Pedro Miura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6431540/publications.pdf

Version: 2024-02-01

37 3,417 23 36 papers citations h-index g-index

42 42 42 4711 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Genome-wide Analysis of Drosophila Circular RNAs Reveals Their Structural and Sequence Properties and Age-Dependent Neural Accumulation. Cell Reports, 2014, 9, 1966-1980.	2.9	866
2	Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Research, 2013, 23, 812-825.	2.4	308
3	CircRNA accumulation in the aging mouse brain. Scientific Reports, 2016, 6, 38907.	1.6	282
4	A role for regulated binding of p150Glued to microtubule plus ends in organelle transport. Journal of Cell Biology, 2002, 158, 305-319.	2.3	208
5	Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila. Cell Reports, 2012, 1, 277-289.	2.9	201
6	Emerging Functions of Circular RNAs. Yale Journal of Biology and Medicine, 2016, 89, 527-537.	0.2	173
7	Chronic AMPK activation evokes the slow, oxidative myogenic program and triggers beneficial adaptations in mdx mouse skeletal muscle. Human Molecular Genetics, 2011, 20, 3478-3493.	1.4	141
8	Global accumulation of circRNAs during aging in Caenorhabditis elegans. BMC Genomics, 2018, 19, 8.	1.2	139
9	Loss of adult skeletal muscle stem cells drives age-related neuromuscular junction degeneration. ELife, 2017, 6, .	2.8	116
10	Utrophin upregulation for treating Duchenne or Becker muscular dystrophy: how close are we?. Trends in Molecular Medicine, 2006, 12, 122-129.	3.5	100
11	Pharmacological activation of PPARÂ/Â stimulates utrophin A expression in skeletal muscle fibers and restores sarcolemmal integrity in mature mdx mice. Human Molecular Genetics, 2009, 18, 4640-4649.	1.4	98
12	Brainâ€derived neurotrophic factor expression is repressed during myogenic differentiation by miRâ€206. Journal of Neurochemistry, 2012, 120, 230-238.	2.1	78
13	Transcriptome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genomics, 2017, 18, 894.	1.2	76
14	CircRNA accumulation: A new hallmark of aging?. Mechanisms of Ageing and Development, 2018, 173, 71-79.	2.2	68
15	The Utrophin A 5′-Untranslated Region Confers Internal Ribosome Entry Site-mediated Translational Control during Regeneration of Skeletal Muscle Fibers. Journal of Biological Chemistry, 2005, 280, 32997-33005.	1.6	54
16	IsoSCM: improved and alternative 3′ UTR annotation using multiple change-point inference. Rna, 2015, 21, 14-27.	1.6	54
17	Alternative polyadenylation in the nervous system: To what lengths will 3′ UTR extensions take us?. BioEssays, 2014, 36, 766-777.	1.2	51
18	Emerging Roles for 3′ UTRs in Neurons. International Journal of Molecular Sciences, 2020, 21, 3413.	1.8	48

#	Article	IF	Citations
19	Modulation of utrophin A mRNA stability in fast versus slow muscles via an AU-rich element and calcineurin signaling. Nucleic Acids Research, 2007, 36, 826-838.	6.5	47
20	IRES-Mediated Translation of Utrophin A Is Enhanced by Glucocorticoid Treatment in Skeletal Muscle Cells. PLoS ONE, 2008, 3, e2309.	1.1	39
21	Overlapping Activities of ELAV/Hu Family RNA Binding Proteins Specify the Extended Neuronal 3′ UTR Landscape in Drosophila. Molecular Cell, 2020, 80, 140-155.e6.	4.5	33
22	The utrophin A 5'-UTR drives cap-independent translation exclusively in skeletal muscles of transgenic mice and interacts with eEF1A2. Human Molecular Genetics, 2010, 19, 1211-1220.	1.4	32
23	Genome-Wide circRNA Profiling from RNA-seq Data. Methods in Molecular Biology, 2018, 1724, 27-41.	0.4	32
24	Elav-Mediated Exon Skipping and Alternative Polyadenylation of the Dscam1 Gene Are Required for Axon Outgrowth. Cell Reports, 2019, 27, 3808-3817.e7.	2.9	32
25	NOVA2 regulates neural circRNA biogenesis. Nucleic Acids Research, 2021, 49, 6849-6862.	6.5	32
26	Elimination of <i>Calm1</i> long 3′-UTR mRNA isoform by CRISPR–Cas9 gene editing impairs dorsal root ganglion development and hippocampal neuron activation in mice. Rna, 2020, 26, 1414-1430.	1.6	27
27	Converging pathways involving microRNA-206 and the RNA-binding protein KSRP control post-transcriptionally utrophin A expression in skeletal muscle. Nucleic Acids Research, 2014, 42, 3982-3997.	6.5	23
28	Genome-wide profiling of the 3' ends of polyadenylated RNAs. Methods, 2017, 126, 86-94.	1.9	20
29	A 1.3kb promoter fragment confers spatial and temporal expression of utrophin A mRNA in mouse skeletal muscle fibers. Neuromuscular Disorders, 2005, 15, 437-449.	0.3	18
30	Age-related defects in short-term plasticity are reversed by acetyl-L-carnitine at the mouse calyx of Held. Neurobiology of Aging, 2018, 67, 108-119.	1.5	6
31	Loss of circRNAs from the <i>crhâ€1</i> gene extends the mean lifespan in <i>Caenorhabditis elegans</i> Aging Cell, 2022, 21, e13560.	3.0	6
32	Thiazolidinediones alter growth and epithelial cell integrity, independent of PPAR- \hat{l}^3 and MAPK activation, in mouse M1 cortical collecting duct cells. American Journal of Physiology - Renal Physiology, 2010, 298, F1105-F1112.	1.3	3
33	Troglitazone Induces Extracellular Matrix and Cytoskeleton Remodeling in Mouse Collecting Duct Cells. Journal of Biomedicine and Biotechnology, 2012, 2012, 1-10.	3.0	1
34	Global Patterns of Tissue-Specific Alternative Polyadenylation in Drosophila. Cell Reports, 2013, 3, 969.	2.9	1
35	Activation of PPARδ stimulates utrophin A expression in skeletal muscle cells. FASEB Journal, 2007, 21, A1301.	0.2	1
36	CRISPR-Mediated Knockout of Long $3\hat{a} \in \mathbb{C}^2$ UTR mRNA Isoforms in mESC-Derived Neurons. Frontiers in Genetics, 2021, 12, 789434.	1.1	1

PEDRO MIURA

#	Article	IF	CITATIONS
37	Reply to Davies. Neuromuscular Disorders, 2005, 15, 648-649.	0.3	O