
Philippe C Baveye

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6430608/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Influence of Ionic Strength, pH, and Cation Valence on Aggregation Kinetics of Titanium Dioxide Nanoparticles. Environmental Science & Technology, 2009, 43, 1354-1359.	10.0	691
2	Modeling Soil Processes: Review, Key Challenges, and New Perspectives. Vadose Zone Journal, 2016, 15, 1-57.	2.2	445
3	Environmental Impact and Mechanisms of the Biological Clogging of Saturated Soils and Aquifer Materials. Critical Reviews in Environmental Science and Technology, 1998, 28, 123-191.	12.8	397
4	Soil "Ecosystem―Services and Natural Capital: Critical Appraisal of Research on Uncertain Ground. Frontiers in Environmental Science, 2016, 4, .	3.3	257
5	Saturated Hydraulic Conductivity Reduction Caused by Aerobic Bacteria in Sand Columns. Soil Science Society of America Journal, 1992, 56, 1-13.	2.2	240
6	The Operational Significance of the Continuum Hypothesis in the Theory of Water Movement Through Soils and Aquifers. Water Resources Research, 1984, 20, 521-530.	4.2	192
7	Environmental factors determining the trace-level sorption of silver and thallium to soils. Science of the Total Environment, 2005, 345, 191-205.	8.0	188
8	An evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers. Water Resources Research, 1989, 25, 1413-1421.	4.2	175
9	Emergent Properties of Microbial Activity in Heterogeneous Soil Microenvironments: Different Research Approaches Are Slowly Converging, Yet Major Challenges Remain. Frontiers in Microbiology, 2018, 9, 1929.	3.5	168
10	Observer-dependent variability of the thresholding step in the quantitative analysis of soil images and X-ray microtomography data. Geoderma, 2010, 157, 51-63.	5.1	151
11	Microbial Clogging of Saturated Soils and Aquifer Materials: Evaluation of Mathematical Models. Water Resources Research, 1995, 31, 2173-2180.	4.2	119
12	Optimal organic carbon values for soil structure quality of arable soils. Does clay content matter?. Geoderma, 2017, 302, 14-21.	5.1	114
13	Mapping invasive wetland plants in the Hudson River National Estuarine Research Reserve using quickbird satellite imagery. Remote Sensing of Environment, 2008, 112, 286-300.	11.0	107
14	Influence of image resolution and thresholding on the apparent mass fractal characteristics of preferential flow patterns in field soils. Water Resources Research, 1998, 34, 2783-2796.	4.2	102
15	Computational pore network modeling of the influence of biofilm permeability on bioclogging in porous media. Biotechnology and Bioengineering, 2008, 99, 1337-1351.	3.3	97
16	Hysteresis in the Binary Exchange of Cations on 2:1 Clay Minerals: A Critical Review. Clays and Clay Minerals, 1994, 42, 207-220.	1.3	95
17	Monetary valuation of ecosystem services: It matters to get the timeline right. Ecological Economics, 2013, 95, 231-235.	5.7	93
18	Relationship between Transport of Bacteria and Their Clogging Efficiency in Sand Columns. Applied and Environmental Microbiology, 1992, 58, 2523-2530.	3.1	91

#	Article	lF	CITATIONS
19	Poreâ€Scale Visualization of Colloid Transport and Retention in Partly Saturated Porous Media. Vadose Zone Journal, 2004, 3, 444-450.	2.2	85
20	Potential health risk in areas with high naturally-occurring cadmium background in southwestern China. Ecotoxicology and Environmental Safety, 2015, 112, 122-131.	6.0	84
21	The "4 per 1000―initiative: A credibility issue for the soil science community?. Geoderma, 2018, 309, 118-123.	5.1	82
22	From Dust Bowl to Dust Bowl: Soils are Still Very Much a Frontier of Science. Soil Science Society of America Journal, 2011, 75, 2037-2048.	2.2	79
23	Neurodegenerative diseases and exposure to the environmental metals Mn, Pb, and Hg. Coordination Chemistry Reviews, 2012, 256, 2147-2163.	18.8	78
24	Effect of scanning and image reconstruction settings in X-ray computed microtomography on quality and segmentation of 3D soil images. Geoderma, 2013, 207-208, 154-165.	5.1	77
25	WHITHER GOES SOIL SCIENCE IN THE UNITED STATES AND CANADA?. Soil Science, 2006, 171, 501-518.	0.9	76
