Joe Y Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6431889/publications.pdf Version: 2024-02-01

LOF Y CHANC

#	Article	IF	CITATIONS
1	Stereotactic ablative radiotherapy versus lobectomy for operable stage I non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Oncology, The, 2015, 16, 630-637.	10.7	1,220
2	Validation of an accelerated †demons' algorithm for deformable image registration in radiation therapy. Physics in Medicine and Biology, 2005, 50, 2887-2905.	3.0	537
3	The abscopal effect of local radiotherapy: using immunotherapy to make a rare event clinically relevant. Cancer Treatment Reviews, 2015, 41, 503-510.	7.7	482
4	A Randomized Phase 2 Study Comparing 2 Stereotactic Body Radiation Therapy Schedules for Medically Inoperable Patients With Stage I Peripheral Non-Small Cell Lung Cancer: NRG Oncology RTOG 0915 (NCCTG N0927). International Journal of Radiation Oncology Biology Physics, 2015, 93, 757-764.	0.8	317
5	Assessing Respiration-Induced Tumor Motion and Internal Target Volume Using Four-Dimensional Computed Tomography for Radiotherapy of Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2007, 68, 531-540.	0.8	306
6	Significant reduction of normal tissue dose by proton radiotherapy compared with three-dimensional conformal or intensity-modulated radiation therapy in Stage I or Stage III non–small-cell lung cancer. International Journal of Radiation Oncology Biology Physics, 2006, 65, 1087-1096.	0.8	290
7	Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach?. Nature Reviews Clinical Oncology, 2016, 13, 516-524.	27.6	288
8	Promising clinical outcome of stereotactic body radiation therapy for patients with inoperable Stage I/II non–small-cell lung cancer. International Journal of Radiation Oncology Biology Physics, 2006, 66, 117-125.	0.8	285
9	Pembrolizumab with or without radiotherapy for metastatic non-small-cell lung cancer: a pooled analysis of two randomised trials. Lancet Respiratory Medicine,the, 2021, 9, 467-475.	10.7	277
10	Ipilimumab with Stereotactic Ablative Radiation Therapy: Phase I Results and Immunologic Correlates from Peripheral T Cells. Clinical Cancer Research, 2017, 23, 1388-1396.	7.0	261
11	Stereotactic Body Radiation Therapy in Centrally and Superiorly Located Stage I or Isolated Recurrent Non–Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 72, 967-971.	0.8	251
12	Dose and volume reduction for normal lung using intensity-modulated radiotherapy for advanced-stage non–small-cell lung cancer. International Journal of Radiation Oncology Biology Physics, 2004, 58, 1258-1267.	0.8	249
13	Intensity-Modulated Proton Therapy Reduces the Dose to Normal Tissue Compared With Intensity-Modulated Radiation Therapy or Passive Scattering Proton Therapy and Enables Individualized Radical Radiotherapy for Extensive Stage IIIB Non-Small-Cell Lung Cancer: A Virtual Clinical Study. International Journal of Radiation Oncology Biology Physics, 2010, 77, 357-366.	0.8	249
14	Comparative Effectiveness of 5 Treatment Strategies for Early-Stage Non-Small Cell Lung Cancer in the Elderly. International Journal of Radiation Oncology Biology Physics, 2012, 84, 1060-1070.	0.8	246
15	A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. , 2018, 6, 128.		233
16	Time to abandon single-site irradiation for inducing abscopal effects. Nature Reviews Clinical Oncology, 2019, 16, 123-135.	27.6	233
17	Lobectomy, Sublobar Resection, and Stereotactic Ablative Radiotherapy for Early-Stage Non–Small Cell Lung Cancers in the Elderly. JAMA Surgery, 2014, 149, 1244.	4.3	227
18	Stereotactic Ablative Radiation Therapy for Centrally Located Early Stage or Isolated Parenchymal Recurrences of Non-Small Cell Lung Cancer: How to Fly in a "No Fly Zone― International Journal of Radiation Oncology Biology Physics, 2014, 88, 1120-1128.	0.8	225

#	Article	IF	CITATIONS
19	Suppression of Type I IFN Signaling in Tumors Mediates Resistance to Anti-PD-1 Treatment That Can Be Overcome by Radiotherapy. Cancer Research, 2017, 77, 839-850.	0.9	195
20	4D Proton treatment planning strategy for mobile lung tumors. International Journal of Radiation Oncology Biology Physics, 2007, 67, 906-914.	0.8	178
21	Assessment of Gross Tumor Volume Regression and Motion Changes During Radiotherapy for Non–Small-Cell Lung Cancer as Measured by Four-Dimensional Computed Tomography. International Journal of Radiation Oncology Biology Physics, 2007, 68, 1036-1046.	0.8	162
22	Consensus Guidelines for Implementing Pencil-Beam Scanning Proton Therapy for Thoracic Malignancies on Behalf of the PTCOG Thoracic and Lymphoma Subcommittee. International Journal of Radiation Oncology Biology Physics, 2017, 99, 41-50.	0.8	162
23	Randomized Phase IIB Trial of Proton Beam Therapy Versus Intensity-Modulated Radiation Therapy for Locally Advanced Esophageal Cancer. Journal of Clinical Oncology, 2020, 38, 1569-1579.	1.6	158
24	Phase 2 study of highâ€dose proton therapy with concurrent chemotherapy for unresectable stage III nonsmall cell lung cancer. Cancer, 2011, 117, 4707-4713.	4.1	157
