionary Algorithms. IEEE Transactions on Cybernetics, 2017, 47, 2911-2923.	9.5	27

#	Article	IF	CITATIONS
145	A proposal to use stripes to maintain diversity in a multi-objective particle swarm optimizer., 0,,.		26
146	Seeding the initial population of a multi-objective evolutionary algorithm using gradient-based information. , 2008, , .		26
147	Guest Editorial Special Issue on Differential Evolution. IEEE Transactions on Evolutionary Computation, 2011, 15, 1-3.	10.0	26
148	Surrogate-assisted multi-objective model selection for support vector machines. Neurocomputing, 2015, 150, 163-172.	5.9	26
149	A novel multi-objective evolutionary algorithm with dynamic decomposition strategy. Swarm and Evolutionary Computation, 2019, 48, 182-200.	8.1	26
150	An Effective Ensemble Framework for Multiobjective Optimization. IEEE Transactions on Evolutionary Computation, 2019, 23, 645-659.	10.0	26
151	A modified version of a Tâ€Cell Algorithm for constrained optimization problems. International Journal for Numerical Methods in Engineering, 2010, 84, 351-378.	2.8	25
152	On the adaptation of the mutation scale factor in differential evolution. Optimization Letters, 2015, 9, 189-198.	1.6	25
153	An Overview of Weighted and Unconstrained Scalarizing Functions. Lecture Notes in Computer Science, 2017, , 499-513.	1.3	25
154	A Self-Guided Reference Vector Strategy for Many-Objective Optimization. IEEE Transactions on Cybernetics, 2022, 52, 1164-1178.	9.5	25
155	Reactive Power Handling by a Multi-Objective Teaching Learning Optimizer Based on Decomposition. IEEE Transactions on Power Systems, 2013, 28, 3629-3637.	6.5	24
156	Analysis of leader selection strategies in a multi-objective Particle Swarm Optimizer. , 2013, , .		24
157	Multi-objective model type selection. Neurocomputing, 2014, 146, 83-94.	5.9	24
158	Objective space partitioning using conflict information for solving many-objective problems. Information Sciences, 2014, 268, 305-327.	6.9	24
159	Approximating Complex Pareto Fronts With Predefined Normal-Boundary Intersection Directions. IEEE Transactions on Evolutionary Computation, 2020, 24, 809-823.	10.0	24
160	A comparative study of the effect of parameter scalability in multi-objective metaheuristics. , 2008, , .		23
161	Parametric reconfiguration improvement in non-iterative concurrent mechatronic design using an evolutionary-based approach. Engineering Applications of Artificial Intelligence, 2011, 24, 757-771.	8.1	23
162	MB-GNG: Addressing drawbacks in multi-objective optimization estimation of distribution algorithms. Operations Research Letters, 2011, 39, 150-154.	0.7	23

#	Article	IF	CITATIONS
163	MOPSOhv: A new hypervolume-based multi-objective particle swarm optimizer., 2014,,.		23
164	A novel approach to select the best portfolio considering the preferences of the decision maker. Swarm and Evolutionary Computation, 2019, 46, 140-153.	8.1	23
165	Approximating the Knee of an MOP with Stochastic Search Algorithms. Lecture Notes in Computer Science, 2008, , 795-804.	1.3	23
166	Adding a diversity mechanism to a simple evolution strategy to solve constrained optimization problems. , 0, , .		22
167	GD-MOEA: A New Multi-Objective Evolutionary Algorithm Based on the Generational Distance Indicator. Lecture Notes in Computer Science, 2015, , 156-170.	1.3	22
168	MC2ESVM: Multiclass Classification Based on Cooperative Evolution of Support Vector Machines. IEEE Computational Intelligence Magazine, 2018, 13, 18-29.	3.2	22
169	A Fuzzy Decomposition-Based Multi/Many-Objective Evolutionary Algorithm. IEEE Transactions on Cybernetics, 2022, 52, 3495-3509.	9.5	22
170	A Cultural Algorithm with Differential Evolution to Solve Constrained Optimization Problems. Lecture Notes in Computer Science, 2004, , 881-890.	1.3	21
171	Preference incorporation to solve many-objective airfoil design problems. , 2011, , .		21
172	A hybrid surrogate-based approach for evolutionary multi-objective optimization. , 2013, , .		21
173	Combining surrogate models and local search for dealing with expensive multi-objective optimization problems. , 2013, , .		21
174	Multiobjective Personalized Recommendation Algorithm Using Extreme Point Guided Evolutionary Computation. Complexity, 2018, 2018, 1-18.	1.6	21
175	Reliable Link Inference for Network Data With Community Structures. IEEE Transactions on Cybernetics, 2019, 49, 3347-3361.	9.5	21
176	Handling uncertainty through confidence intervals in portfolio optimization. Swarm and Evolutionary Computation, 2019, 44, 774-787.	8.1	21
177	A Study of Convergence Speed in Multi-objective Metaheuristics. Lecture Notes in Computer Science, 2008, , 763-772.	1.3	21
178	A genetic programming approach to logic function synthesis by means of multiplexers., 0,,.		20
179	Evolutionary Black-Box Topology Optimization: Challenges and Promises. IEEE Transactions on Evolutionary Computation, 2020, 24, 613-633.	10.0	20
180	Micro-MOPSO: A Multi-Objective Particle Swarm Optimizer That Uses a Very Small Population Size. Studies in Computational Intelligence, 2010, , 83-104.	0.9	20