26	Electron Microprobe and Synchrotron X-ray Fluorescence Mapping of the Heterogeneous Distribution of Copper in High-Copper Vineyard Soils. Environmental Science & Technology, 2007, 41, 6343-6349.	10.0	74
27	Development of computer-assisted virtual field trips to support multidisciplinary learning. Computers and Education, 2009, 52, 571-580.	8.3	73
28	Mass balance and distribution of sludge-borne trace elements in a silt loam soil following long-term applications of sewage sludge. Science of the Total Environment, 1999, 227, 13-28.	8.0	68
29	Effect of sampling volume on the measurement of soil physical properties: simulation with x-ray tomography data. Measurement Science and Technology, 2002, 13, 775-784.	2.6	67
30	Combining X-ray CT and 3D printing technology to produce microcosms with replicable, complex pore geometries. Soil Biology and Biochemistry, 2012, 51, 53-55.	8.8	67
31	Use of textural measurements to map invasive wetland plants in the Hudson River National Estuarine Research Reserve with IKONOS satellite imagery. Remote Sensing of Environment, 2010, 114, 876-886.	11.0	66
32	Three-dimensional distribution of water and air in soil pores: Comparison of two-phase two-relaxation-times lattice-Boltzmann and morphological model outputs with synchrotron X-ray computed tomography data. Advances in Water Resources, 2015, 84, 87-102.	3.8	65
33	Accounting for surface roughness effects in the near-infrared reflectance sensing of soils. Geoderma, 2009, 152, 171-180.	5.1	64
34	Quantification of the pore size distribution of soils: Assessment of existing software using tomographic and synthetic 3D images. Geoderma, 2017, 299, 73-82.	5.1	63
35	Microscale Heterogeneity Explains Experimental Variability and Non-Linearity in Soil Organic Matter Mineralisation. PLoS ONE, 2015, 10, e0123774.	2.5	62
36	Who put the film in biofilm? The migration of a term from wastewater engineering to medicine and beyond. Npj Biofilms and Microbiomes, 2021, 7, 10.	6.4	62

#	Article	IF	CITATIONS
37	A holistic perspective on soil architecture is needed as a key to soil functions. European Journal of Soil Science, 2022, 73, .	3.9	62
38	Emergent Behavior of Soil Fungal Dynamics. Soil Science, 2012, 177, 111-119.	0.9	61
39	Moving away from the geostatistical lamppost: Why, where, and how does the spatial heterogeneity of soils matter?. Ecological Modelling, 2015, 298, 24-38.	2.5	61
40	Microscale Heterogeneity of the Spatial Distribution of Organic Matter Can Promote Bacterial Biodiversity in Soils: Insights From Computer Simulations. Frontiers in Microbiology, 2018, 9, 1583.	3.5	60
41	Soil Organic Matter Research and Climate Change: Merely Re-storing Carbon Versus Restoring Soil Functions. Frontiers in Environmental Science, 2020, 8, .	3.3	60
42	Aggregation and Toxicology of Titanium Dioxide Nanoparticles. Environmental Health Perspectives, 2008, 116, A152; author reply A152-3.	6.0	59
43	Three-Dimensional Mapping of Soil Chemical Characteristics at Micrometric Scale by Combining 2D SEM-EDX Data and 3D X-Ray CT Images. PLoS ONE, 2015, 10, e0137205.	2.5	59
44	Adaptive-window indicator kriging: A thresholding method for computed tomography images of porous media. Computers and Geosciences, 2013, 54, 239-248.	4.2	55
45	Preferential Flow and Transport of <i>Cryptosporidium parvum</i> Oocysts through the Vadose Zone: Experiments and Modeling. Vadose Zone Journal, 2004, 3, 262-270.	2.2	53
46	Combination of techniques to quantify the distribution of bacteria in their soil microhabitats at different spatial scales. Geoderma, 2019, 334, 165-174.	5.1	53
47	Factors affecting protozoan predation of bacteria clogging laboratory aquifer microcosms. Geomicrobiology Journal, 1997, 14, 127-149.	2.0	51
48	Diuron mobility through vineyard soils contaminated with copper. Environmental Pollution, 2005, 138, 250-259.	7.5	49
49	Automated statistical method to align 2D chemical maps with 3D X-ray computed micro-tomographic images of soils. Geoderma, 2011, 164, 146-154.	5.1	45
50	New Local Thresholding Method for Soil Images by Minimizing Grayscale Intra lass Variance. Vadose Zone Journal, 2013, 12, 1-13.	2.2	44
