Alo Nag

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6431265/publications.pdf

Version: 2024-02-01

29	734	16	27
papers	citations	h-index	g-index
30	30	30	1012 citing authors
all docs	docs citations	times ranked	

#	Article	IF	Citations
1	Identification of a peptide that disrupts hADA3-E6 interaction with implications in HPV induced cancer therapy. Life Sciences, 2022, 288, 120157.	4.3	1
2	Repurposing the Pathogen Box compounds for identification of potent anti-malarials against blood stages of Plasmodium falciparum with PfUCHL3 inhibitory activity. Scientific Reports, 2022, 12, 918.	3.3	4
3	The anaphase-promoting complex/cyclosome co-activator, Cdh1, is a novel target of human papillomavirus 16 E7 oncoprotein in cervical oncogenesis. Carcinogenesis, 2022, 43, 988-1001.	2.8	1
4	The pint- sized powerhouse: Illuminating the mighty role of the gut microbiome in improving the outcome of anti- cancer therapy. Seminars in Cancer Biology, 2021, 70, 98-111.	9.6	12
5	Significance of human microbiome in breast cancer: Tale of an invisible and an invincible. Seminars in Cancer Biology, 2021, 70, 112-127.	9.6	35
6	Exploring the therapeutic potential of forkhead box O for outfoxing COVID-19. Open Biology, 2021, 11, 210069.	3.6	21
7	Artemisinin Mediates Its Tumor-Suppressive Activity in Hepatocellular Carcinoma Through Targeted Inhibition of FoxM1. Frontiers in Oncology, 2021, 11, 751271.	2.8	5
8	Identification of novel interaction between Promyelocytic Leukemia protein and human Alteration/Deficiency in Activation 3 coactivator and its role in DNA damage response. Journal of Proteins and Proteomics, 2019, 10, 207-220.	1.5	0
9	Peroxisome Proliferator Activated Receptor Gamma Sensitizes Non-small Cell Lung Carcinoma to Gamma Irradiation Induced Apoptosis. Frontiers in Genetics, 2019, 10, 554.	2.3	20
10	lonophores as Potent Anti-malarials: A Miracle in the Making. Current Topics in Medicinal Chemistry, 2019, 18, 2029-2041.	2.1	10
11	FoxM1: Repurposing an oncogene as a biomarker. Seminars in Cancer Biology, 2018, 52, 74-84.	9.6	98
12	Long circulatory liposomal maduramicin inhibits the growth of <i>Plasmodium falciparum </i> blood stages in culture and cures murine models of experimental malaria. Nanoscale, 2018, 10, 13773-13791.	5.6	25
13	PPARÎ ³ -targeting Potential for Radioprotection. Current Drug Targets, 2018, 19, 1818-1830.	2.1	8
14	Cell cycleâ€dependent regulation of cytoglobin by Skp2. FEBS Letters, 2017, 591, 3507-3522.	2.8	9
15	Phe28 ^{B10} Induces Channel-Forming Cytotoxic Amyloid Fibrillation in Human Neuroglobin, the Brain-Specific Hemoglobin. Biochemistry, 2016, 55, 6832-6847.	2.5	1
16	Identification of genetic variants in TNF receptor 2 which are associated with the development of cervical carcinoma. Biomarkers, 2016, 21, 665-672.	1.9	6
17	Tale of a multifaceted co-activator, hADA3: from embryogenesis to cancer and beyond. Open Biology, 2016, 6, 160153.	3.6	3
18	Oncogenic Human Papillomavirus 16E7 modulates SUMOylation of FoxM1b. International Journal of Biochemistry and Cell Biology, 2015, 58, 28-36.	2.8	21

#	Article	IF	CITATION
19	High-risk HPV16E6 stimulates hADA3 degradation by enhancing its SUMOylation. Carcinogenesis, 2014, 35, 1830-1839.	2.8	17
20	Cytoglobin in tumor hypoxia: novel insights into cancer suppression. Tumor Biology, 2014, 35, 6207-6219.	1.8	18
21	DNA damage induced activation of Cygb stabilizes p53 and mediates G1 arrest. DNA Repair, 2014, 24, 107-112.	2.8	19
22	Cellular Iron Homeostasis and Therapeutic Implications of Iron Chelators in Cancer. Current Pharmaceutical Biotechnology, 2014, 15, 1125-1140.	1.6	34
23	Mammalian Alteration/Deficiency in Activation 3 (Ada3) Is Essential for Embryonic Development and Cell Cycle Progression. Journal of Biological Chemistry, 2012, 287, 29442-29456.	3.4	27
24	An Essential Role of Human Ada3 in p53 Acetylation. Journal of Biological Chemistry, 2007, 282, 8812-8820.	3.4	45
25	Ada3 Requirement for HAT Recruitment to Estrogen Receptors and Estrogen-Dependent Breast Cancer Cell Proliferation. Cancer Research, 2007, 67, 11789-11797.	0.9	32
26	Human ADA3 Binds to Estrogen Receptor (ER) and Functions As a Coactivator for ER-mediated Transactivation. Journal of Biological Chemistry, 2004, 279, 54230-54240.	3.4	35
27	DDB2 Induces Nuclear Accumulation of the Hepatitis B Virus X Protein Independently of Binding to DDB1. Journal of Virology, 2001, 75, 10383-10392.	3.4	39
28	The Xeroderma Pigmentosum Group E Gene Product DDB2 Is a Specific Target of Cullin 4A in Mammalian Cells. Molecular and Cellular Biology, 2001, 21, 6738-6747.	2.3	152
29	Assessment of Targeting Potential of Galactosylated and Mannosylated Sterically Stabilized Liposomes to Different Cell Types of Mouse Liver, Journal of Drug Targeting, 1999, 6, 427-438.	4.4	36