#	Article	IF	CITATIONS
181	A new multi-objective evolutionary algorithm: neighbourhood exploring evolution strategy. Engineering Optimization, 2005, 37, 351-379.	2.6	19
182	Convergence of stochastic search algorithms to gap-free pareto front approximations. , 2007, , .		19
183	Integration of structure and control using an evolutionary approach: an application to the optimal concurrent design of a CVT. International Journal for Numerical Methods in Engineering, 2007, 71, 883-901.	2.8	19
184	Evolutionary multiobjective optimization. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2011, 1, 444-447.	6.8	19
185	A direct local search mechanism for decomposition-based multi-objective evolutionary algorithms. , 2012, , .		19
186	Constraint-Handling Techniques used with Evolutionary Algorithms. , 2016, , .		19
187	Evolutionary-based tailoring of synthetic instances for the Knapsack problem. Soft Computing, 2019, 23, 12711-12728.	3.6	19
188	Fuzzy Rule-Based Design of Evolutionary Algorithm for Optimization. IEEE Transactions on Cybernetics, 2019, 49, 301-314.	9.5	19
189	Cost-Aware Robust Control of Signed Networks by Using a Memetic Algorithm. IEEE Transactions on Cybernetics, 2020, 50, 4430-4443.	9.5	19
190	An Ensemble Surrogate-Based Framework for Expensive Multiobjective Evolutionary Optimization. IEEE Transactions on Evolutionary Computation, 2022, 26, 631-645.	10.0	19
191	On the Effect of the Cooperation of Indicator-Based Multiobjective Evolutionary Algorithms. IEEE Transactions on Evolutionary Computation, 2021, 25, 681-695.	10.0	19
192	Parallel Multi-Objective Evolutionary Algorithms: A Comprehensive Survey. Swarm and Evolutionary Computation, 2021, 67, 100960.	8.1	19
193	An Introduction to Evolutionary Algorithms and Their Applications. Lecture Notes in Computer Science, 2005, , 425-442.	1.3	19
194	EMOPSO: A Multi-Objective Particle Swarm Optimizer with Emphasis on Efficiency., 2007,, 272-285.		19
195	An Alternative Preference Relation to Deal with Many-Objective Optimization Problems. Lecture Notes in Computer Science, 2013, , 291-306.	1.3	19
196	Two novel approaches for many-objective optimization., 2010,,.		18
197	Improving the diversity preservation of multi-objective approaches used for single-objective optimization. , 2013, , .		18
198	Adaptation of operators and continuous control parameters in differential evolution for constrained optimization. Soft Computing, 2018, 22, 6595-6616.	3.6	18

#	Article	IF	CITATIONS
199	A Proposal to Hybridize Multi-Objective Evolutionary Algorithms with Non-gradient Mathematical Programming Techniques. Lecture Notes in Computer Science, 2008, , 837-846.	1.3	18
200	Cultural algorithms, an alternative heuristic to solve the job shop scheduling problem. Engineering Optimization, 2007, 39, 69-85.	2.6	17
201	A new memetic strategy for the numerical treatment of multi-objective optimization problems. , 2008, ,		17
202	Indicator-based cooperative coevolution for multi-objective optimization. , 2016, , .		17
203	Decomposition-Based Approach for Solving Large Scale Multi-objective Problems. Lecture Notes in Computer Science, 2016, , 525-534.	1.3	17
204	An alternative hypervolume-based selection mechanism for multi-objective evolutionary algorithms. Soft Computing, 2017, 21, 861-884.	3.6	17
205	A hyper-heuristic of scalarizing functions. , 2017, , .		17
206	Enhancing Selection Hyper-Heuristics via Feature Transformations. IEEE Computational Intelligence Magazine, 2018, 13, 30-41.	3.2	17
207	GBOS: Generalized Best Order Sort algorithm for non-dominated sorting. Swarm and Evolutionary Computation, 2018, 43, 244-264.	8.1	17
208	A Hybrid Leader Selection Strategy for Many-Objective Particle Swarm Optimization. IEEE Access, 2020, 8, 189527-189545.	4.2	17
209	Alternative Fitness Assignment Methods for Many-Objective Optimization Problems. Lecture Notes in Computer Science, 2010, , 146-157.	1.3	17
210	A T-cell algorithm for solving dynamic optimization problems. Information Sciences, 2011, 181, 3614-3637.	6.9	16
211	Multi-objective airfoil shape optimization using a multiple-surrogate approach. , 2012, , .		16
212	Enhanced multi-operator differential evolution for constrained optimization., 2016,,.		16
213	Structural design using multi-objective metaheuristics. Comparative study and application to a real-world problem. Structural and Multidisciplinary Optimization, 2016, 53, 545-566.	3.5	16
214	Dynamic urban land-use change management using multi-objective evolutionary algorithms. Soft Computing, 2020, 24, 4165-4190.	3.6	16
215	Using evolutionary computation to infer the decision maker's preference model in presence of imperfect knowledge: A case study in portfolio optimization. Swarm and Evolutionary Computation, 2020, 54, 100648.	8.1	16
216	A Particle Swarm Optimizer for Constrained Numerical Optimization. Lecture Notes in Computer Science, 2006, , 910-919.	1.3	16

#	Article	IF	CITATIONS
217	Ranking Methods in Many-Objective Evolutionary Algorithms. Studies in Computational Intelligence, 2009, , 413-434.	0.9	16
218	A Particle Swarm Optimization Method for Multimodal Optimization Based on Electrostatic Interaction. Lecture Notes in Computer Science, 2009, , 622-632.	1.3	16
219	Fitness inheritance in multi-objective particle swarm optimization. , 0, , .		15
220	An Alternative ACO $_{R}$ Algorithm for Continuous Optimization Problems. Lecture Notes in Computer Science, 2010, , 48-59.	1.3	15
221	On the low-discrepancy sequences and their use in MOEA/D for high-dimensional objective spaces. , 2015, , .		15
222	Evolutionary Many-Objective Optimization Based on Kuhn-Munkres' Algorithm. Lecture Notes in Computer Science, 2015, , 3-17.	1.3	15
223	A hybridized angle-encouragement-based decomposition approach for many-objective optimization problems. Applied Soft Computing Journal, 2019, 78, 355-372.	7.2	15
224	An Elite Gene Guided Reproduction Operator for Many-Objective Optimization. IEEE Transactions on Cybernetics, 2021, 51, 765-778.	9.5	15
225	AdaSwarm: Augmenting Gradient-Based Optimizers in Deep Learning With Swarm Intelligence. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 329-340.	4.9	15
226	Multiple source transfer learning for dynamic multiobjective optimization. Information Sciences, 2022, 607, 739-757.	6.9	15
227	Asymptotic convergence of a simulated annealing algorithm for multiobjective optimization problems. Mathematical Methods of Operations Research, 2006, 64, 353-362.	1.0	14
228	Selection mechanisms based on the maximin fitness function to solve multi-objective optimization problems. Information Sciences, 2016, 332, 131-152.	6.9	14
229	Operational decomposition for large scale multi-objective optimization problems. , 2019, , .		14
230	A divide-and-conquer based efficient non-dominated sorting approach. Swarm and Evolutionary Computation, 2019, 44, 748-773.	8.1	14
231	Using a Family of Curves to Approximate the Pareto Front of a Multi-Objective Optimization Problem. Lecture Notes in Computer Science, 2014, , 682-691.	1.3	14
232	A Cultural Algorithm for Solving the Job Shop Scheduling Problem. Studies in Fuzziness and Soft Computing, 2005, , 37-55.	0.8	14
233	Preference incorporation into many-objective optimization: An Ant colony algorithm based on interval outranking. Swarm and Evolutionary Computation, 2022, 69, 101024.	8.1	14
234	Automated Design of Combinational Logic Circuits Using the Ant System. Engineering Optimization, 2002, 34, 109-127.	2.6	13

