Olga Bortolini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6428504/publications.pdf

Version: 2024-02-01

181 papers

4,584 citations

35 h-index 55 g-index

204 all docs

204 docs citations

times ranked

204

3932 citing authors

#	Article	IF	CITATIONS
1	Organocatalytic synthesis of poly(hydroxymethylfuroate) <i>via</i> ring-opening polymerization of 5-hydroxymethylfurfural-based cyclic oligoesters. Polymer Chemistry, 2022, 13, 1350-1358.	3.9	10
2	Photoredox Cross-Dehydrogenative Coupling of <i>N</i> -Aryl Glycines Mediated by Mesoporous Graphitic Carbon Nitride: An Environmentally Friendly Approach to the Synthesis of Non-Proteinogenic α-Amino Acids (NPAAs) Decorated with Indoles. Journal of Organic Chemistry, 2022, 87, 7826-7837.	3.2	8
3	Regiodivergent Synthesis of Benzothiazoleâ€Based Isosorbide Imidates by Oxidative Nâ€Heterocyclic Carbene Catalysis. European Journal of Organic Chemistry, 2022, 2022, .	2.4	5
4	Exploring Oxidative NHCâ€Catalysis as Organocatalytic Polymerization Strategy towards Polyamide Oligomers. Chemistry - A European Journal, 2021, 27, 1839-1848.	3.3	14
5	Regiodivergent Isosorbide Acylation by Oxidative N-Heterocyclic Carbene Catalysis in Batch and Continuous Flow. ACS Sustainable Chemistry and Engineering, 2021, 9, 8295-8305.	6.7	13
6	Expanding the Toolbox of Heterogeneous Asymmetric Organocatalysts: Bifunctional Cyclopropenimine Superbases for Enantioselective Catalysis in Batch and Continuous Flow. Advanced Synthesis and Catalysis, 2021, 363, 5473-5485.	4.3	8
7	A Oneâ€Pot Twoâ€Step Enzymatic Pathway for the Synthesis of Enantiomerically Enriched Vicinal Diols. European Journal of Organic Chemistry, 2021, 2021, 973-978.	2.4	3
8	Chemoenzymatic Stereodivergent Synthesis of All the Possible Stereoisomers of the 2,3-Dimethylglyceric Acid Ethyl Ester. Catalysts, 2021, 11, 1440.	3.5	2
9	Enantioselective <i>N</i> à€Acylation of Biginelli Dihydropyrimidines by Oxidative NHC Catalysis. European Journal of Organic Chemistry, 2020, 2020, 2439-2447.	2.4	9
10	Recent advances in continuous-flow organocatalysis for process intensification. Reaction Chemistry and Engineering, 2020, 5, 1017-1052.	3.7	62
11	Exploring the Synergy Between HPTLC and HPLC-DAD for the Investigation of Wine-Making By-Products. Molecules, 2019, 24, 3416.	3.8	8
12	Oxidative NHCâ€Catalysis as Organocatalytic Platform for the Synthesis of Polyester Oligomers by Stepâ€Growth Polymerization. Chemistry - A European Journal, 2019, 25, 14701-14710.	3.3	17
13	Kinetic Resolution, Dynamic Kinetic Resolution and Asymmetric Desymmetrization by N-Heterocyclic Carbene Catalysis. Synthesis, 2019, 51, 1871-1891.	2.3	35
14	Enantioselective Desymmetrization of 1,4â€Dihydropyridines by Oxidative NHC Catalysis. Chemistry - A European Journal, 2019, 25, 7469-7474.	3.3	15
15	Enzymatic synthesis of biobased aliphatic–aromatic oligoesters using 5,5′-bis(hydroxymethyl)furoin as a building block. RSC Advances, 2019, 9, 29044-29050.	3.6	11
16	Enantioselective Dearomatization of Alkylpyridiniums by <i>N</i> Heterocyclic Carbene-Catalyzed Nucleophilic Acylation. Journal of Organic Chemistry, 2018, 83, 2050-2057.	3.2	40
17	Native Quercetin as a Chloride Receptor in an Organic Solvent. Molecules, 2018, 23, 3366.	3.8	1
18	Aerobic oxidation of 5-hydroxymethylfurfural to 5-hydroxymethyl-2-furancarboxylic acid and its derivatives by heterogeneous NHC-catalysis. Organic and Biomolecular Chemistry, 2018, 16, 8955-8964.	2.8	50

