
Russell J Diefenbach

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6431011/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	X-ray Crystal Structure of C3d: A C3 Fragment and Ligand for Complement Receptor 2 . Science, 1998, 280, 1277-1281.	12.6	209
2	Determination of Interactions between Tegument Proteins of Herpes Simplex Virus Type 1. Journal of Virology, 2005, 79, 9566-9571.	3.4	191
3	Transport and egress of herpes simplex virus in neurons. Reviews in Medical Virology, 2008, 18, 35-51.	8.3	177
4	The Cycle of Human Herpes Simplex Virus Infection: Virus Transport and Immune Control. Journal of Infectious Diseases, 2006, 194, S11-S18.	4.0	168
5	Herpes Simplex Virus Type 1 Capsid Protein VP26 Interacts with Dynein Light Chains RP3 and Tctex1 and Plays a Role in Retrograde Cellular Transport. Journal of Biological Chemistry, 2004, 279, 28522-28530.	3.4	150
6	Herpes Simplex Virus Tegument Protein US11 Interacts with Conventional Kinesin Heavy Chain. Journal of Virology, 2002, 76, 3282-3291.	3.4	127
7	The C-Terminal Region of the Stalk Domain of Ubiquitous Human Kinesin Heavy Chain Contains the Binding Site for Kinesin Light Chain. Biochemistry, 1998, 37, 16663-16670.	2.5	122
8	Functional roles of the tegument proteins of herpes simplex virus type 1. Virus Research, 2009, 145, 173-186.	2.2	113
9	Identification of structural protein–protein interactions of herpes simplex virus type 1. Virology, 2008, 378, 347-354.	2.4	90
10	Evaluation of commercial kits for purification of circulating free DNA. Cancer Genetics, 2018, 228-229, 21-27.	0.4	90
11	Herpes Simplex Virus Utilizes the Large Secretory Vesicle Pathway for Anterograde Transport of Tegument and Envelope Proteins and for Viral Exocytosis from Growth Cones of Human Fetal Axons. Journal of Virology, 2009, 83, 3187-3199.	3.4	84
12	HIV Blocks Interferon Induction in Human Dendritic Cells and Macrophages by Dysregulation of TBK1. Journal of Virology, 2015, 89, 6575-6584.	3.4	84
13	Infection and Transport of Herpes Simplex Virus Type 1 in Neurons: Role of the Cytoskeleton. Viruses, 2018, 10, 92.	3.3	84
14	Liquid biomarkers in melanoma: detection and discovery. Molecular Cancer, 2018, 17, 8.	19.2	74
15	Enabling Sensitive Phenotypic Profiling of Cancer-Derived Small Extracellular Vesicles Using Surface-Enhanced Raman Spectroscopy Nanotags. ACS Sensors, 2020, 5, 764-771.	7.8	66
16	The Major Determinant for Addition of Tegument Protein pUL48 (VP16) to Capsids in Herpes Simplex Virus Type 1 Is the Presence of the Major Tegument Protein pUL36 (VP1/2). Journal of Virology, 2010, 84, 1397-1405.	3.4	60
17	Oncogenic signaling in uveal melanoma. Pigment Cell and Melanoma Research, 2018, 31, 661-672.	3.3	58
18	The Basic Domain of Herpes Simplex Virus 1 pUS9 Recruits Kinesin-1 To Facilitate Egress from Neurons. Journal of Virology, 2016, 90, 2102-2111.	3.4	54

#	Article	IF	CITATIONS
19	Ultrastructural Visualization of Individual Tegument Protein Dissociation during Entry of Herpes Simplex Virus 1 into Human and Rat Dorsal Root Ganglion Neurons. Journal of Virology, 2012, 86, 6123-6137.	3.4	51
20	Longitudinal Monitoring of ctDNA in Patients with Melanoma and Brain Metastases Treated with Immune Checkpoint Inhibitors. Clinical Cancer Research, 2020, 26, 4064-4071.	7.0	50
21	Residues F593 and E596 of HSV-1 tegument protein pUL36 (VP1/2) mediate binding of tegument protein pUL37. Virology, 2007, 368, 26-31.	2.4	49
22	The Heavy Chain of Conventional Kinesin Interacts with the SNARE Proteins SNAP25 and SNAP23â€. Biochemistry, 2002, 41, 14906-14915.	2.5	48
23	Effects of substitution of aspartate-440 and tryptophan-487 in the thiamin diphosphate binding region of pyruvate decarboxylase fromZymomonas mobilis. FEBS Letters, 1992, 296, 95-98.	2.8	39
24	The ribosome receptor, p180, interacts with kinesin heavy chain, KIF5B. Biochemical and Biophysical Research Communications, 2004, 319, 987-992.	2.1	37
25	A36-dependent Actin Filament Nucleation Promotes Release of Vaccinia Virus. PLoS Pathogens, 2013, 9, e1003239.	4.7	34
26	The interaction of the HSV-1 tegument proteins pUL36 and pUL37 is essential for secondary envelopment during viral egress. Virology, 2014, 454-455, 67-77.	2.4	32
27	Abalone Hemocyanin Blocks the Entry of Herpes Simplex Virus 1 into Cells: a Potential New Antiviral Strategy. Antimicrobial Agents and Chemotherapy, 2016, 60, 1003-1012.	3.2	31
28	Conserved tegument protein complexes: Essential components in the assembly of herpesviruses. Virus Research, 2015, 210, 308-317.	2.2	28
29	Monitoring Melanoma Using Circulating Free DNA. American Journal of Clinical Dermatology, 2019, 20, 1-12.	6.7	26
30	Cytoskeletons in the Closet—Subversion in Alphaherpesvirus Infections. Viruses, 2018, 10, 79.	3.3	25
31	Multiplex detection of ctDNA mutations in plasma of colorectal cancer patients by PCR/SERS assay. Nanotheranostics, 2020, 4, 224-232.	5.2	25
32	Oncolytic virotherapy using herpes simplex virus: how far have we come?. Oncolytic Virotherapy, 2015, 4, 207.	6.0	24
33	Dual Role of Herpes Simplex Virus 1 pUS9 in Virus Anterograde Axonal Transport and Final Assembly in Growth Cones in Distal Axons. Journal of Virology, 2016, 90, 2653-2663.	3.4	23
34	Design and Testing of a Custom Melanoma Next Generation Sequencing Panel for Analysis of Circulating Tumor DNA. Cancers, 2020, 12, 2228.	3.7	22
35	Loss of Cytoskeletal Transport during Egress Critically Attenuates Ectromelia Virus Infection <i>In Vivo</i> . Journal of Virology, 2012, 86, 7427-7443.	3.4	21
36	Identification of a single amino acid residue which is critical for the interaction between HSV-1 inner tegument proteins pUL36 and pUL37. Virology, 2012, 422, 308-316.	2.4	19