51	Preferential Transport of Cryptosporidium parvum Oocysts in Variably Saturated Subsurface Environments. Water Environment Research, 2003, 75, 113-120.	2.7	43
52	Alleviating Moisture Content Effects on the Visible Near-Infrared Diffuse-Reflectance Sensing of Soils. Soil Science, 2009, 174, 456-465.	0.9	43
53	The (Bio)Chemistry of Soil Humus and Humic Substances: Why Is the "New View―Still Considered Novel After More Than 80 Years?. Frontiers in Environmental Science, 2019, 7, .	3.3	43
54	Pore-Scale Visualization of Colloid Transport and Retention in Partly Saturated Porous Media. Vadose Zone Journal, 2004, 3, 444-450.	2.2	43

#	Article	IF	CITATIONS
55	Surface fractal characteristics of preferential flow patterns in field soils: evaluation and effect of image processing. Geoderma, 1999, 88, 109-136.	5.1	42
56	Bypass and hyperbole in soil research: Worrisome practices critically reviewed through examples. European Journal of Soil Science, 2021, 72, 1-20.	3.9	40
57	The desorption of silver and thallium from soils in the presence of a chelating resin with thiol functional groups. Water, Air, and Soil Pollution, 2005, 160, 41-54.	2.4	39
58	Pore-Scale Monitoring of the Effect of Microarchitecture on Fungal Growth in a Two-Dimensional Soil-Like Micromodel. Frontiers in Environmental Science, 2018, 6, .	3.3	39
59	Battling the Paper Glut. Science, 2010, 329, 1466-1466.	12.6	37
60	Effect of Microbial Activity on Trace Element Release from Sewage Sludge. Environmental Science & Technology, 2003, 37, 3361-3366.	10.0	36
61	Soil carbon sequestration for climate change mitigation: Mineralization kinetics of organic inputs as an overlooked limitation. European Journal of Soil Science, 2022, 73, .	3.9	34
62	To sequence or not to sequence the whole-soil metagenome?. Nature Reviews Microbiology, 2009, 7, 756-756.	28.6	33
63	Facilitated Transport of Diuron and Glyphosate in High Copper Vineyard Soils. Environmental Science & Technology, 2007, 41, 8056-8061.	10.0	32
64	Macroscopic Balance Equations in Soils and Aquifers: The Case of Space―and Timeâ€Dependent Instrumental Response. Water Resources Research, 1985, 21, 1116-1120.	4.2	30
65	Surrogate Correlations and Near-Infrared Diffuse Reflectance Sensing of Trace Metal Content in Soils. Water, Air, and Soil Pollution, 2010, 209, 377-390.	2.4	30
66	Individual-based modelling of carbon and nitrogen dynamics in soils: Parameterization and sensitivity analysis of microbial components. Ecological Modelling, 2011, 222, 1998-2010.	2.5	30
67	Preferential Flow and Transport of Oocysts through the Vadose Zone. Vadose Zone Journal, 2004, 3, 262.	2.2	30
68	Quantification of ecosystem services: Beyond all the "guesstimatesâ€, how do we get real data?. Ecosystem Services, 2017, 24, 47-49.	5.4	29
69	Influence of soil structure on the spread of <scp> <i>Pseudomonas fluorescens </i> </scp> in soil at microscale. European Journal of Soil Science, 2021, 72, 141-153.	3.9	29
70	Use of confocal laser scanning microscopy on soil thin-sections for improved characterization of microbial growth in unconsolidated soils and aquifer materials. Journal of Microbiological Methods, 1997, 30, 193-203.	1.6	28
71	Grand challenges in the research on soil processes. Frontiers in Environmental Science, 2015, 3, .	3.3	28
72	Analysis of metal(loid)s contamination and their continuous input in soils around a zinc smelter: Development of methodology and a case study in South Korea. Environmental Pollution, 2018, 238, 140-149.	7.5	28

#	Article	IF	CITATIONS
73	Too much or not enough: Reflection on two contrasting perspectives on soil biodiversity. Soil Biology and Biochemistry, 2016, 103, 320-326.	8.8	27
74	Microbial acidification and pH effects on trace element release from sewage sludge. Environmental Pollution, 2004, 132, 61-71.	7.5	26
75	Individual-Based Modeling of Carbon and Nitrogen Dynamics in Soils. Soil Science, 2010, 175, 363-374.	0.9	25
76	SAMPLING METHOD FOR THE OBSERVATION OF MICROORGANISMS IN UNCONSOLIDATED POROUS MEDIA VIA SCANNING ELECTRON MICROSCOPY. Soil Science, 1992, 153, 482-485.	0.9	24
77	Dual-energy synchrotron X ray measurements of rapid soil density and water content changes in swelling soils during infiltration. Water Resources Research, 1998, 34, 2837-2842.	4.2	24