#	Article	IF	Citations
19	Esterification of glycerol and solketal by oxidative NHC-catalysis under heterogeneous batch and flow conditions. Reaction Chemistry and Engineering, 2018, 3, 816-825.	3.7	20
20	Enzymatic Crossâ€Benzoinâ€Type Condensation of Aliphatic Aldehydes: Enantioselective Synthesis of 1â€Alkylâ€1â€hydroxypropanâ€2â€ones and 1â€Alkylâ€1â€hydroxybutanâ€2â€ones. Advanced Synthesis and C 360, 4132-4141.	Cat aly sis, 2	20148,
21	Fluorous-tag assisted synthesis of bile acid–bisphosphonate conjugates via orthogonal click reactions: an access to potential anti-resorption bone drugs. Organic and Biomolecular Chemistry, 2017, 15, 4907-4920.	2.8	10
22	Formation, Oxidation, and Fate of the Breslow Intermediate in the <i>N</i> -Heterocyclic Carbene-Catalyzed Aerobic Oxidation of Aldehydes. Journal of Organic Chemistry, 2017, 82, 302-312.	3.2	38
23	Synthesis of functionalized imidazolidine-2-thiones via NHC/base-promoted aza-benzoin/aza-acetalization domino reactions. Organic and Biomolecular Chemistry, 2017, 15, 8788-8801.	2.8	9
24	KuQuinones Equilibria Assessment for Biomedical Applications. Journal of Organic Chemistry, 2017, 82, 10129-10138.	3.2	16
25	Immobilization of Privileged Triazolium Carbene Catalyst for Batch and Flow Stereoselective Umpolung Processes. ACS Catalysis, 2017, 7, 6365-6375.	11.2	48
26	Research Progress in the Modification of Quercetin Leading to Anticancer Agents. Molecules, 2017, 22, 1270.	3.8	157
27	Electron-transfer-initiated benzoin- and Stetter-like reactions in packed-bed reactors for process intensification. Beilstein Journal of Organic Chemistry, 2016, 12, 2719-2730.	2.2	4
28	Cross-benzoin and Stetter-type reactions mediated by KOtBu-DMF via an electron-transfer process. Organic and Biomolecular Chemistry, 2016, 14, 9823-9835.	2.8	19
29	Thiamineâ€Diphosphateâ€Dependent Enzymes as Catalytic Tools for the Asymmetric Benzoinâ€Type Reaction. European Journal of Organic Chemistry, 2016, 2016, 4441-4459.	2.4	29
30	A monolithic 5-(pyrrolidin-2-yl)tetrazole flow microreactor for the asymmetric aldol reaction in water–ethanol solvent. Reaction Chemistry and Engineering, 2016, 1, 183-193.	3.7	18
31	Nucleophilic and Electrophilic Double Aroylation of Chalcones with Benzils Promoted by the Dimsyl Anion as a Route to All Carbon Tetrasubstituted Olefins. Journal of Organic Chemistry, 2015, 80, 1937-1945.	3.2	21
32	Enzymatic Chemoselective Aldehyde–Ketone Crossâ€Couplings through the Polarity Reversal of Methylacetoin. Angewandte Chemie - International Edition, 2015, 54, 7171-7175.	13.8	21
33	Enzymatic Chemoselective Aldehyde–Ketone Crossâ€Couplings through the Polarity Reversal of Methylacetoin. Angewandte Chemie, 2015, 127, 7277-7281.	2.0	10
34	One-Pot, Four-Step Organocatalytic Asymmetric Synthesis of Functionalized Nitrocyclopropanes. Journal of Organic Chemistry, 2015, 80, 9176-9184.	3.2	25
35	Continuous ion-exchange resin catalysed esterification of eugenol for the optimized production of eugenyl acetate using a packed bed microreactor. RSC Advances, 2015, 5, 76898-76903.	3.6	16
36	Dissolution of Metal Salts in Bis(trifluoromethylsulfonyl)imide-Based Ionic Liquids: Studying the Affinity of Metal Cations Toward a "Weakly Coordinating―Anion. Journal of Physical Chemistry A, 2015, 119, 5078-5087.	2.5	40