RUSSELL J DIEFENBACH

#	Article	IF	CITATIONS
37	Inhibition of transketolase and pyruvate decarboxylase by omeprazole. Biochemical Pharmacology, 1992, 44, 177-179.	4.4	17
38	Circulating Tumor DNA Reflects Uveal Melanoma Responses to Protein Kinase C Inhibition. Cancers, 2021, 13, 1740.	3.7	17
39	Letter in response to: Making the case: Married versus Separate models of alphaherpes virus anterograde transport in axons. Reviews in Medical Virology, 2013, 23, 414-418.	8.3	16
40	Analysis of the Whole-Exome Sequencing of Tumor and Circulating Tumor DNA in Metastatic Melanoma. Cancers, 2019, 11, 1905.	3.7	14
41	Identification of binding domains in the herpes simplex virus type 1 small capsid protein pUL35 (VP26). Journal of General Virology, 2010, 91, 2659-2663.	2.9	14
42	New insights into viral structure and virus–cell interactions through proteomics. Expert Review of Proteomics, 2005, 2, 577-588.	3.0	13
43	Kinesin-1 plays a role in transport of SNAP-25 to the plasma membrane. Biochemical and Biophysical Research Communications, 2010, 391, 388-393.	2.1	12
44	Tour de Herpes: Cycling Through the Life and Biology of HSV-1. Methods in Molecular Biology, 2020, 2060, 1-30.	0.9	11
45	Protein kinase inhibitor responses in uveal melanoma reflects a diminished dependency on PKC-MAPK signaling. Cancer Gene Therapy, 2022, 29, 1384-1393.	4.6	11
46	Identification of host cell proteins which interact with herpes simplex virus type 1 tegument protein pUL37. Biochemical and Biophysical Research Communications, 2012, 417, 961-965.	2.1	10
47	Fast track, dynein-dependent nuclear targeting of human immunodeficiency virus Vpr protein; impaired trafficking in a clinical isolate. Biochemical and Biophysical Research Communications, 2016, 470, 735-740.	2.1	8
48	Methylated circulating tumor DNA as a biomarker in cutaneous melanoma. Melanoma Management, 2020, 7, MMT46.	0.5	7
49	Hypermethylation of Circulating Free DNA in Cutaneous Melanoma. Applied Sciences (Switzerland), 2019, 9, 5074.	2.5	6
50	Comparison of Haliotis rubra hemocyanin isoforms 1 and 2. Gene Reports, 2016, 4, 123-130.	0.8	4
51	Comprehensive Clinical, Histopathologic, and Molecular Analysis and Long-term Follow-up of Patients With Nodal Blue Nevi. American Journal of Surgical Pathology, 2022, 46, 1048-1059.	3.7	3
52	Phototracking Vaccinia Virus Transport Reveals Dynamics of Cytoplasmic Dispersal and a Requirement for A36R and F12L for Exit from the Site of Wrapping. Viruses, 2018, 10, 390.	3.3	2
53	Anchored Multiplex PCR Custom Melanoma Next Generation Sequencing Panel for Analysis of Circulating Tumor DNA. Frontiers in Oncology, 2022, 12, 820510.	2.8	2
54	Defining Viral Protein Interactomes Using the Yeast Two-Hybrid Assay. Current Proteomics, 2005, 2, 225-231.	0.3	1

#	Article	IF	CITATIONS
55	The interaction of HSV-1 tegument proteins pUL36 and pUL37: a novel target for antivirals that inhibit viral assembly. Future Virology, 2014, 9, 787-789.	1.8	1
56	Circulating tumor DNA (ctDNA) in patients (pts) with metastatic uveal melanoma (UM) treated with protein kinase C inhibitor (PKCi) Journal of Clinical Oncology, 2020, 38, e22054-e22054.	1.6	1
57	A putative WAVE regulatory complex (WRC) interacting receptor sequence (WIRS) in the cytoplasmic tail of HSV-1 gE does not function in WRC recruitment or neuronal transport. Access Microbiology, 2021, 3, 000206.	0.5	0