78	Effect of postmining land use on the spatial distribution of metal(loid)s and their transport in agricultural soils: Analysis of a case study of Chungyang, South Korea. Journal of Geochemical Exploration, 2016, 170, 157-166.	3.2	24
79	Concepts of "fractals―in soil science: demixing apples and oranges. Soil Science Society of America Journal, 1998, 62, 1469-1470.	2.2	23
80	Comment on "Evaluation of biofilm image thresholding methods― Water Research, 2002, 36, 805-806.	11.3	23
81	Visible and near-infrared reflectance spectroscopy is of limited practical use to monitor soil contamination by heavy metals. Journal of Hazardous Materials, 2015, 285, 137-139.	12.4	23
82	pH-dependent reactive transport of uranium(VI) in unsaturated sand. Journal of Soils and Sediments, 2015, 15, 634-647.	3.0	23
83	Accounting for sub-resolution pores in models of water and solute transport in soils based on computed tomography images: Are we there yet?. Journal of Hydrology, 2017, 555, 253-256.	5.4	23
84	Control of Pore Geometry in Soil Microcosms and Its Effect on the Growth and Spread of Pseudomonas and Bacillus sp Frontiers in Environmental Science, 2018, 6, .	3.3	23
85	Soil aggregates as biogeochemical reactors: Not a way forward in the research on soil–atmosphere exchange of greenhouse gases. Global Change Biology, 2019, 25, 2205-2208.	9.5	22
86	Soil health at a crossroad. Soil Use and Management, 2021, 37, 215-219.	4.9	22
87	Accounting for soil architecture and microbial dynamics in microscale models: Current practices in soil science and the path ahead. European Journal of Soil Science, 2022, 73, .	3.9	22
88	Reduction of silver solubility by humic acid and thiol ligands during acanthite (β-Ag2S) dissolution. Environmental Pollution, 2005, 135, 1-9.	7.5	21
89	Microcolumn-based speciation analysis of thallium in soil and green cabbage. Science of the Total Environment, 2018, 630, 146-153.	8.0	21
90	Comment on "Soil structure and management: A review―by C.J. Bronick and R. Lal. Geoderma, 2006, 134, 231-232.	5.1	20

#	Article	IF	CITATIONS
91	Soil fungal dynamics: Parameterisation and sensitivity analysis of modelled physiological processes, soil architecture and carbon distribution. Ecological Modelling, 2013, 248, 165-173.	2.5	20
92	Temperature and Microbial Activity Effects on Trace Element Leaching from Metalliferous Peats. Journal of Environmental Quality, 2003, 32, 2067-2075.	2.0	19
93	Sticker Shock and Looming Tsunami: The High Cost of Academic Serials in Perspective. Journal of Scholarly Publishing, 2010, 41, 191-215.	0.6	19
94	Research Efforts Involving Several Disciplines: Adherence to a Clear Nomenclature Is Needed. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	19
95	Dissolution behavior of As and Cd in submerged paddy soil after treatment with stabilizing agents. Geoderma, 2016, 270, 10-20.	5.1	19
96	Comment on "Biofilm growth and the related changes in the physical properties of a porous medium: 1, Experimental investigation―by S. W. Taylor and P. R. Jaffé. Water Resources Research, 1992, 28, 1481-1482.	4.2	18
97	Sticker Shock and Looming Tsunami. Journal of Scholarly Publishing, 2010, 41, 191-215.	0.6	17
98	Physical scales and spatial predictability of transport processes in the environment. Geophysical Monograph Series, 1999, , 261-280.	0.1	16
99	How should we deal with the growing peer-review problem?. Biogeochemistry, 2010, 101, 1-3.	3.5	16
100	Brazilian Agriculture in Perspective. Advances in Agronomy, 2017, 141, 53-114.	5.2	16
101	Use of EPR To Monitor the Distribution and Availability of Organic Xenobiotics in Model Soil Systems. Environmental Science & Technology, 2000, 34, 1259-1264.	10.0	15
102	Ecological risk of combined pollution on soil ecosystem functions: Insight from the functional sensitivity and stability. Environmental Pollution, 2019, 255, 113184.	7.5	15
103	Cation-Exchange Hysteresis and Dynamics of Formation and Breakdown of Montmorillonite Quasi-Crystals. Soil Science Society of America Journal, 1995, 59, 1268-1273.	2.2	14