#	Article	lF	Citations
235	A parallel implementation of an artificial immune system to handle constraints in genetic algorithms: preliminary results. , 0, , .		13
236	Development tools - The EMOO repository: a resource for doing research in evolutionary multiobjective optimization. IEEE Computational Intelligence Magazine, 2006, 1, 37-45.	3.2	13
237	A Memetic PSO Algorithm for Scalar Optimization Problems. , 2007, , .		13
238	Computing finite size representations of the set of approximate solutions of an MOP with stochastic search algorithms. , 2008, , .		13
239	A new proposal to hybridize the Nelder-Mead method to a differential evolution algorithm for constrained optimization. , 2009, , .		13
240	A fast particle swarm algorithm for solving smooth and non-smooth economic dispatch problems. Engineering Optimization, 2011, 43, 485-505.	2.6	13
241	MONSS: A multi-objective nonlinear simplex search approach. Engineering Optimization, 2016, 48, 16-38.	2.6	13
242	Reusing Code in Genetic Programming. Lecture Notes in Computer Science, 2004, , 359-368.	1.3	13
243	Knowledge Incorporation in Multi-objective Evolutionary Algorithms. Studies in Computational Intelligence, 2008, , 23-46.	0.9	13
244	The Gradient Free Directed Search Method as Local Search within Multi-Objective Evolutionary Algorithms. Advances in Intelligent Systems and Computing, 2013, , 153-168.	0.6	13
245	Evolutionary Multi-Objective Optimization: A Critical Review. , 2003, , 117-146.		12
246	A bi-population PSO with a shake-mechanism for solving constrained numerical optimization. , 2007, , .		12
247	MODE-LD& #x002B;SS: A novel Differential Evolution algorithm incorporating local dominance and scalar selection mechanisms for multi-objective optimization. , 2010, , .		12
248	Evolutionary Algorithms Applied to Multi-Objective Aerodynamic Shape Optimization. Studies in Computational Intelligence, 2011, , 211-240.	0.9	12
249	A new selection mechanism based on hypervolume and its locality property., 2013,,.		12
250	GDE-MOEA: A new MOEA based on the generational distance indicator and & amp; #x03B5; -dominance., 2015, , .		12
251	A Multi-Objective Evolutionary Algorithm based on Parallel Coordinates. , 2016, , .		12
252	Multi-method based algorithm for multi-objective problems under uncertainty. Information Sciences, 2019, 481, 81-109.	6.9	12

#	Article	IF	CITATIONS
253	Riesz s-energy-based Reference Sets for Multi-Objective optimization. , 2020, , .		12
254	An Improved Diversity Mechanism for Solving Constrained Optimization Problems Using a Multimembered Evolution Strategy. Lecture Notes in Computer Science, 2004, , 700-712.	1.3	12
255	Optimization to Manage Supply Chain Disruptions Using the NSGA-II., 2007,, 476-485.		12
256	Applications of Parallel Platforms and Models in Evolutionary Multi-Objective Optimization. Studies in Computational Intelligence, 2009, , 23-49.	0.9	12
257	Adaptive Objective Space Partitioning Using Conflict Information for Many-Objective Optimization. Lecture Notes in Computer Science, 2011, , 151-165.	1.3	12
258	Assessment Methodologies for Multiobjective Evolutionary Algorithms. , 2003, , 177-195.		11
259	Particle Swarm Optimization in Non-stationary Environments. Lecture Notes in Computer Science, 2004, , 757-766.	1.3	11
260	A boundary search based ACO algorithm coupled with stochastic ranking., 2007,,.		11
261	Design of a motorcycle frame using neuroacceleration strategies in MOEAs. Journal of Heuristics, 2009, 15, 177-196.	1.4	11
262	Solving Permutation Problems with Differential Evolution: An Application to the Jobshop Scheduling Problem. , 2009, , .		11
263	Multi-Objective Ant Colony Optimization: A Taxonomy and Review of Approaches. Series in Machine Perception and Artificial Intelligence, 2011, , 67-94.	0.1	11
264	Smiling at evolution. Applied Soft Computing Journal, 2011, 11, 5724-5734.	7.2	11
265	Solving multi-objective optimization problems using differential evolution and a maximin selection criterion. , 2012 , , .		11
266	A multi-objective evolutionary hyper-heuristic based on multiple indicator-based density estimators. , 2018, , .		11
267	Evolutionary approach for large-Scale mine scheduling. Information Sciences, 2020, 523, 77-90.	6.9	11
268	Hybrid evolutionary multi-objective optimisation using outranking-based ordinal classification methods. Swarm and Evolutionary Computation, 2020, 54, 100652.	8.1	11
269	Decomposition-based multiobjective optimization with bicriteria assisted adaptive operator selection. Swarm and Evolutionary Computation, 2021, 60, 100790.	8.1	11
270	Enhancing Robustness and Resilience of Multiplex Networks Against Node-Community Cascading Failures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2022, 52, 3808-3821.	9.3	11

