Jeff Rawson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6429873/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Digital logic for soft devices. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7750-7759.	7.1	170
2	A soft ring oscillator. Science Robotics, 2019, 4, .	17.6	128
3	De novo design of a hyperstable non-natural protein–ligand complex with sub-à accuracy. Nature Chemistry, 2017, 9, 1157-1164.	13.6	93
4	Quasi-Ohmic Single Molecule Charge Transport through Highly Conjugated <i>meso</i> -to- <i>meso</i> Ethyne-Bridged Porphyrin Wires. Nano Letters, 2012, 12, 2722-2727.	9.1	90
5	Tunable Leuko-polymersomes That Adhere Specifically to Inflammatory Markers. Langmuir, 2010, 26, 14089-14096.	3.5	81
6	Sensing membrane stress with near IR-emissive porphyrins. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13984-13989.	7.1	56
7	Tailoring Porphyrin-Based Electron Accepting Materials for Organic Photovoltaics. Journal of the American Chemical Society, 2014, 136, 17561-17569.	13.7	55
8	Extreme electron polaron spatial delocalization in π-conjugated materials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13779-13783.	7.1	48
9	A Generalized System for Photoresponsive Membrane Rupture in Polymersomes. Advanced Functional Materials, 2010, 20, 2588-2596.	14.9	39
10	On the Importance of Electronic Symmetry for Triplet State Delocalization. Journal of the American Chemical Society, 2017, 139, 5301-5304.	13.7	37
11	Valence Band Dependent Charge Transport in Bulk Molecular Electronic Devices Incorporating Highly Conjugated Multi-[(Porphinato)Metal] Oligomers. Journal of the American Chemical Society, 2016, 138, 2078-2081.	13.7	34
12	Alkyne-Bridged Multi[Copper(II) Porphyrin] Structures: Nuances of Orbital Symmetry in Long-Range, Through-Bond Mediated, Isotropic Spin Exchange Interactions. Journal of the American Chemical Society, 2017, 139, 9759-9762.	13.7	33
13	Molecular Road Map to Tuning Ground State Absorption and Excited State Dynamics of Long-Wavelength Absorbers. Journal of the American Chemical Society, 2017, 139, 16946-16958.	13.7	30
14	Hapticity-Dependent Charge Transport through Carbodithioate-Terminated [5,15-Bis(phenylethynyl)porphinato]zinc(II) Complexes in Metal–Molecule–Metal Junctions. Nano Letters, 2014, 14, 5493-5499.	9.1	29
15	Photoinduced Electron Transfer Elicits a Change in the Static Dielectric Constant of a <i>de Novo</i> Designed Protein. Journal of the American Chemical Society, 2016, 138, 2130-2133.	13.7	22
16	Soft biodegradable polymersomes from caprolactone-derived polymers. Soft Matter, 2012, 8, 10853.	2.7	18
17	Electron Spin Relaxation of Hole and Electron Polarons in ï€-Conjugated Porphyrin Arrays: Spintronic Implications. Journal of Physical Chemistry B, 2015, 119, 7681-7689.	2.6	18
18	Unambiguous Diagnosis of Photoinduced Charge Carrier Signatures in a Stoichiometrically Controlled Semiconducting Polymerâ€Wrapped Carbon Nanotube Assembly. Angewandte Chemie - International Edition, 2015, 54, 8133-8138.	13.8	17

Jeff Rawson

#	Article	IF	CITATIONS
19	The evolution of spin distribution in the photoexcited triplet state of ethyne-elaborated porphyrins. Chemical Communications, 2013, 49, 9722.	4.1	16
20	Controlling the excited-state dynamics of low band gap, near-infrared absorbers via proquinoidal unit electronic structural modulation. Chemical Science, 2017, 8, 5889-5901.	7.4	16
21	Molecular Model of a Quantum Dot Beyond the Constant Interaction Approximation. Physical Review Letters, 2018, 120, 206801.	7.8	14
22	Caging Metal Ions with Visible Light-Responsive Nanopolymersomes. Langmuir, 2015, 31, 799-807.	3.5	12
23	Engineering High-Potential Photo-oxidants with Panchromatic Absorption. Journal of the American Chemical Society, 2017, 139, 8412-8415.	13.7	10
24	Characterizing Chelation at Surfaces by Charge Tunneling. Journal of the American Chemical Society, 2021, 143, 5967-5977.	13.7	10
25	Unambiguous Diagnosis of Photoinduced Charge Carrier Signatures in a Stoichiometrically Controlled Semiconducting Polymerâ€Wrapped Carbon Nanotube Assembly. Angewandte Chemie, 2015, 127, 8251-8256.	2.0	8
26	Cyclophane with eclipsed pyrene units enables construction of spin interfaces with chemical accuracy. Chemical Science, 2021, 12, 8430-8437.	7.4	8
27	Ultraâ€High Vacuum Deposition of Pyrene Molecules on Metal Surfaces. Physica Status Solidi (B): Basic Research, 2018, 255, 1800235.	1.5	7
28	A naphthalene-fused dimer of an anti-aromatic expanded isophlorin. Chemical Communications, 2017, 53, 8211-8214.	4.1	5
29	Fusing pyrene and ferrocene into a chiral, redox-active triangle. Chemical Communications, 2021, 57, 6660-6663.	4.1	3