25	Stereotactic ablative radiotherapy for operable stage I non-small-cell lung cancer (revised STARS): long-term results of a single-arm, prospective trial with prespecified comparison to surgery. Lancet Oncology, The, 2021, 22, 1448-1457.	10.7	154
26	Stereotactic Body Radiation Therapy for Patients With Lung Cancer Previously Treated With Thoracic Radiation. International Journal of Radiation Oncology Biology Physics, 2010, 78, 1387-1393.	0.8	151
27	Feasibility of using intensity-modulated radiotherapy to improve lung sparing in treatment planning for distal esophageal cancer. Radiotherapy and Oncology, 2005, 77, 247-253.	0.6	150
28	Pembrolizumab with or without radiation therapy for metastatic non-small cell lung cancer: a randomized phase I/II trial. , 2020, 8, e001001.		143
29	Stereotactic Ablative Radiotherapy for Centrally Located Early Stage Non–Small-Cell Lung Cancer: What We Have Learned. Journal of Thoracic Oncology, 2015, 10, 577-585.	1.1	133
30	Clinical Implementation of Intensity Modulated Proton Therapy for Thoracic Malignancies. International Journal of Radiation Oncology Biology Physics, 2014, 90, 809-818.	0.8	125
31	Consensus Statement on Proton Therapy inÂEarly-Stage and Locally Advanced Non–Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 95, 505-516.	0.8	125
32	7â€year followâ€up after stereotactic ablative radiotherapy for patients with stage I non–small cell lung cancer: Results of a phase 2 clinical trial. Cancer, 2017, 123, 3031-3039.	4.1	125
33	Clinical outcome and predictors of survival and pneumonitis after stereotactic ablative radiotherapy for stage I non-small cell lung cancer. Radiation Oncology, 2012, 7, 152.	2.7	124
34	Proton Beam Radiotherapy and Concurrent Chemotherapy for Unresectable Stage III Non–Small Cell Lung Cancer. JAMA Oncology, 2017, 3, e172032.	7.1	119
35	Early findings on toxicity of proton beam therapy with concurrent chemotherapy for nonsmall cell lung cancer. Cancer, 2011, 117, 3004-3013.	4.1	117
36	Proton Stereotactic Body Radiation Therapy for Clinically Challenging Cases of Centrally and Superiorly Located Stage I Non-Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2011, 80, 1015-1022.	0.8	117

#	Article	IF	CITATIONS
37	Development of an Immune-Pathology Informed Radiomics Model for Non-Small Cell Lung Cancer. Scientific Reports, 2018, 8, 1922.	3.3	108
38	Role of Radiation Therapy in Modulation of the Tumor Stroma and Microenvironment. Frontiers in Immunology, 2019, 10, 193.	4.8	105
39	Bevacizumab treatment for radiation brain necrosis: mechanism, efficacy and issues. Molecular Cancer, 2019, 18, 21.	19.2	104
40	Exploratory Study of 4D versus 3D Robust Optimization in Intensity Modulated Proton Therapy for Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2016, 95, 523-533.	0.8	103
41	Image–Guided Radiation Therapy for Non–small Cell Lung Cancer. Journal of Thoracic Oncology, 2008, 3, 177-186.	1.1	101
42	Phase II Trial of Concurrent Atezolizumab With Chemoradiation for Unresectable NSCLC. Journal of Thoracic Oncology, 2020, 15, 248-257.	1.1	97
43	Treatment of Radioresistant Stem-Like Esophageal Cancer Cells by an Apoptotic Gene-Armed, Telomerase-Specific Oncolytic Adenovirus. Clinical Cancer Research, 2008, 14, 2813-2823.	7.0	96
44	Obesity Increases the Risk of Chest Wall Pain From Thoracic Stereotactic Body Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2011, 81, 91-96.	0.8	92
45	Genetic Variants in Inflammation-Related Genes Are Associated with Radiation-Induced Toxicity Following Treatment for Non-Small Cell Lung Cancer. PLoS ONE, 2010, 5, e12402.	2.5	91
46	Stereotactic radiotherapy for lung cancer using a flattening filter free Clinac. Journal of Applied Clinical Medical Physics, 2009, 10, 14-21.	1.9	87
47	Predicting Radiation Pneumonitis After Stereotactic Ablative Radiation Therapy in Patients Previously Treated With Conventional Thoracic Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2012, 84, 1017-1023.	0.8	87
48	On the interplay effects with proton scanning beams in stage III lung cancer. Medical Physics, 2014, 41, 021721.	3.0	87
49	Positron Emission Tomography for Assessing Local Failure After Stereotactic Body Radiotherapy for Non-Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 83, 1558-1565.	0.8	86
50	Phase II Trial of Ipilimumab with Stereotactic Radiation Therapy for Metastatic Disease: Outcomes, Toxicities, and Low-Dose Radiation–Related Abscopal Responses. Cancer Immunology Research, 2019, 7, 1903-1909.	3.4	86
51	Strategies for combining immunotherapy with radiation for anticancer therapy. Immunotherapy, 2015, 7, 967-980.	2.0	83
52	Toxicity and Patterns of Failure of Adaptive/Ablative Proton Therapy for Early-Stage, Medically Inoperable Non–Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2011, 80, 1350-1357.	0.8	82
53	Long-term outcomes after proton therapy, with concurrent chemotherapy, for stage II–III inoperable non-small cell lung cancer. Radiotherapy and Oncology, 2015, 115, 367-372.	0.6	82