#	Article	IF	CITATIONS
271	COARSE-EMOA: An indicator-based evolutionary algorithm for solving equality constrained multi-objective optimization problems. Swarm and Evolutionary Computation, 2021, 67, 100983.	8.1	11
272	Job Shop Scheduling using the Clonal Selection Principle. , 2004, , 113-124.		11
273	Approximating the $\hat{l}\mu$ -Efficient Set of an MOP with Stochastic Search Algorithms. Lecture Notes in Computer Science, 2007, , 128-138.	1.3	11
274	Limiting the Velocity in the Particle Swarm Optimization Algorithm. Computacion Y Sistemas, 2016, 20, .	0.3	11
275	Constraint-handling techniques used with evolutionary algorithms. , 2007, , .		10
276	An optimal power flow plus transmission costs solution. Electric Power Systems Research, 2009, 79, 1240-1246.	3.6	10
277	A Study of the Combination of Variation Operators in the NSGA-II Algorithm. Lecture Notes in Computer Science, 2013, , 269-278.	1.3	10
278	Guest Editorial: Special Issue on Advances in Multiobjective Evolutionary Algorithms for Data Mining. IEEE Transactions on Evolutionary Computation, 2014, 18, 1-3.	10.0	10
279	Many-Objective Problems: Challenges and Methods. , 2015, , 1033-1046.		10
280	Distributed Multi-Objective Metaheuristics for Real-World Structural Optimization Problems. Computer Journal, 2016, 59, 777-792.	2.4	10
281	A Co-Evolutionary Scheme for Multi-Objective Evolutionary Algorithms Based on \$epsilon\$-Dominance. IEEE Access, 2019, 7, 18267-18283.	4.2	10
282	Coevolutionary Operations for Large Scale Multi-objective Optimization. , 2020, , .		10
283	Adaptive Multilevel Prediction Method for Dynamic Multimodal Optimization. IEEE Transactions on Evolutionary Computation, 2021, 25, 463-477.	10.0	10
284	CRI-EMOA: A Pareto-Front Shape Invariant Evolutionary Multi-objective Algorithm. Lecture Notes in Computer Science, 2019, , 307-318.	1.3	10
285	A Fitness Granulation Approach for Large-Scale Structural Design Optimization. , 2012, , 245-280.		10
286	Artificial Immune System for Solving Dynamic Constrained Optimization Problems. Studies in Computational Intelligence, 2013, , 225-263.	0.9	10
287	Comparing different serial and parallel heuristics to design combinational logic circuits. , 0, , .		9
288	Hybrid particle swarm optimizer for a class of dynamic fitness landscape. Engineering Optimization, 2006, 38, 873-888.	2.6	9

#	Article	IF	Citations
289	A nonlinear simplex search approach for multi-objective optimization. , 2011, , .		9
290	Constraint-handling techniques used with evolutionary algorithms. , 2012, , .		9
291	A Parallel Version of SMS-EMOA for Many-Objective Optimization Problems. Lecture Notes in Computer Science, 2016, , 568-577.	1.3	9
292	Constraint-handling techniques used with evolutionary algorithms. , 2017, , .		9
293	Evolutionary many-objective optimization based on linear assignment problem transformations. Soft Computing, 2018, 22, 5491-5512.	3.6	9
294	On the construction of pareto-compliant quality indicators. , 2019, , .		9
295	Multiobjective Optimization and Artificial Immune Systems. , 2009, , 1-21.		9
296	Multiobjective-based concepts to handle constraints in evolutionary algorithms. , 0, , .		8
297	Extraction and reuse of design patterns from genetic algorithms using case-based reasoning. Soft Computing, 2005, 9, 44-53.	3.6	8
298	Alternative techniques to solve hard multi-objective optimization problems. , 2007, , .		8
299	Improving the efficiency of Ϊμ-dominance based grids. Information Sciences, 2011, 181, 3101-3129.	6.9	8
300	A hybridization of MOEA/D with the nonlinear simplex search algorithm. , 2013, , .		8
301	A comparative study of variation operators used for evolutionary multi-objective optimization. Information Sciences, 2014, 273, 33-48.	6.9	8
302	A Multi-objective Particle Swarm Optimizer Hybridized with Scatter Search. Lecture Notes in Computer Science, 2006, , 294-304.	1.3	8
303	A Memetic Algorithm with Non Gradient-Based Local Search Assisted by a Meta-model. , 2010, , 576-585.		8
304	Objective Space Partitioning Using Conflict Information for Many-Objective Optimization. , 2010, , 657-666.		8
305	Evolutionary Multi-Objective Optimization: Basic Concepts and Some Applications in Pattern Recognition. Lecture Notes in Computer Science, 2011, , 22-33.	1.3	8
306	SNEGAN: Signed Network Embedding by Using Generative Adversarial Nets. IEEE Transactions on Emerging Topics in Computational Intelligence, 2022, 6, 136-149.	4.9	8