#	Article	IF	Citations
37	Modified N,O-Nucleosides: Design, Synthesis, and Anti-tumour Activity. Australian Journal of Chemistry, 2014, 67, 670.	0.9	8
38	An insight into the mechanism of the aerobic oxidation of aldehydes catalyzed by N-heterocyclic carbenes. Chemical Communications, 2014, 50, 2008-2011.	4.1	39
39	Oxygenation by Ruthenium Monosubstituted Polyoxotungstates in Aqueous Solution: Experimental and Computational Dissection of a Ru(III)–Ru(V) Catalytic Cycle. Chemistry - A European Journal, 2014, 20, 10932-10943.	3.3	11
40	Expanding the scope of enzymatic carboligation reactions in flow-mode: production of optically active tertiary alcohols with packed-bed micro-bioreactors. Green Chemistry, 2014, 16, 3904-3915.	9.0	21
41	Transformation of a Cp*–Iridium(III) Precatalyst for Water Oxidation when Exposed to Oxidative Stress. Chemistry - A European Journal, 2014, 20, 3446-3456.	3.3	64
42	The corrole and ferrocene marriage: 5,10,15-triferrocenylcorrolato Cu. Chemical Communications, 2014, 50, 4076-4078.	4.1	31
43	One-pot, two-step desymmetrization of symmetrical benzils catalyzed by the methylsulfinyl (dimsyl) anion. Organic and Biomolecular Chemistry, 2014, 12, 5733-5744.	2.8	7
44	Synthesis of a Novel Class of gem-Phosphonate-Phosphates by Reductive Cleavage of the Isoxazolidine Ring. Current Organic Synthesis, 2014, 11, 461-465.	1.3	6
45	Synthesis and in vitro cytotoxicity of deoxyadenosine–bile acid conjugates linked with 1,2,3-triazole. New Journal of Chemistry, 2013, 37, 3559.	2.8	13
46	Thiazolium-functionalized polystyrene monolithic microreactors for continuous-flow umpolung catalysis. Green Chemistry, 2013, 15, 2981.	9.0	33
47	A Combined Kinetic and Thermodynamic Approach for the Interpretation of Continuous-Flow Heterogeneous Catalytic Processes. Chemistry - A European Journal, 2013, 19, 7802-7808.	3.3	31
48	An enzymatic approach to the synthesis of optically pure (3R)- and (3S)-enantiomers of green tea flavor compound 3-hydroxy-3-methylnonane-2,4-dione. Journal of Molecular Catalysis B: Enzymatic, 2013, 85-86, 93-98.	1.8	7
49	Methylsulfinyl (Dimsyl) Anion as Umpolung Catalyst for the Chemoselective Crossâ€Benzoin Reaction of αâ€Diketones with Aldehydes. Advanced Synthesis and Catalysis, 2013, 355, 3244-3252.	4.3	24
50	Unexpected One-Pot Synthesis of Highly Conjugated Pentacyclic Diquinoid Compounds. Journal of Organic Chemistry, 2012, 77, 6873-6879.	3.2	18
51	Unexpected reactivity of diaryl $\hat{l}\pm$ -diketones with thiazolium carbenes: discovery of a novel multicomponent reaction for the facile synthesis of 1,4-thiazin-3-ones. Organic and Biomolecular Chemistry, 2012, 10, 6579.	2.8	18
52	Silica-supported 5-(pyrrolidin-2-yl)tetrazole: development of organocatalytic processes from batch to continuous-flow conditions. Green Chemistry, 2012, 14, 992.	9.0	68
53	Synthesis, characterization and biological activity of hydroxyl-bisphosphonic analogs of bile acids. European Journal of Medicinal Chemistry, 2012, 52, 221-229.	5.5	18
54	Thiazolium-catalyzed intermolecular Stetter reaction of linear and cyclic alkyl \hat{l}_{\pm} -diketones. Organic and Biomolecular Chemistry, 2011, 9, 8437.	2.8	24