54	Effects of Interfractional Motion and Anatomic Changes on Proton Therapy Dose Distribution in Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1385-1395.	0.8	81

#	Article	IF	CITATIONS
55	Comparative Outcomes After Definitive Chemoradiotherapy Using Proton Beam Therapy Versus Intensity Modulated Radiation Therapy for Esophageal Cancer: A Retrospective, Single-Institutional Analysis. International Journal of Radiation Oncology Biology Physics, 2017, 99, 667-676.	0.8	79
56	Stereotactic ablative radiotherapy (SABR) using 70Gy in 10 fractions for non-small cell lung cancer: Exploration of clinical indications. Radiotherapy and Oncology, 2014, 112, 256-261.	0.6	78
57	Determination of patient-specific internal gross tumor volumes for lung cancer using four-dimensional computed tomography. Radiation Oncology, 2009, 4, 4.	2.7	76
58	Stereotactic ablative radiotherapy: A potentially curable approach to early stage multiple primary lung cancer. Cancer, 2013, 119, 3402-3410.	4.1	75
59	Robust optimization in intensity-modulated proton therapy to account for anatomy changes in lung cancer patients. Radiotherapy and Oncology, 2015, 114, 367-372.	0.6	72
60	The prevalence of myocardial ischemia after concurrent chemoradiation therapy as detected by gated myocardial perfusion imaging in patients with esophageal cancer. Journal of Nuclear Medicine, 2006, 47, 1756-62.	5.0	72
61	Definitive Reirradiation for Locoregionally Recurrent Non-Small Cell Lung Cancer With Proton Beam Therapy or Intensity Modulated Radiation Therapy: Predictors of High-Grade Toxicity and Survival Outcomes. International Journal of Radiation Oncology Biology Physics, 2014, 90, 819-827.	0.8	71
62	Adaptive/Nonadaptive Proton Radiation Planning and Outcomes in a Phase II Trial for Locally Advanced Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 84, 1093-1100.	0.8	70
63	Feasibility of proton beam therapy for reirradiation of locoregionally recurrent non-small cell lung cancer. Radiotherapy and Oncology, 2013, 109, 38-44.	0.6	66
64	Improving Radiation Conformality in the Treatment of Non–Small-Cell Lung Cancer. Seminars in Radiation Oncology, 2010, 20, 171-177.	2.2	64
65	In Vivo Delivery of miR-34a Sensitizes Lung Tumors to Radiation Through RAD51 Regulation. Molecular Therapy - Nucleic Acids, 2015, 4, e270.	5.1	63
66	Motionâ€robust intensityâ€rnodulated proton therapy for distal esophageal cancer. Medical Physics, 2016, 43, 1111-1118.	3.0	63
67	Positron Emission Tomography/Computed Tomography-Guided Intensity-Modulated Radiotherapy for Limited-Stage Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2012, 82, e91-e97.	0.8	62
68	Intensity modulated radiotherapy for stage III non-small cell lung cancer in the United States: Predictors of use and association with toxicities. Lung Cancer, 2013, 82, 252-259.	2.0	61
69	Local Control and Toxicity of a Simultaneous Integrated Boost for Dose Escalation in Locally Advanced Esophageal Cancer: Interim Results from a Prospective Phase I/II Trial. Journal of Thoracic Oncology, 2017, 12, 375-382.	1.1	58
70	Phase I Trial of Pembrolizumab and Radiation Therapy after Induction Chemotherapy for Extensive-Stage Small Cell Lung Cancer. Journal of Thoracic Oncology, 2020, 15, 266-273.	1.1	58
71	Proton therapy in clinical practice. Chinese Journal of Cancer, 2011, 30, 315-326.	4.9	56
72	Evaluation and mitigation of the interplay effects of intensity modulated proton therapy for lung cancer in a clinical setting. Practical Radiation Oncology, 2014, 4, e259-e268.	2.1	56

#	Article	IF	CITATIONS
73	Planning Target Volume D95 and Mean Dose Should Be Considered for Optimal Local Control for Stereotactic Ablative Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2016, 95, 1226-1235.	0.8	56
74	Development and Validation of a Predictive Radiomics Model for Clinical Outcomes in Stage I Non-small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 102, 1090-1097.	0.8	56
75	Therapy-Resistant Cancer Stem Cells Have Differing Sensitivity to Photon versus Proton Beam Radiation. Journal of Thoracic Oncology, 2013, 8, 1484-1491.	1.1	55
76	Phase 2 Study of Stereotactic Body Radiation Therapy and Stereotactic Body Proton Therapy for High-Risk, Medically Inoperable, Early-Stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 101, 558-563.	0.8	55
77	Stereotactic ablative radiotherapy: what's in a name?. Practical Radiation Oncology, 2011, 1, 38-39.	2.1	53
78	Results of a Phase 1/2 Trial of Chemoradiotherapy With Simultaneous Integrated Boost of Radiotherapy Dose in Unresectable Locally Advanced Esophageal Cancer. JAMA Oncology, 2019, 5, 1597.	7.1	53
79	Phase 1/2 Trial of Pembrolizumab and Concurrent Chemoradiation Therapy for Limited-Stage SCLC. Journal of Thoracic Oncology, 2020, 15, 1919-1927.	1.1	53
80	Cancer Stem Cell Radioresistance and Enrichment: Where Frontline Radiation Therapy May Fail in Lung and Esophageal Cancers. Cancers, 2011, 3, 1232-1252.	3.7	52
81	Hemithoracic Intensity Modulated Radiation Therapy After Pleurectomy/Decortication for Malignant Pleural Mesothelioma: Toxicity, Patterns of Failure, and a Matched Survival Analysis. International Journal of Radiation Oncology Biology Physics, 2015, 91, 149-156.	0.8	52