#	Article	IF	CITATIONS
307	Static and Dynamic Multimodal Optimization by Improved Covariance Matrix Self-Adaptation Evolution Strategy With Repelling Subpopulations. IEEE Transactions on Evolutionary Computation, 2022, 26, 527-541.	10.0	8
308	Using the Min-Max Method to Solve Multiobjective Optimization Problems with Genetic Algorithms. Lecture Notes in Computer Science, 1998, , 303-313.	1.3	7
309	Evolutionary continuation methods for optimization problems. , 2009, , .		7
310	Some comments on GD and IGD and relations to the Hausdorff distance. , 2010, , .		7
311	Constraint-handling techniques used with evolutionary algorithms. , 2010, , .		7
312	Effective ranking & Effect		7
313	An analysis of the automatic adaptation of the crossover rate in differential evolution. , 2014, , .		7
314	Evolutionary Algorithms for Finding Short Addition Chains: Going the Distance. Lecture Notes in Computer Science, 2016, , 121-137.	1.3	7
315	Improving hyper-heuristic performance through feature transformation., 2017,,.		7
316	Generalized Differential Evolution for Numerical and Evolutionary Optimization. Studies in Computational Intelligence, 2017, , 253-279.	0.9	7
317	On the Cooperation of Multiple Indicator-based Multi-Objective Evolutionary Algorithms. , 2019, , .		7
318	Convergence and diversity analysis of indicator-based multi-objective evolutionary algorithms. , 2019, , .		7
319	The gi'-dominance Relation for Preference-Based Evolutionary Multi-Objective Optimization. , 2019, , .		7
320	Use of Multiobjective Optimization Concepts to Handle Constraints in Genetic Algorithms. , 2005, , 229-254.		7
321	Boundary Search for Constrained Numerical Optimization Problems in ACO Algorithms. Lecture Notes in Computer Science, 2006, , 108-119.	1.3	7
322	Tailoring Instances of the 1D Bin Packing Problem for Assessing Strengths and Weaknesses of Its Solvers. Lecture Notes in Computer Science, 2018, , 373-384.	1.3	7
323	A Study of Techniques to Improve the Efficiency of a Multi-Objective Particle Swarm Optimizer. Studies in Computational Intelligence, 2007, , 269-296.	0.9	7
324	Towards a More Efficient Multi-Objective Particle Swarm Optimizer., 0,, 76-105.		7

#	Article	IF	CITATIONS
325	A Cultural Algorithm for Constrained Optimization. Lecture Notes in Computer Science, 2002, , 98-107.	1.3	7
326	Extracting and re-using design patterns from genetic algorithms using case-based reasoning. Engineering Optimization, 2003, 35, 121-141.	2.6	6
327	Evolutionary Algorithms and Multiple Objective Optimization. Profiles in Operations Research, 2003, , 277-331.	0.4	6
328	Using genetic programing and multiplexers for the synthesis of logic circuits. Engineering Optimization, 2004, 36, 491-511.	2.6	6
329	An archiving strategy based on the Convex Hull of Individual Minima for MOEAs. , 2010, , .		6
330	The Turing-850 Project: Developing a Personal Computer in the Early 1980s in Mexico. IEEE Annals of the History of Computing, 2010, 32, 60-71.	0.2	6
331	A Multi-Objective Evolutionary approach for linear antenna array design and synthesis. , 2012, , .		6
332	Constrained multi-objective aerodynamic shape optimization via swarm intelligence. , 2014, , .		6
333	A non-cooperative game for faster convergence in cooperative coevolution for multi-objective optimization. , $2015, , .$		6
334	Applying exponential weighting moving average control parameter adaptation technique with generalized differential evolution. , 2016, , .		6
335	\hat{l} "p-MOEA: A new multi-objective evolutionary algorithm based on the \hat{l} "<inf>p</inf> indicator. , 2016, , .		6
336	Recent Results and Open Problems in Evolutionary Multiobjective Optimization. Lecture Notes in Computer Science, 2017, , 3-21.	1.3	6
337	Collaborative and Adaptive Strategies of Different Scalarizing Functions in MOEA/D. , 2018, , .		6
338	Towards a More General Many-objective Evolutionary Optimizer. Lecture Notes in Computer Science, 2018, , 335-346.	1.3	6
339	Constraint-handling techniques used with evolutionary algorithms. , 2018, , .		6
340	Uniform mixture design via evolutionary multiâ€objective optimization. Swarm and Evolutionary Computation, 2022, 68, 100979.	8.1	6
341	Multi-objective Optimization. , 2018, , 1-28.		6
342	Human Preferences and their Applications in Evolutionary Multi—Objective Optimization. Studies in Fuzziness and Soft Computing, 2005, , 479-502.	0.8	6

#	Article	IF	CITATIONS
343	A Novel Model of Artificial Immune System for Solving Constrained Optimization Problems with Dynamic Tolerance Factor., 2007,, 19-29.		6
344	Selection Operators Based on Maximin Fitness Function for Multi-Objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2013, , 215-229.	1.3	6
345	Bias and Variance Multi-objective Optimization for Support Vector Machines Model Selection. Lecture Notes in Computer Science, 2013, , 108-116.	1.3	6
346	Multi-Objective Evolutionary Algorithms: A Review of the State-of-the-Art and some of their Applications in Chemical Engineering. Advances in Process Systems Engineering, 2008, , 61-90.	0.3	6
347	Use of Multiobjective Optimization Concepts to Handle Constraints in Single-Objective Optimization. Lecture Notes in Computer Science, 2003, , 573-584.	1.3	6
348	On the Optimal Computation of Finite Field Exponentiation. Lecture Notes in Computer Science, 2004, , 747-756.	1.3	6
349	Cooperative Co-Evolutionary Genetic Programming for High Dimensional Problems. Lecture Notes in Computer Science, 2020, , 48-62.	1.3	6
350	Asymptotic Convergence of Some Metaheuristics Used for Multiobjective Optimization. Lecture Notes in Computer Science, 2005, , 95-111.	1.3	5
351	Comparative study of serial and parallel heuristics used to design combinational logic circuits. Optimization Methods and Software, 2007, 22, 485-509.	2.4	5
352	Use of Radial Basis Functions and Rough Sets for Evolutionary Multi-Objective Optimization. , 2007, , .		5
353	Surrogate-based Multi-Objective Particle Swarm Optimization. , 2008, , .		5
354	Constraint-handling techniques used with evolutionary algorithms. , 2008, , .		5
355	Hybridizing surrogate techniques, rough sets and evolutionary algorithms to efficiently solve multi-objective optimization problems. , 2008, , .		5
356	Auto-tuning fuzzy granulation for evolutionary optimization. , 2008, , .		5
357	Using gradient-based information to deal with scalability in multi-objective evolutionary algorithms. , 2009, , .		5
358	Highly reliable optimal solutions to multi-objective problems and their evolution by means of worst-case analysis. Engineering Optimization, 2010, 42, 1095-1117.	2.6	5
359	A painless gradient-assisted multi-objective memetic mechanism for solving continuous bi-objective optimization problems. , 2010, , .		5
360	A novel diversification strategy for multi-objective evolutionary algorithms. , 2010, , .		5