104	Effect of farmland type on the transport and spatial distribution of metal(loid)s in agricultural lands near an abandoned gold mine site: Confirmation of previous observations. Journal of Geochemical Exploration, 2017, 181, 129-137.	3.2	14
105	Influence of Anionic Surfactant on Saturated Hydraulic Conductivity of Loamy Sand and Sandy Loam Soils. Water (Switzerland), 2017, 9, 433.	2.7	14
106	Bypass and hyperbole in soil research: A personal view on plausible causes and possible remedies. European Journal of Soil Science, 2021, 72, 21-28.	3.9	14
107	Reply [to "Comment on â€~An evaluation of mathematical models of the transport of biologically reacting solutes in saturated soils and aquifers' by Philippe Baveye and Albert Valocchiâ€]. Water Resources Research, 1991, 27, 1379-1380.	4.2	13
108	Coprecipitation of trace metal ions during the synthesis of hectorite. Applied Clay Science, 2004, 27, 129-140.	5.2	13

#	Article	IF	CITATIONS
109	Reply to "Comments on â€~Poreâ€Scale Visualization of Colloid Transport and Retention in Partly Saturated Porous Media'― Vadose Zone Journal, 2005, 4, 957-958.	2.2	13
110	To what extent do uncertainty and sensitivity analyses help unravel the influence of microscale physical and biological drivers in soil carbon dynamics models?. Ecological Modelling, 2018, 383, 10-22.	2.5	13
111	Rapid Prototyping and 3â€D Printing of Experimental Equipment in Soil Science Research. Soil Science Society of America Journal, 2013, 77, 54-59.	2.2	12
112	Direct measurement of selected soil services in a drained agricultural field: Methodology development and case study in Saclay (France). Ecosystem Services, 2020, 42, 101088.	5.4	12
113	Heat and moisture dynamics in raised field systems of the lake Titicaca region (Bolivia). Agricultural and Forest Meteorology, 1998, 92, 251-265.	4.8	11
114	EPR monitoring of the bioavailability of an organic xenobiotic (4-hydroxy-TEMPO) in model clay suspensions and pastes. Environmental Pollution, 2006, 143, 73-80.	7.5	11
115	Causes of the apparent scale independence of fractal indices associated with forest fragmentation in Bolivia. ISPRS Journal of Photogrammetry and Remote Sensing, 2006, 61, 84-94.	11.1	11
116	Comment on "The role of scaling laws in upscaling―by B.D. Wood. Advances in Water Resources, 2010, 33, 123-124.	3.8	11
117	Comment on "Ecological engineers ahead of their time: The functioning of pre-Columbian raised-field agriculture and its potential contributions to sustainability today―by Dephine Renard et al Ecological Engineering, 2013, 52, 224-227.	3.6	11
118	Is the Focus on "Ecosystems―a Liability in the Research on Nature's Services?. Frontiers in Ecology and Evolution, 2018, 6, .	2.2	11
119	ELECTRON PARAMAGNETIC RESONANCE ANALYSIS OF THE DISTRIBUTION OF A HYDROPHOBIC SPIN PROBE IN SUSPENSIONS OF HUMIC ACIDS, HECTORITE, AND ALUMINUM HYDROXIDE–HUMATE–HECTORITE COMPLEXES. Environmental Toxicology and Chemistry, 2005, 24, 2435.	4.3	10
120	Comment on "Averaging theory for description of environmental problems: What have we learned?― by William G. Gray, Cass T. Miller, and Bernhard A. Schrefler. Advances in Water Resources, 2013, 52, 328-330.	3.8	10
121	Looming Scarcity of Phosphate Rock and Intensification of Soil Phosphorus Research. Revista Brasileira De Ciencia Do Solo, 2015, 39, 637-642.	1.3	10
122	Scenario modelling of carbon mineralization in <scp>3D</scp> soil architecture at the microscale: Toward an accessibility coefficient of organic matter for bacteria. European Journal of Soil Science, 2022, 73, .	3.9	10
123	Understanding the joint impacts of soil architecture and microbial dynamics on soil functions: Insights derived from microscale models. European Journal of Soil Science, 2022, 73, .	3.9	10
124	The effect of water movement on the transport of dicyandiamide, ammonium and urea in unsaturated soils. Zeitschrift Fur Pflanzenernahrung Und Bodenkunde = Journal of Plant Nutrition and Plant Science, 1990, 153, 245-247.	0.4	9
125	Application of fractals to soil properties, landscape patterns, and solute transport in porous media. Geophysical Monograph Series, 1999, , 151-164.	0.1	9
126	Brazilian soil science: from its inception to the future, and beyond. Revista Brasileira De Ciencia Do Solo, 2010, 34, 589-599.	1.3	9