82	Phase 1 Study of Dose Escalation in Hypofractionated Proton Beam Therapy for Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 86, 665-670.	0.8	51
83	Long-Term Outcomes of Salvage Stereotactic AblativeÂRadiotherapy for Isolated Lung Recurrence of Non–Small Cell Lung Cancer: A Phase II Clinical Trial. Journal of Thoracic Oncology, 2017, 12, 983-992.	1.1	51
84	Implementation of Feedback-Guided Voluntary Breath-Hold Gating for Cone Beam CT-Based Stereotactic Body Radiotherapy. International Journal of Radiation Oncology Biology Physics, 2011, 80, 909-917.	0.8	50
85	Automated Volumetric Modulated Arc Therapy Treatment Planning for Stage III Lung Cancer: How Does It Compare With Intensity-Modulated Radio Therapy?. International Journal of Radiation Oncology Biology Physics, 2012, 84, e69-e76.	0.8	48
86	Association of Long-term Outcomes and Survival With Multidisciplinary Salvage Treatment for Local and Regional Recurrence After Stereotactic Ablative Radiotherapy for Early-Stage Lung Cancer. JAMA Network Open, 2018, 1, e181390.	5.9	48
87	Radiation Followed by OX40 Stimulation Drives Local and Abscopal Antitumor Effects in an Anti–PD1-Resistant Lung Tumor Model. Clinical Cancer Research, 2018, 24, 5735-5743.	7.0	48
88	Consequences of Anatomic Changes and Respiratory Motion on Radiation Dose Distributions in Conformal Radiotherapy for Locally Advanced Non–Small-Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2009, 73, 94-102.	0.8	47
89	Combining radiation plus immunotherapy to improve systemic immune response. Journal of Thoracic Disease, 2018, 10, S468-S479.	1.4	46
90	Accelerated Hypofractionated Image-Guided vs Conventional Radiotherapy for Patients With Stage II/III Non–Small Cell Lung Cancer and Poor Performance Status. JAMA Oncology, 2021, 7, 1497.	7.1	45

#	Article	IF	CITATIONS
91	High-dose irradiation in combination with non-ablative low-dose radiation to treat metastatic disease after progression on immunotherapy: Results of a phase II trial. Radiotherapy and Oncology, 2021, 162, 60-67.	0.6	45
92	Stereotactic ablative radiotherapy for adrenal gland metastases: Factors influencing outcomes, patterns of failure, and dosimetric thresholds for toxicity. Practical Radiation Oncology, 2017, 7, e195-e203.	2.1	44
93	Impact of Spot Size and Spacing on the Quality of Robustly Optimized Intensity Modulated Proton Therapy Plans for Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2018, 101, 479-489.	0.8	44
94	Cardiac 18F-fluorodeoxyglucose uptake on positron emission tomography after thoracic stereotactic body radiation therapy. Radiotherapy and Oncology, 2013, 109, 82-88.	0.6	42
95	Radiotherapy Sensitization by Tumor-Specific TRAIL Gene Targeting Improves Survival of Mice Bearing Human Non–Small Cell Lung Cancer. Clinical Cancer Research, 2005, 11, 6657-6668.	7.0	39
96	Stereotactic Ablative Radiation Therapy Combined With Immunotherapy for Solid Tumors. Cancer Journal (Sudbury, Mass), 2016, 22, 257-266.	2.0	38
97	Long-term outcome of phase I/II prospective study of dose-escalated proton therapy for early-stage non-small cell lung cancer. Radiotherapy and Oncology, 2017, 122, 274-280.	0.6	38
98	Biologically Effective Dose in Stereotactic Body Radiotherapy and Survival for Patients With Early-Stage NSCLC. Journal of Thoracic Oncology, 2020, 15, 101-109.	1.1	38
99	Stereotactic Ablative Radiation Therapy is Highly Safe and Effective for Elderly Patients With Early-stage Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2017, 98, 900-907.	0.8	37
100	Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration in the Nodal Staging of Stereotactic Ablative BodyÂRadiotherapy Patients. Annals of Thoracic Surgery, 2017, 103, 1600-1605.	1.3	37
101	Stereotactic Body Radiation Therapy for Stage I Non–Small Cell Lung Cancer. Thoracic Surgery Clinics, 2007, 17, 251-259.	1.0	36
102	Intrathoracic Patterns of Failure for Non–Small-Cell Lung CancerÂWith Positron-Emission Tomography/Computed Tomography–Defined Target Delineation. International Journal of Radiation Oncology Biology Physics, 2007, 69, 1409-1416.	0.8	36
103	Comparison of 2 Common Radiation Therapy Techniques for Definitive Treatment of Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 87, 139-147.	0.8	36
104	Reirradiation of thoracic cancers with intensity modulated proton therapy. Practical Radiation Oncology, 2018, 8, 58-65.	2.1	34
105	Racial and Insurance-related Disparities in Delivery of Immunotherapy-type Compounds in the United States. Journal of Immunotherapy, 2019, 42, 55-64.	2.4	34
106	Use of Multi-Site Radiation Therapy for Systemic Disease Control. International Journal of Radiation Oncology Biology Physics, 2021, 109, 352-364.	0.8	34
107	Intensity modulated radiation therapy and proton radiotherapy for non-small cell lung cancer. Current Oncology Reports, 2005, 7, 255-259.	4.0	33