#	Article	IF	Citations
55	Relative acidity scale of glycine- and taurine-conjugated bile acids through ESI-MS measurements. Steroids, 2011, 76, 596-602.	1.8	13
56	α-Diketones as acyl anion equivalents: a non-enzymatic thiamine-promoted route to aldehyde–ketone coupling in PEG400 as recyclable medium. Tetrahedron, 2011, 67, 8110-8115.	1.9	34
57	Efficient synthesis of isoxazolidine-substituted bisphosphonates by 1,3-dipolar cycloaddition reactions. Tetrahedron, 2011, 67, 5635-5641.	1.9	32
58	A sustainable procedure for highly enantioselective organocatalyzed Diels–Alder cycloadditions in homogeneous ionic liquid/water phase. Tetrahedron Letters, 2011, 52, 1415-1417.	1.4	35
59	Bile acids in asymmetric synthesis and chiral discrimination. Chirality, 2010, 22, 486-494.	2.6	10
60	Erbium triflate in ionic liquids: A recyclable system of improving selectivity in Diels–Alder reactions. Applied Catalysis A: General, 2010, 372, 124-129.	4.3	29
61	Synthesis and biological evaluation of diastereoisomerically pure N,O-nucleosides. Bioorganic and Medicinal Chemistry, 2010, 18, 6970-6976.	3.0	31
62	Mild Oxidative Conversion of Nitroalkanes into Carbonyl Compounds in Ionic Liquids. Synthetic Communications, 2010, 40, 2483-2487.	2.1	16
63	Relative acidity scale of bile acids through ESI-MS measurements. Organic and Biomolecular Chemistry, 2010, 8, 3674.	2.8	9
64	A Simple and Efficient Oxidation Procedure for the Synthesis of Acid-Sensitive Epoxides. Synthesis, 2009, 2009, 1123-1126.	2.3	9
65	Solvent-free, microwave assisted 1,3-cycloaddition of nitrones with vinyl nucleobases for the synthesis of N,O-nucleosides. Tetrahedron, 2008, 64, 8078-8081.	1.9	34
66	Diketobile Acids as New Hosts in Solid-state Enantioselective Resolutions. Chemistry Letters, 2007, 36, 930-931.	1.3	4
67	Oxidative Cleavage of Nitroalkenes with Hydrogen Peroxide in Environmentally Acceptable Solvents. Chemistry Letters, 2007, 36, 472-473.	1.3	7
68	Preparation and characterization of some keto-bile acid azines. Steroids, 2007, 72, 756-764.	1.8	12
69	Development of Cation/Anion "Interaction―Scales for Ionic Liquids through ESI-MS Measurements. Journal of Physical Chemistry B, 2007, 111, 598-604.	2.6	181
70	Inclusion Compounds of Dehydrocholic Acid with Solvents. International Journal of Molecular Sciences, 2007, 8, 662-669.	4.1	7
71	Guest dependent inversion of enantiomeric recognition in dehydrocholic acid host–guest enclathration. Tetrahedron: Asymmetry, 2007, 18, 1194-1196.	1.8	3
72	1,3-Cycloaddition of nitrones in ionic liquids catalyzed by Er(III): an easy access to isoxazolidines. Tetrahedron Letters, 2007, 48, 7125-7128.	1.4	17

