
Ding Xue

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6429271/publications.pdf Version: 2024-02-01

DINC XUE

#	Article	IF	CITATIONS
1	Structural and functional analyses of hepatitis B virus X protein BH3-like domain and Bcl-xL interaction. Nature Communications, 2019, 10, 3192.	12.8	28
2	Structure and function analysis of the C. elegans aminophospholipid translocase TAT–1. Journal of Cell Science, 2019, 132, .	2.0	3
3	Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Scientific Reports, 2019, 9, 4366.	3.3	54
4	Cathepsin B inhibitors block multiple radiation-induced side effects in C. elegans. Cell Research, 2019, 29, 1042-1045.	12.0	5
5	Non-steroidal Anti-inflammatory Drugs Are Caspase Inhibitors. Cell Chemical Biology, 2017, 24, 281-292.	5.2	64
6	Programmed cell clearance: From nematodes to humans. Biochemical and Biophysical Research Communications, 2017, 482, 491-497.	2.1	16
7	Prealamethicin F50 and related peptaibols from Trichoderma arundinaceum: validation of their authenticity via in situ chemical analysis. RSC Advances, 2017, 7, 45733-45741.	3.6	29
8	Cysteine protease cathepsin B mediates radiation-induced bystander effects. Nature, 2017, 547, 458-462.	27.8	57
9	One-step homozygosity in precise gene editing by an improved CRISPR/Cas9 system. Cell Research, 2016, 26, 633-636.	12.0	15
10	Regulation of CED-3 caspase localization and activation by C. elegans nuclear-membrane protein NPP-14. Nature Structural and Molecular Biology, 2016, 23, 958-964.	8.2	11
11	Programmed Cell Death During <i>Caenorhabditis elegans</i> Development. Genetics, 2016, 203, 1533-1562.	2.9	88
12	Kinetics and specificity of paternal mitochondrial elimination in Caenorhabditis elegans. Nature Communications, 2016, 7, 12569.	12.8	43
13	Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science, 2016, 353, 394-399.	12.6	148
14	Oxidative Stress Impairs Cell Death by Repressing the Nuclease Activity of Mitochondrial Endonuclease G. Cell Reports, 2016, 16, 279-287.	6.4	22
15	The Apoptotic Engulfment Machinery Regulates Axonal Degeneration in C.Âelegans Neurons. Cell Reports, 2016, 14, 1673-1683.	6.4	37
16	Mitochondrial Cell Death Pathways in Caenorhabiditis elegans. Current Topics in Developmental Biology, 2015, 114, 43-65.	2.2	23
17	EFF-1-mediated regenerative axonal fusion requires components of the apoptotic pathway. Nature, 2015, 517, 219-222.	27.8	122
18	A lysine-rich motif in the phosphatidylserine receptor PSR-1 mediates recognition and removal of apoptotic cells. Nature Communications, 2015, 6, 5717.	12.8	33