108	Intensity-Modulated Radiotherapy, Not 3 Dimensional Conformal, Is the Preferred Technique for Treating Locally Advanced Lung Cancer. Seminars in Radiation Oncology, 2015, 25, 110-116.	2.2	32

#	Article	IF	CITATIONS
109	Use of Simultaneous Radiation Boost Achieves High Control Rates in Patients With Non–Small-Cell Lung Cancer Who Are Not Candidates for Surgery or Conventional Chemoradiation. Clinical Lung Cancer, 2015, 16, 156-163.	2.6	31
110	AAPM Task Group Report 290: Respiratory motion management for particle therapy. Medical Physics, 2022, 49, .	3.0	30
111	A study on the evaluation method and recent clinical efficacy of bevacizumab on the treatment of radiation cerebral necrosis. Scientific Reports, 2016, 6, 24364.	3.3	29
112	Role of Postoperative Concurrent Chemoradiotherapy for Esophageal Carcinoma: A meta-analysis of 2165 Patients. Journal of Cancer, 2018, 9, 584-593.	2.5	29
113	Salvage Therapy for Locoregional Recurrence After Stereotactic Ablative Radiotherapy for Early-Stage NSCLC. Journal of Thoracic Oncology, 2020, 15, 176-189.	1.1	29
114	Outcomes and toxicities following stereotactic ablative radiotherapy for pulmonary metastases in patients with primary head and neck cancer. Head and Neck, 2020, 42, 1939-1953.	2.0	29
115	Adaptive Radiation for Lung Cancer. Journal of Oncology, 2011, 2011, 1-10.	1.3	28
116	Prospective Study of Patient-Reported Symptom Burden in Patients With Non–Small-Cell Lung Cancer Undergoing Proton or Photon Chemoradiation Therapy. Journal of Pain and Symptom Management, 2016, 51, 832-838.	1.2	27
117	Analysis of risk and predictors of brain radiation necrosis after radiosurgery. Oncotarget, 2016, 7, 7773-7779.	1.8	27
118	Evaluation of Tumor Position and PTV Margins Using Image Guidance and Respiratory Gating. International Journal of Radiation Oncology Biology Physics, 2010, 76, 1578-1585.	0.8	24
119	Predicting 5-Year Progression and Survival Outcomes for Early Stage Non-small Cell Lung Cancer Treated with Stereotactic Ablative Radiation Therapy: Development and Validation of Robust Prognostic Nomograms. International Journal of Radiation Oncology Biology Physics, 2020, 106, 90-99.	0.8	24
120	Esophageal cancer: diagnosis and management. Chinese Journal of Cancer, 2010, 29, 843-854.	4.9	24
121	Toxicity and Survival After Intensity-Modulated Proton Therapy Versus Passive Scattering Proton Therapy for NSCLC. Journal of Thoracic Oncology, 2021, 16, 269-277.	1.1	23
122	FDG uptake correlates with recurrence and survival after treatment of unresectable stage III non-small cell lung cancer with high-dose proton therapy and chemotherapy. Radiation Oncology, 2012, 7, 144.	2.7	22
123	Incidence and predictors of severe acute esophagitis and subsequent esophageal stricture in patients treated with accelerated hyperfractionated chemoradiation for limited-stage small cell lung cancer. Practical Radiation Oncology, 2015, 5, e383-e391.	2.1	22
124	Is surgery still the optimal treatment for stage I non-small cell lung cancer?. Translational Lung Cancer Research, 2016, 5, 183-189.	2.8	22
125	American Radium Society Appropriate Use Criteria for Radiation Therapy in Oligometastatic or Oligoprogressive Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2022, 112, 361-375.	0.8	22
126	Evaluating proton stereotactic body radiotherapy to reduce chest wall dose in the treatment of lung cancer. Medical Dosimetry, 2013, 38, 442-447.	0.9	19

#	Article	IF	CITATIONS
127	Can Stereotactic Ablative Radiotherapy in Early Stage Lung Cancers Produce Comparable Success as Surgery?. Thoracic Surgery Clinics, 2013, 23, 369-381.	1.0	18
128	Proton Reirradiation: Expert Recommendations for Reducing Toxicities and Offering New Chances of Cure in Patients With Challenging Recurrence Malignancies. Seminars in Radiation Oncology, 2020, 30, 253-261.	2.2	18
129	Local Consolidative Therapy Versus Systemic Therapy Alone for Metastatic Non-Small Cell Lung Cancer: A Systematic Review and Meta-Analysis. International Journal of Radiation Oncology Biology Physics, 2022, 114, 635-644.	0.8	18
130	Clinical Controversies: Proton Therapy for Thoracic Tumors. Seminars in Radiation Oncology, 2013, 23, 115-119.	2.2	17
131	Metabolic Responses to Metformin in Inoperable Early-stage Non–Small Cell Lung Cancer Treated With Stereotactic Radiotherapy. American Journal of Clinical Oncology: Cancer Clinical Trials, 2020, 43, 231-235.	1.3	17
132	American Radium Society Appropriate Use Criteria: Radiation Therapy for Limited-Stage SCLC 2020. Journal of Thoracic Oncology, 2021, 16, 66-75.	1.1	17
133	Coxsackie-adenovirus receptor as a novel marker of stem cells in treatment-resistant non-small cell lung cancer. Radiotherapy and Oncology, 2012, 105, 250-257.	0.6	15
134	Proton therapy for non-small cell lung cancer: the road ahead. Translational Lung Cancer Research, 2019, 8, S202-S212.	2.8	15
135	Minocycline Reduces Chemoradiation-Related Symptom Burden in Patients with Non-Small Cell Lung Cancer: A Phase 2 Randomized Trial. International Journal of Radiation Oncology Biology Physics, 2020, 106, 100-107.	0.8	15