#	Article	IF	CITATIONS
73	Two-way enantioselective control in the epoxidation of alkenes with the keto bile acid–Oxone® system. Tetrahedron, 2006, 62, 4482-4490.	1.9	28
74	Inclusion of cyclic carbonates by a cholic acid host: structure and enantioselection. Tetrahedron: Asymmetry, 2006, 17, 308-312.	1.8	14
75	Bile Acid Derivatives as Enantiodifferentiating Host Molecules in Inclusion Processes. ChemInform, 2006, 37, no.	0.0	0
76	Mass spectrometric characterization of highâ€valent metalâ€oxo, â€peroxo and â€peroxy intermediates of relevance in oxidation processes. Mass Spectrometry Reviews, 2006, 25, 724-740.	5.4	25
77	Determination of absolute configuration using vibrational circular dichroism spectroscopy: phenyl glycidic acid derivatives obtained via asymmetric epoxidation using oxone and a keto bile acid. Tetrahedron: Asymmetry, 2005, 16, 2653-2663.	1.8	32
78	Bile acid derivatives as enantiodifferentiating host molecules in inclusion processes. Chirality, 2005, 17, 121-130.	2.6	40
79	Control of the Enantioselectivity by Keto Bile Acid Derivatives in the Epoxidation of Alkenes with Oxone ChemInform, 2005, 36, no.	0.0	0
80	Vanadium(V) Peroxo Complexes: Structure, Chemistry and Biological Implications. ChemInform, 2005, 36, no.	0.0	0
81	Vanadium (V) peroxocomplexes: Structure, chemistry and biological implications. Journal of Inorganic Biochemistry, 2005, 99, 1549-1557.	3.5	74
82	Hydrogen-bonded aggregations of oxo-cholic acids. Acta Crystallographica Section B: Structural Science, 2005, 61, 346-356.	1.8	14
83	Control of the enantioselectivity by keto bile acid derivatives in the epoxidation of alkenes with Oxone. Tetrahedron: Asymmetry, 2004, 15, 3831-3833.	1.8	17
84	Sustainable Epoxidation of Electron-Poor Olefins with Hydrogen Peroxide in Ionic Liquids and Recovery of the Products with Supercritical CO2 ChemInform, 2004, 35, no.	0.0	0
85	Structural and analytical powder diffraction studies of the enantioselective inclusion of chiral arylmethylsulfoxides in dehydrocholic acid cocrystals. New Journal of Chemistry, 2004, 28, 1295.	2.8	15
86	Vanadium-Bromoperoxidase-Mimicking Systems: Direct Evidence of a Hypobromite-Like Vanadium Intermediate. European Journal of Inorganic Chemistry, 2003, 2003, 42-46.	2.0	37
87	Electrospray Behavior of Lacunary Keggin-Type Polyoxotungstates [XW11O39]p (X = Si, P): Mass Spectrometric Evidence for a Concentration-Dependent Incorporation of an MOn+ (M = WVI, MoVI, VV) Unit into the Polyoxometalate Vacancy. European Journal of Inorganic Chemistry, 2003, 2003, 699-704.	2.0	58
88	Sustainable Epoxidation of Electron-Poor Olefins with Hydrogen Peroxide in Ionic Liquids and Recovery of the Products with Supercritical CO2. European Journal of Organic Chemistry, 2003, 2003, 4804-4809.	2.4	28
89	On the Mechanism of the Oxygen Transfer to Sulfoxides by (Peroxo)[tris(hydroxyalkyl)amine]TilV Complexesâ^' Evidence for a Metal-Template-Assisted Process. European Journal of Organic Chemistry, 2003, 2003, 507-511.	2.4	18
90	Improved Enantioselectivity in the Epoxidation of Cinnamic Acid Derivatives with Dioxiranes from Keto Bile Acids ChemInform, 2003, 34, no.	0.0	0