#	Article	IF	CITATIONS
127	Direct Simulation of Magnetic Resonance Relaxation Rates and Line Shapes from Molecular Trajectories. Journal of Physical Chemistry B, 2012, 116, 6233-6249.	2.6	9
128	Addressing key challenges to interdisciplinary research on water-related issues: Biologists' engagement and funding structure. Biologia (Poland), 2013, 68, 1087-1088.	1.5	9
129	Effect of Industrial By-Products on Unconfined Compressive Strength of Solidified Organic Marine Clayey Soils. Materials, 2015, 8, 5098-5111.	2.9	9
130	The "4p1000―initiative: A new name should be adopted. Ambio, 2020, 49, 361-362.	5.5	9
131	Lessons from a landmark 1991 article on soil structure: distinct precedence of non-destructive assessment and benefits of fresh perspectives in soil research. Soil Research, 2022, 60, 321-336.	1.1	9
132	Solution of the flow at a corner problem with a stagnation zone. Water Resources Research, 1989, 25, 757-763.	4.2	8
133	Reply to Comment by Philippe Baveye on "Physicochemical controls on adsorbed water film thickness in unsaturated geological media― Water Resources Research, 2012, 48, .	4.2	8
134	Movement of Cryptosporidium parvum Oocysts through Soils without Preferential Pathways: Exploratory Test. Frontiers in Environmental Science, 2017, 5, .	3.3	8
135	Using X-ray microtomography to characterize the burrowing behaviour of earthworms in heterogeneously polluted soils. Pedobiologia, 2020, 83, 150671.	1.2	8
136	Effect of Cation Exchange Hysteresis on a Mixing Procedure Used in the Study of Clay Suspensions. Clays and Clay Minerals, 1995, 43, 637-640.	1.3	7
137	Use of spatial SQL to assess the practical significance of the Modifiable Areal Unit Problem. Computers and Geosciences, 2006, 32, 270-274.	4.2	7
138	The Discipline of Soil Science Is Not Doing Too Badly… Under Different Skies. Soil Science, 2010, 175, 313-314.	0.9	7
139	The Characterization of Pyrolysed Biomass Added to Soils Needs to Encompass Its Physical And Mechanical Properties. Soil Science Society of America Journal, 2014, 78, 2112-2113.	2.2	7
140	Editorial: Elucidating Microbial Processes in Soils and Sediments: Microscale Measurements and Modeling. Frontiers in Environmental Science, 2019, 7, .	3.3	7
141	From spheres to ellipsoids: Speeding up considerably the morphological modeling of pore space and water retention in soils. Computers and Geosciences, 2019, 123, 20-37.	4.2	7
142	An Evolutionary Perspective on Industrial and Sustainable Agriculture. , 2019, , 425-433.		7
143	Colloidal stability and aggregation kinetics of nanocrystal CdSe/ZnS quantum dots in aqueous systems: effects of pH and organic ligands. Journal of Nanoparticle Research, 2020, 22, 1.	1.9	7
144	Colloidal stability and aggregation kinetics of nanocrystal CdSe/ZnS quantum dots in aqueous systems: Effects of ionic strength, electrolyte type, and natural organic matter. SN Applied Sciences, 2022, 4, 1.	2.9	7

#	Article	IF	CITATIONS
145	Comment on "Modeling soil variation: past, present and future―by G.B.M. Heuvelink and R. Webster. Geoderma, 2002, 109, 289-293.	5.1	6
146	Visualization and Measurement of Multiphase Flow in Porous Media Using Light Transmission and Synchrotron Xâ€Rays. Annals of the New York Academy of Sciences, 2002, 972, 103-110.	3.8	6
147	The emergence of a new kind of relativism in environmental modelling: a commentary. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460, 2141-2146.	2.1	6
148	Designing university courses to promote lifelong learning. International Journal of Innovation and Learning, 2008, 5, 378.	0.4	6
149	Hydrology and the looming water crisis: It is time to think, and act, outside the box. Journal of Hydrology and Hydromechanics, 2013, 61, 89-96.	2.0	6
150	Learned publishing: who still has time to read?. Learned Publishing, 2014, 27, 48-51.	1.7	6
151	A modified method of separating Tl(I) and Tl(III) in aqueous samples using solid phase extraction. Chemistry Central Journal, 2018, 12, 132.	2.6	6
152	Editorial: Interactive Feedbacks Between Soil Fauna and Soil Processes. Frontiers in Environmental Science, 2020, 8, .	3.3	6