136	Association of Medicaid Insurance With Survival Among Patients With Small Cell Lung Cancer. JAMA Network Open, 2020, 3, e203277.	5.9	15
137	Rapid Detection of Asymptomatic Coronavirus Disease 2019 by Computed Tomography Image Guidance for Stereotactic Ablative Radiotherapy. Journal of Thoracic Oncology, 2020, 15, 1085-1087.	1.1	15
138	Single Institution Experience of Proton and Photon-based Postoperative Radiation Therapy for Non–small-cell Lung Cancer. Clinical Lung Cancer, 2021, 22, e745-e755.	2.6	15
139	Oncology Scan—Promising Strategies for the Treatment of Locally-Advanced Non-Small Cell Lung Cancer. International Journal of Radiation Oncology Biology Physics, 2013, 87, 1-4.	0.8	14
140	Tumor-specific apoptotic gene targeting overcomes radiation resistance in esophageal adenocarcinoma. International Journal of Radiation Oncology Biology Physics, 2006, 64, 1482-1494.	0.8	13
141	Association between Genetic Variants in DNA Double-Strand Break Repair Pathways and Risk of Radiation Therapy-Induced Pneumonitis and Esophagitis in Non-Small Cell Lung Cancer. Cancers, 2016, 8, 23.	3.7	13
142	American Radium Society Appropriate Use Criteria on Radiation Therapy for Extensive-Stage SCLC. Journal of Thoracic Oncology, 2021, 16, 54-65.	1.1	13
143	Increased biologically effective dose (BED) to the primary tumor is associated with improved survival in patients with oligometastatic NSCLC. Radiotherapy and Oncology, 2021, 163, 114-118.	0.6	12
144	Lyman–Kutcher–Burman normal tissue complication probability modeling for radiation-induced esophagitis in non-small cell lung cancer patients receiving proton radiotherapy. Radiotherapy and Oncology, 2020, 146, 200-204.	0.6	12

#	Article	IF	CITATIONS
145	MTOR inhibition reversed drug resistance after combination radiation with erlotinib in lung adenocarcinoma. Oncotarget, 2016, 7, 84688-84694.	1.8	12
146	Clinical necessity of multi-image based (4DMIB) optimization for targets affected by respiratory motion and treated with scanned particle therapy – A comprehensive review. Radiotherapy and Oncology, 2022, 169, 77-85.	0.6	12
147	Improving cardiac dosimetry: Alternative beam arrangements for intensity modulated radiation therapy planning in patients with carcinoma of the distal esophagus. Practical Radiation Oncology, 2012, 2, 41-45.	2.1	11
148	Progress of clinical research on targeted therapy combined with thoracic radiotherapy for non-small-cell lung cancer. Drug Design, Development and Therapy, 2014, 8, 667.	4.3	11
149	Evaluation of the systematic error in using 3D dose calculation in scanning beam proton therapy for lung cancer. Journal of Applied Clinical Medical Physics, 2014, 15, 47-56.	1.9	11
150	Commercial Insurance Coverage of Advanced Radiation Therapy Techniques Compared With American Society for Radiation Oncology Model Policies. Practical Radiation Oncology, 2020, 10, 324-329.	2.1	11
151	Tyrosine Kinase Inhibitor Resistance Increased the Risk of Cerebral Radiation Necrosis After Stereotactic Radiosurgery in Brain Metastases of Non-small-Cell Lung Cancer: A Multi-Institutional Retrospective Case-Control Study. Frontiers in Oncology, 2020, 10, 12.	2.8	11
152	Consensus Statement on Proton Therapy in Mesothelioma. Practical Radiation Oncology, 2021, 11, 119-133.	2.1	11
153	High Mutagen Sensitivity in Peripheral Blood Lymphocytes Predicts Poor Overall and Disease-Specific Survival in Patients with Stage III Non–Small Cell Lung Cancer Treated with Radiotherapy and Chemotherapy. Clinical Cancer Research, 2005, 11, 2894-2898.	7.0	10
154	Proton-Based Stereotactic Ablative Radiotherapy in Early-Stage Non-Small-Cell Lung Cancer. BioMed Research International, 2014, 2014, 1-7.	1.9	10
155	Assessing the robustness of passive scattering proton therapy with regard to local recurrence in stage III non-small cell lung cancer: a secondary analysis of a phase II trial. Radiation Oncology, 2014, 9, 108.	2.7	10
156	Surgery versus SABR for resectable non-small-cell lung cancer – Authors' reply. Lancet Oncology, The, 2015, 16, e374-e375.	10.7	10
157	Optimize Local Therapy for Oligometastatic and Oligoprogressive Non–Small Cell Lung Cancer to Enhance Survival. Journal of the National Comprehensive Cancer Network: JNCCN, 2022, 20, 531-539.	4.9	10
158	Treatment modes for EGFR mutations in patients with brain metastases from non-small cell lung cancer: controversy, causes, and solutions. Translational Lung Cancer Research, 2019, 8, 524-531.	2.8	9
159	American Radium Society (ARS) and American College of Radiology (ACR) Appropriate Use Criteria Systematic Review and Guidelines on Reirradiation for Non-small Cell Lung Cancer (NSCLC). International Journal of Radiation Oncology Biology Physics, 2020, 108, E48-E49.	0.8	9
160	Clinical and Radiographic Presentations of COVID-19 Among Patients Receiving Radiation Therapy for Thoracic Malignancies. Advances in Radiation Oncology, 2020, 5, 700-704.	1.2	9
161	Exploration of the recurrence in radiation brain necrosis after bevacizumab discontinuation. Oncotarget, 2016, 7, 48842-48849.	1.8	9