#	Article	IF	CITATIONS
91	Optical Resolution of Cyclic Amides by Inclusion in Dehydrocholic Acid ChemInform, 2003, 34, no.	0.0	O
92	Determination of absolute configuration using ab initio calculation of optical rotation. Chirality, 2003, 15, S57-S64.	2.6	129
93	Polymorphism of dehydrocholic acid: crystal structure of the \hat{l}^2 -phase and guest-mediated solid phase conversion. New Journal of Chemistry, 2003, 27, 1794-1800.	2.8	13
94	Optical Resolution of Cyclic Amides by Inclusion in Dehydrocholic Acid. Chemistry Letters, 2003, 32, 206-207.	1.3	14
95	A Novel Host-Guest Supramolecular Architecture of Dehydrocholic Acid in the Enantioselective Inclusion of R-(+)-Methylp-Tolyl Sulfoxide. Chemistry Letters, 2002, 31, 400-401.	1.3	9
96	Improved Enantioselectivity in the Epoxidation of Cinnamic Acid Derivatives with Dioxiranes from Keto Bile Acids. Journal of Organic Chemistry, 2002, 67, 5802-5806.	3.2	40
97	Trihalide-based ionic liquids. Reagent-solvents for stereoselective iodination of alkenes and alkynes. Green Chemistry, 2002, 4, 621-627.	9.0	72
98	Epoxidation of electrophilic alkenes in ionic liquids. Green Chemistry, 2002, 4, 94-96.	9.0	38
99	Aerobic oxidation of isopropanol catalysed by peroxovanadium complexes: mechanistic insights. Perkin Transactions II RSC, 2001, , 763-765.	1.1	19
100	Asymmetric epoxidation of cinnamic acid derivatives using dioxiranes generated in situ from dehydrocholic acid. Tetrahedron: Asymmetry, 2001, 12, 1113-1115.	1.8	36
101	Enantioselective inclusion in bile acids: resolution of cyclic ketones. Tetrahedron: Asymmetry, 2001, 12, 1479-1483.	1.8	29
102	Characterization and Reactivity of Triperoxo Vanadium Complexes In Protic Solvents. European Journal of Inorganic Chemistry, 2001, 2001, 2913.	2.0	22
103	Resolution of Unfunctionalized Epoxides by Cholic Acid Inclusion Compounds. Chemistry Letters, 2000, 29, 1246-1247.	1.3	10
104	Vanadium catalyzed reduction of dioxygen to hydrogen peroxide: an oscillating process. Journal of Inorganic Biochemistry, 2000, 80, 191-194.	3.5	21
105	Models for the active site of vanadium-dependent haloperoxidases: insight into the solution structure of peroxo vanadium compounds. Journal of Inorganic Biochemistry, 2000, 80, 41-49.	3.5	87
106	Mixed oxo-hydroxy bile acids as actual or potential impurities in ursodeoxycholic acid preparation: a 1H and 13C NMR study. Il Farmaco, 2000, 55, 51-55.	0.9	10
107	Optical resolution of sulfoxides by inclusion in host dehydrocholic acid. Chemical Communications, 2000, , 365-366.	4.1	28
108	The phenylsulfenium cation: Electronic structure and gas-phase reactivity. Tetrahedron Letters, 1999, 40, 6073-6076.	1.4	13