DING XUE

#	Article	IF	CITATIONS
19	Human ACAP2 is a homolog of <i>C. elegans</i> CNT-1 that promotes apoptosis in cancer cells. Cell Cycle, 2015, 14, 1771-1778.	2.6	8
20	A novel mechanism underlies caspase-dependent conversion of the dicer ribonuclease into a deoxyribonuclease during apoptosis. Cell Research, 2014, 24, 218-232.	12.0	13
21	Oligonucleotide-based targeted gene editing in C. elegans via the CRISPR/Cas9 system. Cell Research, 2014, 24, 247-250.	12.0	87
22	Caspase-activated phosphoinositide binding by CNT-1 promotes apoptosis by inhibiting the AKT pathway. Nature Structural and Molecular Biology, 2014, 21, 1082-1090.	8.2	18
23	Caspase Protocols in Caenorhabditis elegans. Methods in Molecular Biology, 2014, 1133, 101-108.	0.9	1
24	CED-3 caspase acts with miRNAs to regulate non-apoptotic gene expression dynamics for robust development in C. elegans. ELife, 2014, 3, e04265.	6.0	43
25	MARCKS-ED Peptide as a Curvature and Lipid Sensor. ACS Chemical Biology, 2013, 8, 218-225.	3.4	54
26	Caspase-mediated activation of Caenorhabditis elegans CED-8 promotes apoptosis and phosphatidylserine externalization. Nature Communications, 2013, 4, 2726.	12.8	68
27	Methods for Studying Programmed Cell Death in C. elegans. Methods in Cell Biology, 2012, 107, 295-320.	1.1	7
28	Hepatitis B virus X protein targets Bcl-2 proteins to increase intracellular calcium, required for virus replication and cell death induction. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18471-18476.	7.1	75
29	Structural Insights into Apoptotic DNA Degradation by CED-3 Protease Suppressor-6 (CPS-6) from Caenorhabditis elegans. Journal of Biological Chemistry, 2012, 287, 7110-7120.	3.4	11
30	Hepatitis B virus X protein targets the Bcl-2 protein CED-9 to induce intracellular Ca ²⁺ increase and cell death in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 18465-18470.	7.1	47
31	CED-1, CED-7, and TTR-52 Regulate Surface Phosphatidylserine Expression on Apoptotic and Phagocytic Cells. Current Biology, 2012, 22, 1267-1275.	3.9	81
32	Elimination of paternal mitochondria through the lysosomal degradation pathway in C. elegans. Cell Research, 2011, 21, 1662-1669.	12.0	94
33	Dicing up chromosomes: The unexpected role of Dicer in apoptosisÂ. Cell Cycle, 2010, 9, 4772-4773.	2.6	1
34	Caenorhabditis elegans transthyretin-like protein TTR-52 mediates recognition of apoptotic cells by the CED-1 phagocyte receptor. Nature Cell Biology, 2010, 12, 655-664.	10.3	114
35	Caspase-Dependent Conversion of Dicer Ribonuclease into a Death-Promoting Deoxyribonuclease. Science, 2010, 328, 327-334.	12.6	108
36	Somatic sex determination in Caenorhabditis elegans is modulated by SUP-26 repression of tra-2 translation. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 18022-18027.	7.1	29

DING XUE

#	Article	IF	CITATIONS
37	Programmed cell clearance: Molecular regulation of the elimination of apoptotic cell corpses and its role in the resolution of inflammation. Biochemical and Biophysical Research Communications, 2010, 396, 7-10.	2.1	72
38	The Roles and Acting Mechanism of Caenorhabditis elegans DNase II Genes in Apoptotic DNA Degradation and Development. PLoS ONE, 2009, 4, e7348.	2.5	14
39	Crystal Structure of CRN-4: Implications for Domain Function in Apoptotic DNA Degradation. Molecular and Cellular Biology, 2009, 29, 448-457.	2.3	23
40	Bcl-2 Proteins EGL-1 and CED-9 Do Not Regulate Mitochondrial Fission or Fusion in Caenorhabditis elegans. Current Biology, 2009, 19, 768-773.	3.9	24
41	The ins and outs of phospholipid asymmetry in the plasma membrane: roles in health and disease. Critical Reviews in Biochemistry and Molecular Biology, 2009, 44, 264-277.	5.2	322
42	Programmed Cell Death in C. elegans. , 2009, , 355-373.		1
43	Inhibition of CED-3 zymogen activation and apoptosis in Caenorhabditis elegans by caspase homolog CSP-3. Nature Structural and Molecular Biology, 2008, 15, 1094-1101.	8.2	30
44	Caenorhabditis elegans drp-1 and fis-2 Regulate Distinct Cell-Death Execution Pathways Downstream of ced-3 and Independent of ced-9. Molecular Cell, 2008, 31, 586-597.	9.7	128
45	SKR-1, a homolog of Skp1 and a member of the SCFSEL-10 complex, regulates sex-determination and LIN-12/Notch signaling in C. elegans. Developmental Biology, 2008, 322, 322-331.	2.0	21
46	Role of <i>C. elegans</i> TAT-1 Protein in Maintaining Plasma Membrane Phosphatidylserine Asymmetry. Science, 2008, 320, 528-531.	12.6	129
47	Cell death specification inC. elegans. Cell Cycle, 2008, 7, 2479-2484.	2.6	10
48	Fat(al) attraction: Oxidized lipids act as "eatâ€ne―signals. HFSP Journal, 2007, 1, 225-229.	2.5	12
49	Control of sex-specific apoptosis in <i>C. elegans</i> by the BarH homeodomain protein CEH-30 and the transcriptional repressor UNC-37/Groucho. Genes and Development, 2007, 21, 3195-3207.	5.9	62
50	C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nature Cell Biology, 2007, 9, 541-549.	10.3	108
51	The nongenotoxic carcinogens naphthalene and para-dichlorobenzene suppress apoptosis in Caenorhabditis elegans. Nature Chemical Biology, 2006, 2, 338-345.	8.0	31
52	Cuts can kill: the roles of apoptotic nucleases in cell death and animal development. Chromosoma, 2006, 115, 89-97.	2.2	42
53	A Class of Benzenoid Chemicals Suppresses Apoptosis in C. elegans. ChemBioChem, 2006, 7, 2010-2015.	2.6	11
54	RNA Aptamers Targeting the Cell Death Inhibitor CED-9 Induce Cell Killing in Caenorhabditis elegans. Journal of Biological Chemistry, 2006, 281, 9137-9144.	3.4	9