153	Comparison of empirical and process-based modelling to quantify soil-supported ecosystem services on the Saclay plateau (France). Ecosystem Services, 2021, 50, 101332.	5.4	6
154	Influence of wavelet type on the classification of marsh vegetation from satellite imagery using a combination of wavelet texture and statistical component analyses. Canadian Journal of Remote Sensing, 2007, 33, 260-265.	2.4	5
155	Comment on "Conservation of protists: Is it needed at all?―by Cotterill et al Biodiversity and Conservation, 2009, 18, 503-505.	2.6	5
156	Hydropedology, biohydrology, and the compartmentalization of hydrology into sub-disciplines: Necessary evolution or dispersal of efforts?. Journal of Hydrology, 2011, 406, 137-140.	5.4	5
157	Comment on "Physicochemical controls on adsorbed water film thickness in unsaturated geological media―by Tetsu K. Tokunaga. Water Resources Research, 2012, 48, .	4.2	5
158	Jean-Baptiste De Beunie (1717–1793). Soil Science, 2013, 178, 55-59.	0.9	5
159	Perspectives from the Field: Ecological Economic Perspective in Environmental Practice: Much-Needed Common Sense amid Overwhelming Market Rhetoric. Environmental Practice, 2014, 16, 246-248.	0.3	5
160	Microbial competition and evolution in natural porous environments: Not that simple. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E2802-E2803.	7.1	5
161	"Soil biofilms― Misleading description of the spatial distribution of microbial biomass in soils. Soil Ecology Letters, 2020, 2, 2-5.	4.5	5
162	Objectivity of the peerâ€review process: Enduring myth, reality, and possible remedies. Learned Publishing, 2021, 34, 696.	1.7	5

#	Article	IF	CITATIONS
163	COMMENTS ON "EXPERIMENTAL STUDY ON THE REDUCTION OF SOIL HYDRAULIC CONDUCTIVITY BY ENHANCED BIOMASS GROWTH" BY WU ET AL Soil Science, 1998, 163, 759-761.	0.9	5
164	Use of Referential Coordinates in Deforming Soils. Soil Science Society of America Journal, 1989, 53, 1338-1343.	2.2	4
165	Research Needs to Improve the Understanding of Riverbank Filtration for Pathogenic Microorganism Removal. , 2002, , 311-319.		4
166	Comment on "Critical Evaluation of Desorption Phenomena of Heavy Metals from Natural Sediments― Environmental Science & Technology, 2004, 38, 4701-4702.	10.0	4
167	RESPONSE TO A COMMENT ON "WHITHER GOES SOIL SCIENCE IN THE UNITED STATES AND CANADA" BY A. HARTEMINK. Soil Science, 2007, 172, 168-171.	0.9	4
168	Comment on "A soil science renaissance―by A.E. Hartemink and A. McBratney. Geoderma, 2009, 151, 126-127.	5.1	4
169	Comment on "Comparison of bioclogging effects in saturated porous media within one- and two-dimensional flow systems―by Martin Thullner. Ecological Engineering, 2010, 36, 835-836.	3.6	4
170	Éloge de la Méthode: A Tribute to Garrison Sposito on the Occasion of His Retirement. Frontiers in Environmental Science, 2016, 4, .	3.3	4
171	To what extent can multifractal measures provide an accurate model of the porosity of soils?. European Journal of Soil Science, 2021, 72, 510-526.	3.9	4
172	Potential limitations for potato yields in raised soil field systems near Lake Titicaca. Scientia Agricola, 2006, 63, 444-452.	1.2	4
173	3D Quantum Cuts for automatic segmentation of porous media in tomography images. Computers and Geosciences, 2022, 159, 105017.	4.2	4
174	ALLEVIATION OF AN INDETERMINACY PROBLEM AFFECTING TWO CLASSICAL ITERATIVE IMAGE THRESHOLDING ALGORITHMS. International Journal of Pattern Recognition and Artificial Intelligence, 2006, 20, 1-14.	1.2	3
175	Peer review—Beyond the call of duty?. International Journal of Nursing Studies, 2011, 48, 1-2.	5.6	3
176	Reflections while passing the baton: Hydrologists' input is direly needed in ongoing environmental and food-security debates. Journal of Hydrology, 2012, 438-439, 1-2.	5.4	3
177	Proposed Trade Agreements Would Make Policy Implications of Environmental Research Entirely Irrelevant. Environmental Science & Technology, 2014, 48, 1370-1371.	10.0	3
178	Editorial: Microscale Modelling of Soil Processes: Recent Advances, Challenges, and the Path Ahead. Frontiers in Environmental Science, 2021, 9, .	3.3	3
179	Editorial: Carbon Storage in Agricultural and Forest Soils. Frontiers in Environmental Science, 2022, 10, .	3.3	3