#	Article	lF	Citations
361	A new mechanism to maintain diversity in multi-objective metaheuristics. Optimization, 2012, 61, 823-854.	1.7	5
362	An evolutionary multi-objective approach for prototype generation. , 2014, , .		5
363	Multi-objective compact differential evolution. , 2014, , .		5
364	Finding short and implementation-friendly addition chains with evolutionary algorithms. Journal of Heuristics, 2018, 24, 457-481.	1.4	5
365	Multi-objective Optimization. , 2018, , 177-204.		5
366	Extending the Speed-Constrained Multi-objective PSO (SMPSO) with Reference Point Based Preference Articulation. Lecture Notes in Computer Science, 2018, , 298-310.	1.3	5
367	An improved version of a reference-based multi-objective evolutionary algorithm based on IGD ⁺ ., 2018,,.		5
368	A Novel Parametric benchmark generator for dynamic multimodal optimization. Swarm and Evolutionary Computation, 2021, 65, 100924.	8.1	5
369	IS-PAES: Multiobjective Optimization with Efficient Constraint Handling. , 2004, , 111-120.		5
370	An Introduction to Multi-Objective Evolutionary Algorithms and Some of Their Potential Uses in Biology. Studies in Computational Intelligence, 2008, , 79-102.	0.9	5
371	A Preliminary Study of Fitness Inheritance in Evolutionary Constrained Optimization. Studies in Computational Intelligence, 2008, , 1-14.	0.9	5
372	An Introduction to Swarm Intelligence for Multi-objective Problems. Studies in Computational Intelligence, 2009, , 1-17.	0.9	5
373	A SHADE-Based Algorithm for Large Scale Global Optimization. Lecture Notes in Computer Science, 2020, , 650-663.	1.3	5
374	Gate-level synthesis of Boolean functions using binary multiplexers and genetic programming., 0,,.		4
375	On the Use of Projected Gradients for Constrained Multiobjective Optimization Problems. Lecture Notes in Computer Science, 2008, , 712-721.	1.3	4
376	A multi-objective meta-model assisted memetic algorithm with non gradient-based local search. , 2010, , .		4
377	An evolutionary algorithm for tuning a chess evaluation function. , 2011, , .		4
378	Are State-of-the-Art Fine-Tuning Algorithms Able to Detect a Dummy Parameter?. Lecture Notes in Computer Science, 2012, , 306-315.	1.3	4

#	Article	lF	CITATIONS
379	An evolutionary algorithm coupled with the Hooke-Jeeves algorithm for tuning a chess evaluation function. , $2012, \ldots$		4
380	A Multi-Objective Artificial Immune System Based on Hypervolume. Lecture Notes in Computer Science, 2012, , 14-27.	1.3	4
381	MD-MOEA : A new MOEA based on the maximin fitness function and Euclidean distances between solutions. , 2014, , .		4
382	Improving the integration of the IGD+indicator into the selection mechanism of a Multi-objective Evolutionary Algorithm. , 2017, , .		4
383	Evolutionary Algorithm for Project Scheduling under Irregular Resource Changes. , 2019, , .		4
384	An Overview of Pair-Potential Functions for Multi-objective Optimization. Lecture Notes in Computer Science, 2021, , 401-412.	1.3	4
385	An Ensemble Indicator-Based Density Estimator for Evolutionary Multi-objective Optimization. Lecture Notes in Computer Science, 2020, , 201-214.	1.3	4
386	Smiling at Evolution. SSRN Electronic Journal, 0, , .	0.4	4
387	Evolutionary Synthesis of Logic Circuits Using Information Theory. , 2004, , 285-311.		4
388	Manyâ€objective land use planning using a hypercubeâ€based NSGAâ€III algorithm. Transactions in GIS, 2022, 26, 609-644.	2.3	4
389	A GENETIC ALGORITHM FOR THE OPTIMAL DESIGN OF AXIALLY LOADED NON-PRISMATIC COLUMNS. Civil Engineering and Environmental Systems, 1996, 14, 111-146.	0.2	3
390	Evolutionary Synthesis of Logic Circuits Using Information Theory. Artificial Intelligence Review, 2003, 20, 445-471.	15.7	3
391	Saving Evaluations in Differential Evolution for Constrained Optimization. , 0, , .		3
392	Using gradient information for multi-objective problems in the evolutionary context. , 2010, , .		3
393	Accelerating convergence towards the optimal pareto front. , 2011, , .		3
394	Goal-constraint: Incorporating preferences through an evolutionary $\$\#x03B5;$ -constraint based method. , 2013, , .		3
395	Use of a multi-objective teaching-learning algorithm for reduction of power losses in a power test system. DYNA (Colombia), 2014, 81, 196.	0.4	3
396	An empirical comparison of two crossover operators in real-coded genetic algorithms for constrained numerical optimization problems. , 2014, , .		3