162	Radiotherapy plus immune checkpoint blockade in PD(L)-1-resistant metastatic NSCLC. Lancet Oncology, The, 2022, 23, e156.	10.7	9

#	Article	IF	CITATIONS
163	Telomerase: A potential molecular marker and therapeutic target for cancer. Journal of Surgical Oncology, 2004, 87, 1-3.	1.7	8
164	PD4-1-6: Acute esophageal reactions from proton beam therapy and concurrent chemotherapy for non-small cell lung cancer (NSCLS): Reduction in incidence and severity despite higher doses. Journal of Thoracic Oncology, 2007, 2, S449.	1.1	8
165	Incidence and predictors of chest wall toxicity after high-dose radiation therapy in 15 fractions. Practical Radiation Oncology, 2017, 7, 63-71.	2.1	8
166	Proton therapy for early-stage non-small cell lung cancer (NSCLC). Translational Lung Cancer Research, 2018, 7, 199-204.	2.8	8
167	MiRNA-Related Genetic Variations Associated with Radiotherapy-Induced Toxicities in Patients with Locally Advanced Non–Small Cell Lung Cancer. PLoS ONE, 2016, 11, e0150467.	2.5	7
168	Stereotactic ablative radiotherapy in operable stage I NSCLC patients: Long-term results of the expanded STARS clinical trial Journal of Clinical Oncology, 2021, 39, 8506-8506.	1.6	7
169	Acquired-resistance of bevacizumab treatment for radiation brain necrosis: a case report. Oncotarget, 2016, 7, 13265-13268.	1.8	7
170	Accelerated dose escalation with proton beam therapy for non-small cell lung cancer. Journal of Thoracic Disease, 2014, 6, 348-55.	1.4	7
171	Quantifying the rate and predictors of occult lymph node involvement in patients with clinically node-negative non-small cell lung cancer. Acta Oncológica, 2022, 61, 403-408.	1.8	6
172	A technique for reducing patient setup uncertainties by aligning and verifying daily positioning of a moving tumor using implanted fiducials. Journal of Applied Clinical Medical Physics, 2008, 9, 110-122.	1.9	5
173	New weighted maximumâ€intensityâ€projection images from cine CT for delineation of the lung tumor plus motion. Medical Physics, 2013, 40, 061901.	3.0	5
174	Radiation with immunotherapy: an emerging combination for cancer treatment. Journal of Radiation Oncology, 2015, 4, 331-338.	0.7	5
175	Using FFF beams to improve the therapeutic ratio of lung SBRT. Journal of Radiotherapy in Practice, 2021, 20, 419-425.	0.5	5
176	Definitive Management of Presumed Synchronous Early Stage Non-Small Cell Lung Cancers: Outcomes and Utility of Stereotactic Ablative Radiation Therapy. International Journal of Radiation Oncology Biology Physics, 2020, 107, 261-269.	0.8	5
177	When Constrained by Constraints: Thinking Outside of the Box in Both Technology and Biology. International Journal of Radiation Oncology Biology Physics, 2021, 110, 266-267.	0.8	5
178	Prognosis of severe lymphopenia after postoperative radiotherapy in non-small cell lung cancer: Results of a long-term follow up study. Clinical and Translational Radiation Oncology, 2021, 28, 54-61.	1.7	5
179	Controversies in dose-escalation for locally advanced non-small cell lung cancer and the role of proton beam therapy. Journal of Thoracic Disease, 2018, 10, S1124-S1126.	1.4	4
180	Accounting for, Mitigating, and Choice of Margins for Moving Tumors. Seminars in Radiation Oncology, 2018, 28, 194-200.	2.2	4

#	Article	IF	CITATIONS
181	Phase II randomized clinical trial comparing immunotherapy plus stereotactic ablative radiotherapy (I-SABR) versus SABR alone for stage I, selected stage IIa or isolated lung parenchymal recurrent non-small cell lung cancer: I-SABR Journal of Clinical Oncology, 2018, 36, TPS8580-TPS8580.	1.6	4
182	Executive Summary of Clinical and Technical Guidelines for Esophageal Cancer Proton Beam Therapy From the Particle Therapy Co-Operative Group Thoracic and Gastrointestinal Subcommittees. Frontiers in Oncology, 2021, 11, 748331.	2.8	4
183	Stereotactic ablative radiotherapy: aim for a cure of cancer. Annals of Translational Medicine, 2015, 3, 12.	1.7	4
184	Predictive performance of different NTCP techniques for radiation-induced esophagitis in NSCLC patients receiving proton radiotherapy. Scientific Reports, 2022, 12, .	3.3	4
185	Optimal sequencing of postoperative radiotherapy and chemotherapy in IIIA-N2 non-small cell lung cancer. Journal of Thoracic Disease, 2016, 8, 1394-1397.	1.4	3
186	Dose-escalation of locally advanced non-small cell lung cancer with proton beam therapy. Translational Lung Cancer Research, 2018, 7, S280-S282.	2.8	3
187	Does Pathologic Response Equate to Clinical Response Following SABR for Early-Stage NSCLC?. Frontiers in Oncology, 2019, 9, 551.	2.8	3
188	An improved method for analyzing and reporting patterns of in-field recurrence after stereotactic ablative radiotherapy in early-stage non-small cell lung cancer. Radiotherapy and Oncology, 2020, 145, 209-214.	0.6	3
189	Effects of glutamine for prevention of radiation-induced esophagitis: a double-blind placebo-controlled trial. Investigational New Drugs, 2021, 39, 1113-1122.	2.6	3
190	Stereotactic ablative radiotherapy for stage I NSCLC: Successes and existing challenges. Journal of Thoracic Disease, 2011, 3, 144-6.	1.4	3