180	Reply [to "Comment on â€~The Operational Significance of the Continuum Hypothesis in the Theory of Water Movement Through Soils and Aquifers' by P. Baveye and G. Spositoâ€]. Water Resources Research, 1985, 21, 1295-1296.	4.2	2

#	Article	IF	CITATIONS
181	Reply [to "Comment on â€~Dual-energy synchrotron X ray measurements of rapid soil density and water content changes in swelling soils during infiltration' by Patricia Garnier et al.â€J. Water Resources Research, 1999, 35, 3589-3590.	4.2	2
182	Wanted: a 'Reviewer Effectiveness Index'. Learned Publishing, 2012, 25, 232-234.	1.7	2
183	A Short Note on Pointless Reference Formatting. Journal of Scholarly Publishing, 2013, 44, 283-288.	0.6	2
184	Comment on "Potential of integrated field spectroscopy and spatial analysis for enhanced assessment of soil contamination: A prospective review―by Horta et al Geoderma, 2016, 271, 254-255.	5.1	2
185	Editorial: Agroecosystems Facing Global Climate Change: The Search for Sustainability. Frontiers in Environmental Science, 2018, 6, .	3.3	2
186	Editorial: Innovative Approaches to Learning in Environmental Science. Frontiers in Environmental Science, 2020, 8, .	3.3	2
187	Connectivity and pore accessibility in models of soil carbon cycling. Global Change Biology, 2021, 27, 5405-5406.	9.5	2
188	Editorial: Searching for Solutions to Soil Pollution: Underlying Soil-Contaminant Interactions and Development of Innovative Land Remediation and Reclamation Techniques. Frontiers in Environmental Science, 2022, 9, .	3.3	2
189	Response to â€~A wellâ€established fact: Rapid mineralization of organic inputs is an important factor for soil carbon sequestration' by Angers et al European Journal of Soil Science, 2022, 73, .	3.9	2
190	Comment on "Characterization of a reference site for quantifying uncertainties related to soil sampling―by S. Barbizzi et al. (2004). Environmental Pollution, 2005, 135, 341-342.	7.5	1
191	Response: Commentary: Is the Focus on "Ecosystems―a Liability in the Research on Nature's Services?. Frontiers in Ecology and Evolution, 2019, 7, .	2.2	1
192	Operational Aspects of the Mechanics of Deforming Porous Media: Theory and Application to Expansive Soils. , 1992, , 79-96.		1
193	Putting things in perspective. Spanish Journal of Soil Science, 0, 6, .	0.0	1
194	Editorial: Assessment and Modeling of Soil Functions or Soil-Based Ecosystem Services: Theory and Applications to Practical Problems. Frontiers in Environmental Science, 2021, 9, .	3.3	1
195	Discussion of " Volumeâ€Accuracy Relationship in Soil Moisture Sampling ―by Mark. E. Hawley, Richard H. McCuen, and Thomas J. Jackson (March, 1982). Journal of Irrigation and Drainage Engineering - ASCE, 1983, 109, 287-289.	1.0	0
196	To create generalists, teach students how to learn by themselves. Nature, 2000, 404, 329-329.	27.8	0
197	Surface fractal characteristics of preferential flow patterns in field soils: evaluation and effect of image processing. Developments in Soil Science, 2000, 27, 19-46.	0.5	0
198	Fate of Environmental Pollutants. Water Environment Research, 2002, 74, 1412-1447.	2.7	0

#	Article	IF	CITATIONS
199	Discussion of "Optimal In Situ Bioremediation Design by Hybrid Genetic Algorithm-Simulated Annealing―by Horng-Jer Shieh and Richard C. Peralta. Journal of Water Resources Planning and Management - ASCE, 2006, 132, 127-127.	2.6	0
200	Discussion of "Self-Managed Learning Model for Civil Engineering Continuing Training―by S. T. Muench. Journal of Professional Issues in Engineering Education and Practice, 2008, 134, 138-138.	0.9	0
201	Monetary Valuation of Ecosystem Services. , 2013, , 73-77.		0
202	How to get your research published: Complementary perspective. International Journal of Nursing Studies, 2016, 64, 96-97.	5.6	0
203	Expanding the Frontier in Education Research: Teacher Education Could Help Promote Activities That Affect Students' Ability to Learn in the Long-Run. Frontiers in Education, 2019, 3, .	2.1	0
204	"Dataâ€driven―versus "questionâ€driven―soil research. European Journal of Soil Science, 0, , .	3.9	0
205	WIND VELOCITY TIME SERIES ANALYSIS. , 2002, , .		0
206	Transport of Organic Xenobiotics in the Environment. , 1999, , 381-405.		0