#	Article	IF	CITATIONS
397	Constraint-Handling Techniques used with Evolutionary Algorithms. , 2015, , .		3
398	EMOPG+FS: Evolutionary multi-objective prototype generation and feature selection. Intelligent Data Analysis, 2016, 20, S37-S51.	0.9	3
399	A Cooperative Opposite-Inspired Learning Strategy for Ant-Based Algorithms. Lecture Notes in Computer Science, 2018, , 317-324.	1.3	3
400	A Multiobjective Teaching-Learning Algorithm for Power Losses Reduction in Power Systems. , 2018, , 505-542.		3
401	Constraint-handling techniques used with evolutionary algorithms. , 2019, , .		3
402	Parallelism in divide-and-conquer non-dominated sorting: a theoretical study considering the PRAM-CREW model. Journal of Heuristics, 2019, 25, 455-483.	1.4	3
403	A More Efficient Selection Scheme in iSMS-EMOA. Lecture Notes in Computer Science, 2014, , 371-380.	1.3	3
404	Hybrid Particle Swarm Optimizers in the Single Machine Scheduling Problem: An Experimental Study. Studies in Computational Intelligence, 2007, , 143-164.	0.9	3
405	Rough Sets Theory for Multi-Objective Optimization Problems. Studies in Computational Intelligence, 2008, , 81-98.	0.9	3
406	A Multi-objective Particle Swarm Optimizer Enhanced with a Differential Evolution Scheme. Lecture Notes in Computer Science, 2012, , 169-180.	1.3	3
407	Computing and Selecting \hat{l}_{μ} -Efficient Solutions of $\{0,1\}$ -Knapsack Problems. Lecture Notes in Economics and Mathematical Systems, 2010, , 379-389.	0.3	3
408	Generation of New Scalarizing Functions Using Genetic Programming. Lecture Notes in Computer Science, 2020, , 3-17.	1.3	3
409	On learning kDNF/sub n//sup s/ Boolean formulas. , 0, , .		2
410	Evolutionary multiobjective design targeting a field programmable transistor array. , 0, , .		2
411	Evolutionary multi-objective optimization: current state and future challenges. , 2005, , .		2
412	Epsilon-constraint with an efficient cultured differential evolution., 2007,,.		2
413	An ant system with steps counter for the job shop scheduling problem. , 2007, , .		2
414	Solving constrained multi-objective problems by objective space analysis. , 2008, , .		2

#	Article	IF	CITATIONS
415	Constraint-handling techniques used with evolutionary algorithms. , 2011, , .		2
416	An Introduction to the Use of Evolutionary Computation Techniques for Dealing with ECG Signals. , 2012, , 135-153.		2
417	An evolutionary algorithm with a history mechanism for tuning a chess evaluation function. Applied Soft Computing Journal, 2013, 13, 3234-3247.	7.2	2
418	Two decomposition-based modem metaheuristic algorithms for multi-objective optimization & amp; $\pm x2014$; A comparative study., 2013,,.		2
419	Memetic Modified Artificial Bee Colony for constrained optimization. , 2014, , .		2
420	Particle Swarm Optimization Based on Linear Assignment Problem Transformations., 2015,,.		2
421	Evolutionary multilabel hyper-heuristic design. , 2017, , .		2
422	Applying automatic heuristic-filtering to improve hyper-heuristic performance. , 2017, , .		2
423	P-ENS: Parallelism in Efficient Non-Dominated Sorting. , 2018, , .		2
424	Cooperative multi-objective evolutionary support vector machines for multiclass problems. , 2018, , .		2
425	Advances in Evolutionary Multi-objective Optimization. Swarm and Evolutionary Computation, 2018, 40, 155-157.	8.1	2
426	Divide-and-conquer based non-dominated sorting with Reduced Comparisons. Swarm and Evolutionary Computation, 2019, 51, 100580.	8.1	2
427	Multi-Objective Evolutionary Algorithms: Past, Present, and Future. Springer Optimization and Its Applications, 2021, , 137-162.	0.9	2
428	Pro-Reactive Approach for Project Scheduling Under Unpredictable Disruptions. IEEE Transactions on Cybernetics, 2022, 52, 11299-11312.	9.5	2
429	A Study of Swarm Topologies and Their Influence on the Performance of Multi-Objective Particle Swarm Optimizers. Lecture Notes in Computer Science, 2020, , 285-298.	1.3	2
430	Self-adaptation Techniques Applied to Multi-Objective Evolutionary Algorithms. Lecture Notes in Computer Science, 2011, , 567-581.	1.3	2
431	Adaptive Control of the Number of Crossed Genes in Many-Objective Evolutionary Optimization. Lecture Notes in Computer Science, 2012, , 478-484.	1.3	2
432	Flame Classification through the Use of an Artificial Neural Network Trained with a Genetic Algorithm. Lecture Notes in Computer Science, 2013, , 172-184.	1.3	2

#	Article	IF	Citations
433	Synthesis of Boolean Functions Using Information Theory. Lecture Notes in Computer Science, 2003, , 218-227.	1.3	2
434	IS-PAES: A Constraint-Handling Technique Based on Multiobjective Optimization Concepts. Lecture Notes in Computer Science, 2003, , 73-87.	1.3	2
435	Limiting the velocity in particle swarm optimization using a geometric series. , 2009, , .		1
436	New challenges for memetic algorithms on continuous multi-objective problems. , 2010, , .		1
437	A hybrid Memory-based ACO algorithm for the QAP. , 2010, , .		1
438	Optimization on complex systems. Memetic Computing, 2012, 4, 163-164.	4.0	1
439	Special issue on evolutionary computation on general purpose graphics processing units. Soft Computing, 2012, 16, 185-186.	3.6	1
440	Constraint-handling techniques used with evolutionary algorithms. , 2013, , .		1
441	A novel multi-objective optimizer for handling reactive power. , 2013, , .		1
442	Parallel SMS-EMOA for Many-Objective Optimization Problems., 2016,,.		1
443	iMOACO $\$ _mathbb {R}\$: A New Indicator-Based Multi-objective Ant Colony Optimization Algorithm for Continuous Search Spaces. Lecture Notes in Computer Science, 2016, , 389-398.	1.3	1
444	Studying the Effect of Robustness Measures in Offline Parameter Tuning for Estimating the Performance of MOEA/D. , 2018, , .		1
445	Towards a more general many-objective evolutionary optimizer using multi-indicator density estimation. , $2018, \ldots$		1
446	Parallel Best Order Sort for Non-dominated Sorting: A Theoretical Study Considering the PRAM-CREW Model., 2019,,.		1
447	A Simple and Effective Termination Condition for Both Single- and Multi-Objective Evolutionary Algorithms. , 2019, , .		1
448	An Approach for Non-domination Level Update Problem in Steady-State Evolutionary Algorithms With Parallelism. , 2019, , .		1
449	A parallel naive approach for non-dominated sorting: a theoretical study considering PRAM CREW model. Soft Computing, 2021, 25, 73-84.	3.6	1
450	An Empirical Study on the Use of the S-energy Performance Indicator in Mating Restriction Schemes for Multi-Objective Optimizers. , 2021, , .		1