DING XUE

#	Article	IF	CITATIONS
55	Apoptosis and cell stress in C. elegans. FASEB Journal, 2006, 20, A36.	0.5	0
56	Novel function of the flap endonuclease 1 complex in processing stalled DNA replication forks. EMBO Reports, 2005, 6, 83-89.	4.5	132
57	Structure of the CED-4–CED-9 complex provides insights into programmed cell death in Caenorhabditis elegans. Nature, 2005, 437, 831-837.	27.8	207
58	Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Current Opinion in Cell Biology, 2004, 16, 647-652.	5.4	236
59	Identification of CED-3 Substrates by a Yeast-Based Screening Method. Molecular Biotechnology, 2004, 27, 01-06.	2.4	6
60	Structural, Biochemical, and Functional Analyses of CED-9 Recognition by the Proapoptotic Proteins EGL-1 and CED-4. Molecular Cell, 2004, 15, 999-1006.	9.7	92
61	To Live or Die by the Sword. Developmental Cell, 2004, 6, 460-461.	7.0	36
62	CRN-1, a Caenorhabditis elegans FEN-1 homologue, cooperates with CPS-6/EndoG to promote apoptotic DNA degradation. EMBO Journal, 2003, 22, 3451-3460.	7.8	106
63	Functional Genomic Analysis of Apoptotic DNA Degradation in C. elegans. Molecular Cell, 2003, 11, 987-996.	9.7	127
64	Cell Corpse Engulfment Mediated by C. elegans Phosphatidylserine Receptor Through CED-5 and CED-12. Science, 2003, 302, 1563-1566.	12.6	183
65	Programmed Cell Death in C. elegans. , 2003, , 135-144.		0
66	Mechanisms of AIF-Mediated Apoptotic DNA Degradation in <i>Caenorhabditis elegans</i> . Science, 2002, 298, 1587-1592.	12.6	361
67	Mitochondrial endonuclease G is important for apoptosis in C. elegans. Nature, 2001, 412, 90-94.	27.8	397
68	Analysis of Programmed Cell Death in the Nematode Caenorhabditis elegans. Methods in Enzymology, 2000, 322, 76-88.	1.0	12
69	Phosphorylation of lκB-α Inhibits Its Cleavage by Caspase CPP32 in Vitro. Journal of Biological Chemistry, 1997, 272, 29419-29422.	3.4	142
70	Caenorhabditis elegans CED-9 protein is a bifunctional cell-death inhibitor. Nature, 1997, 390, 305-308.	27.8	124
71	Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature, 1995, 377, 248-251.	27.8	486
72	Cooperative interactions between the Caenorhabditis elegans homeoproteins UNC-86 and MEC-3. Science, 1993, 261, 1324-1328.	12.6	213

-					
n	IN	0	- Y		IE
$\boldsymbol{\upsilon}$	IIN	U.	\sim	٠u	

#	Article	IF	CITATIONS
73	Caenorhabditis elegans and Apoptosis. , 0, , 397-406.		0