#	Article	IF	Citations
109	Complex formation between aluminium(III) and 2-hydroxy nicotinic acid: an electrospray mass spectrometric investigation., 1999, 13, 1878-1881.		9
110	Histidine-Containing Bisperoxovanadium(V) Compounds: Insight Into the Solution Structure by an ESI-MS and 51V-NMR Comparative Study. European Journal of Inorganic Chemistry, 1999, 1999, 1489-1495.	2.0	32
111	Direct Synthesis of Stable Adamantylideneadamantane Bromonium Salts. European Journal of Organic Chemistry, 1999, 1999, 3237-3239.	2.4	7
112	Enantioselective Ti(IV) Sulfoxidation Catalysts BearingC3-Symmetric Trialkanolamine Ligands:Â Solution Speciation by1H NMR and ESI-MS Analysis. Journal of the American Chemical Society, 1999, 121, 6258-6268.	13.7	83
113	lon/molecule reactions of C2H2N+, C2H4N+ and C3H4N+ ions from acetonitrile with neutral carbon suboxide. Rapid Communications in Mass Spectrometry, 1998, 12, 1425-1428.	1.5	7
114	Direct Evidence of Solvent-Peroxovanadium Clusters by Electrospray Ionization Mass Spectrometry. European Journal of Inorganic Chemistry, 1998, 1998, 1193-1197.	2.0	28
115	Kinetic resolution of vic -diols by Bacillus stearothermophilus diacetyl reductase. Tetrahedron: Asymmetry, 1998, 9, 647-651.	1.8	29
116	Homogeneous catalysis as a tool for organic synthesis. Pure and Applied Chemistry, 1998, 70, 1041-1046.	1.9	32
117	Use of electrospray ionization mass spectrometry to characterize chiral reactive intermediates in a titanium alkoxide mediated sulfoxidation reaction. Chemical Communications, 1997, , 869-870.	4.1	33
118	An Easy Approach to the Synthesis of Optically Activevic-Diols:Â A New Single-Enzyme System. Journal of Organic Chemistry, 1997, 62, 1854-1856.	3.2	52
119	Biotransformations on steroid nucleus of bile acids. Steroids, 1997, 62, 564-577.	1.8	91
120	Key fragmentations for the interpretation of mass spectra of disubstituted bile acids of bovine and porcine origin., 1997, 11, 1286-1288.		1
121	Trisubstituted bile acids of bovine and porcine origin: a gas chromatographic/mass spectrometric study. Rapid Communications in Mass Spectrometry, 1997, 11, 2002-2004.	1.5	1
122	A New Non-enzymatic Route to Chenodeoxycholic Acid. Chemistry Letters, 1996, 25, 335-336.	1.3	7
123	Bacillus stearothermophilus alcohol dehydrogenase: A new catalyst to obtain enantiomerically pure bicyclic octen- and hepten-ols and -ones Tetrahedron, 1996, 52, 1669-1676.	1.9	8
124	Trimethylsilyldiazomethane as a diazomethane equivalent in the synthesis of (α-halomethyl) platinum(II) complexes. Inorganica Chimica Acta, 1996, 252, 33-37.	2.4	11
125	Relative cyanide cation (+CN) affinities of pyridines determined by the kinetic method using multiple-stage (MS3) mass spectrometry. Journal of Mass Spectrometry, 1995, 30, 184-193.	1.6	23
126	Mass spectrometry of sulfur-containing compounds in organic and bioorganic fields. Mass Spectrometry Reviews, 1995, 14, 117-162.	5.4	15