191	Scalpel or SABR for Treatment of Early-Stage Lung Cancer: Clinical Considerations for the Multidisciplinary Team. Cancers, 2011, 3, 3432-3448.	3.7	2
192	Primary Lung Cancer. Medical Radiology, 2012, , 137-162.	0.1	2
193	Proton therapy for non–small cell lung cancer: Current evidence and future directions. Thoracic Cancer, 2012, 3, 99-108.	1.9	2
194	Evolution of modern-era radiotherapy strategies for unresectable advanced non-small-cell lung cancer. Lung Cancer Management, 2013, 2, 213-225.	1.5	2
195	In Regard to Vanderstraeten etÂal. International Journal of Radiation Oncology Biology Physics, 2014, 90, 238.	0.8	2
196	PD-L1 expression in lung cancer. Journal of Thoracic Disease, 2016, 8, 3053-3055.	1.4	2
197	Stereotactic radiotherapy or surgery for early-stage non-small-cell lung cancer – Authors' reply. Lancet Oncology, The, 2016, 17, e42-e43.	10.7	2
198	Implications for high-precision dose radiation therapy planning or limited surgical resection after percutaneous computed tomography-guided lung nodule biopsy using a tract sealant. Advances in Radiation Oncology, 2018, 3, 139-145.	1.2	2

#	Article	IF	CITATIONS
199	How to optimize the treatment strategy for patients with EGFR-mutant stage IA lung adenocarcinoma: an international multidisciplinary team. Journal of Thoracic Disease, 2018, 10, 3883-3890.	1.4	2
200	Impact of Corticosteroid Administration on Outcomes Following Stereotactic Ablative Radiotherapy for Non–small-cell Lung Cancer. Clinical Lung Cancer, 2019, 20, e480-e488.	2.6	2
201	Thoracic Radiation Oncology Clinical Trial Accrual and Reasons for Nonenrollment: Results of a Large, Prospective, Multiyear Analysis. International Journal of Radiation Oncology Biology Physics, 2020, 107, 897-908.	0.8	2
202	Postoperative Radiotherapy for Locally Advanced NSCLC: Implications for Shifting to Conformal, High-Risk Fields. Clinical Lung Cancer, 2021, 22, 225-233.e7.	2.6	2
203	Early and Midtreatment Mortality in Palliative Radiotherapy: Emphasizing Patient Selection in High-Quality End-of-Life Care. Journal of the National Comprehensive Cancer Network: JNCCN, 2021, 19, 805-813.	4.9	2
204	Considerations for Clinical Trials Testing Radiotherapy Combined With Immunotherapy for Metastatic Disease. Seminars in Radiation Oncology, 2021, 31, 217-226.	2.2	2
205	Novel Hybrid Scattering- and Scanning-Beam Proton Therapy Approach. International Journal of Particle Therapy, 2016, 3, 37-50.	1.8	2
206	Trends and Outcomes of Proton Radiation Therapy Use for Non–Small Cell Lung Cancer. International Journal of Particle Therapy, 2018, 5, 18-27.	1.8	2
207	Individualized hypo/hyperfractionated radiotherapy for non-small cell lung cancer. Journal of Thoracic Disease, 2014, 6, 285-6.	1.4	2
208	Immunotherapy for the Neoadjuvant Management of Resectable Intrathoracic Cancers. JAMA Oncology, 2022, 8, 333.	7.1	2
209	Comparison of Conformity Index In 3D-CRT, IMRT, and Proton Therapy in Lung Cancer: In Reply to Dr. Armstrong. International Journal of Radiation Oncology Biology Physics, 2007, 68, 1272.	0.8	1
210	Stereotactic ablative radiotherapy for oligometastatic non-small cell lung cancer. Journal of Thoracic Disease, 2018, 10, 21-24.	1.4	1
211	Monte Carlo evaluation of target dose coverage in lung stereotactic body radiation therapy with flattening filter-free beams. Journal of Radiotherapy in Practice, 2022, 21, 81-87.	0.5	1
212	Could the clinical target volume be omitted for radiotherapy of locally advanced non-small cell lung cancer in the modern era?. Translational Lung Cancer Research, 2021, 10, 5-8.	2.8	1
213	Charged Particles in Stereotactic Radiosurgery. , 2015, , 135-146.		1
214	An algorithm for thoracic re-irradiation using biologically effective dose: a common language on how to treat in a "no-treat zone― Radiation Oncology, 2022, 17, 4.	2.7	1
215	Cancer of the Lung. Medical Radiology, 2010, , 755-775.	0.1	Ο
216	In Reply to Oskan. International Journal of Radiation Oncology Biology Physics, 2014, 89, 1142.	0.8	0

#	Article	IF	CITATIONS
217	Patterns and correlates of treatment failure in relation to isodose distribution in non-small cell lung cancer: An analysis of 1522 patients in the modern era. Radiotherapy and Oncology, 2017, 125, 325-330.	0.6	0
218	In Reply to Hurmuz and Ozyigit. International Journal of Radiation Oncology Biology Physics, 2018, 101, 745.	0.8	0
219	Capsular contracture of subcutaneous breast implant following hypofractionated stereotactic body radiotherapy for early stage lung cancer. Journal of Radiosurgery and SBRT, 2013, 2, 165-170.	0.2	0
220	SABR for operable stage I non-small-cell lung cancer: comparison to surgery – Authors' reply. Lancet Oncology, The, 2021, 22, e537-e538.	10.7	0
221	Surgical patterns of care in operable lung carcinoma treated with radiation. Journal of Thoracic Oncology, 2006, 1, 526-31.	1.1	0
222	Alleviating breathlessness in patients with cancer with dexamethasone (ABCD): A parallel-group, double-blind, randomized clinical trial (RCT) Journal of Clinical Oncology, 2022, 40, 12112-12112.	1.6	0