#	Article	IF	CITATIONS
451	A Discrete Particle Swarm for Multi-objective Problems in Polynomial Neural Networks used for Classification: A Data Mining Perspective. Studies in Computational Intelligence, 2009, , 115-155.	0.9	1
452	Using Genetic Algorithms for Optimal Design of Axially Loaded Non-Prismatic Columns. , 1995, , 460-463.		1
453	Genetic Algorithms and Case-Based Reasoning as a Discovery and Learning Machine in the Optimization of Combinational Logic Circuits. Lecture Notes in Computer Science, 2002, , 128-137.	1.3	1
454	A Genetic Representation for Dynamic System Qualitative Models on Genetic Programming: A Gene Expression Programming Approach. Lecture Notes in Computer Science, 2007, , 30-40.	1.3	1
455	Detecting Hidden Information from Watermarked Signal Using Granulation Based Fitness Approximation. Advances in Intelligent and Soft Computing, 2009, , 463-472.	0.2	1
456	Boundary Search for Constrained Numerical Optimization Problems. Studies in Computational Intelligence, 2009, , 25-49.	0.9	1
457	Artificial Immune System for Solving Global Optimization Problems. Inteligencia Artificial, 2010, 14, .	0.8	1
458	VSD-MOEA: A Dominance-Based Multi-Objective Evolutionary Algorithm with Explicit Variable Space Diversity Management. Evolutionary Computation, 2021, , 1-24.	3.0	1
459	An Overall Characterization of the Project Portfolio Optimization Problem and an Approach Based on Evolutionary Algorithms to Address It. Adaptation, Learning, and Optimization, 2022, , 65-88.	0.6	1
460	Multi-objective Ant Colony Optimization: An Updated Review of Approaches and Applications. Intelligent Systems Reference Library, 2022, , 1-32.	1.2	1
461	Gate-level synthesis of Boolean functions using information theory concepts. , 2003, , .		O
462	IS-PAES: switching constraints on and off for multiobjective optimization. , 0, , .		0
463	Fitness landscape and evolutionary Boolean synthesis using information theory concepts. , 2003, , .		O
464	Constraint handling techniques for a non-parametric real-valued estimation distribution algorithm., 2007,,.		0
465	Accelerating convergence using rough sets theory for multi-objective optimization problems. , 2008, , .		O
466	Constraint-handling techniques used with evolutionary algorithms. , 2009, , .		0
467	Computing approximate solutions of scalar optimization problems and applications in space mission design. , 2010, , .		0
468	Message from the podium. , 2011, , .		0

#	Article	IF	CITATIONS
469	Swarm intelligence guided by multi-objective mathematical programming techniques. , 2011, , .		O
470	A Multi-Region Differential Evolution approach for continuous optimization problems. , 2011, , .		0
471	Dynamic control of the number of crossed genes in evolutionary many-objective optimization. , 2012, , .		O
472	Special issue on evolutionary computing and complex systems. Soft Computing, 2013, 17, 909-912.	3.6	O
473	Guest editorial: Special issueâ€"revised selected papers of the LION 5 conference. Annals of Mathematics and Artificial Intelligence, 2013, 68, 195-196.	1.3	0
474	An adaptive evolutionary algorithm based on tactical and positional chess problems to adjust the weights of a chess engine. , $2013, , .$		0
475	Solving a Real-World Structural Optimization Problem with a Distributed SMS-EMOA Algorithm. , 2013, , .		O
476	Conference Report for 2013 IEEE Congress on Evolutionary Computation (IEEE CEC 2013) [Conference Reports]. IEEE Computational Intelligence Magazine, 2013, 8, 8-9.	3.2	0
477	Multiobjective Optimization for Space Mission Design Problems. , 2014, , 1-46.		0
478	Constraint-handling techniques used with evolutionary algorithms. , 2014, , .		0
479	Algorithms and models for complex natural systems. Natural Computing, 2015, 14, 339-340.	3.0	0
480	An Adaptive Recombination-Based Extension of the iMOACO <inf>R</inf> Algorithm. , 2018, , .		0
481	Use of Reference Point Sets in a Decomposition-Based Multi-Objective Evolutionary Algorithm. Lecture Notes in Computer Science, 2018, , 372-383.	1.3	O
482	Studying the effect of techniques to generate reference vectors in many-objective optimization. , 2018, , .		0
483	A Parallel Island Model for Hypervolume-Based Many-Objective Optimization. Studies in Computational Intelligence, 2020, , 247-273.	0.9	O
484	The Importance of Diversity inÂMulti-objective Evolutionary Algorithms. Algorithms for Intelligent Systems, 2021, , 291-298.	0.6	0
485	An Ensemble of Scalarizing Functions and Weight Vectors for Evolutionary Multi-Objective Optimization. , 2021, , .		0
486	Hypervolume by Slicing Objective Algorithm: An Improved Version. , 2021, , .		0

#	Article	IF	CITATIONS
487	The Influence of Swarm Topologies in Many-Objective Optimization Problems. Lecture Notes in Computer Science, 2021, , 387-398.	1.3	0
488	Using a Gradient Based Method to Seed an EMO Algorithm. Lecture Notes in Economics and Mathematical Systems, 2010, , 327-337.	0.3	0
489	Testing the Permutation Space Based Geometric Differential Evolution on the Job-Shop Scheduling Problem., 2010,, 250-259.		0
490	A Parallel Multi-objective Memetic Algorithm Based on the IGD+ Indicator. Lecture Notes in Computer Science, 2016, , 473-482.	1.3	0
491	An Ensemble of S-energy Based Mating Restrictions for Multi-Objective Evolutionary Algorithms. , 2021, , .		0