#	Article	IF	CITATIONS
127	Electrospray and fast ion bombartment of mixed-valence polynuclear complexes based on MII(bpy)2 (M) Tj ETQq1	1.0.7843	14 rgBT /0\
128	A phenomenological description of ion cloud squeeze in an ion trap. Rapid Communications in Mass Spectrometry, 1995, 9, 1470-1471.	1.5	0
129	Structure-dependent mass displacements in ion-trap experiments. Rapid Communications in Mass Spectrometry, 1994, 8, 666-669.	1.5	3
130	Investigation of ruthenium (II) and iron (II) tris-bipyridyl complexes by means of 10-30 keV Cs+ ion bombardment and collision-induced dissociation. Rapid Communications in Mass Spectrometry, 1994, 8, 706-710.	1.5	5
131	Relationship between mass displacements and dipole moments ofpara-substituted pyridine odd-electron molecular ions. Organic Mass Spectrometry, 1994, 29, 269-271.	1.3	13
132	Evaluation of the dipole moments of organic ions in the gas phase. Organic Mass Spectrometry, 1994, 29, 273-276.	1.3	7
133	Estimation of the polarizability of gaseous ions by ion trap mass measurements. Organic Mass Spectrometry, 1993, 28, 428-432.	1.3	12
134	Mass displacements in quadrupolar field analysers. Organic Mass Spectrometry, 1993, 28, 745-751.	1.3	20
135	Electrophilic bromination of gaseous aromatic compounds: Mechanism and linear free energy effects on reaction rates. Organic Mass Spectrometry, 1993, 28, 1313-1322.	1.3	17
136	Mass displacements in ion traps as a sensitive tool in cis-trans isomer characterization. Organic Mass Spectrometry, 1993, 28, 1363-1364.	1.3	1
137	Fast-atom bombardment mass spectrometry in the stereochemical characterization of a new group of C30 nuphar alkaloids. Rapid Communications in Mass Spectrometry, 1993, 7, 288-292.	1.5	2
138	Correlation between polarizability substituent effects and mass displacements of gaseous organic ions determined by an ion trap. Journal of the Chemical Society Perkin Transactions II, 1993, , 2327.	0.9	0
139	Fast atom bombardment mass spectrometry of multiply charged polynuclear rhenium(I)-ruthenium(II) complexes. Inorganic Chemistry, 1993, 32, 1222-1225.	4.0	18
140	Intramolecular energy transfer in ruthenium(II)-chromium(III) chromophore-luminophore complexes. Ru(bpy)2[Cr(cyclam)(CN)2]24+. Inorganic Chemistry, 1992, 31, 172-177.	4.0	42
141	Investigation of singly charged dihalomethanes by collision spectroscopy. Rapid Communications in Mass Spectrometry, 1992, 6, 71-74.	1.5	7
142	Chemical synthesis in mass spectrometry: Some examples in the organic, organometallic and polymer fields. Rapid Communications in Mass Spectrometry, 1992, 6, 498-507.	1.5	3
143	Mass displacements in ion trap mass spectrometry: Can they be related to electronic properties of the substituent groups of the ions under investigation?. Organic Mass Spectrometry, 1992, 27, 927-928.	1.3	17
144	Stereochemical studies of complex molecules by collisionally induced decomposition of doubly charged ions: Nuphar alkaloids. Journal of the Chemical Society Perkin Transactions II, 1991, , 287-289.	0.9	4

#	Article	IF	Citations
145	Stereochemical studies by mass spectrometry: C15Nuphar alkaloids. Organic Mass Spectrometry, 1991, 26, 956-960.	1.3	5
146	Mass spectrometry of nuphar alkaloids. Rapid Communications in Mass Spectrometry, 1991, 5, 518-523.	1.5	4
147	Fast-atom bombardment mass spectrometry of oligomeric dicyanobis(polypyridine) ruthenium (II) complexes. Rapid Communications in Mass Spectrometry, 1991, 5, 600-603.	1.5	3
148	Fluorine influence in the mass spectrometric patterns in \hat{l}^2 -hydroxy alkyl aryl sulphoxides. Part 5. Rapid Communications in Mass Spectrometry, 1990, 4, 376-380.	1.5	8
149	Unimolecular and collisionally induced fragmentations of [CH2X2]+ $\hat{A}\cdot$. Organic Mass Spectrometry, 1990, 25, 247-248.	1.3	9
150	Metal catalysis in oxidation by peroxides. Part 33. Chemoselective alcohol oxidations by the anionic molybdenum-picolinate N-oxido peroxo complex MoO5PICO. Journal of Organic Chemistry, 1990, 55, 3658-3660.	3.2	40
151	Fast atom bombardment mass spectra of anionic peroxo-molybdenum and -tungsten complexes. Journal of Organometallic Chemistry, 1989, 379, C13-C15.	1.8	2
152	Mass spectrometric investigation of substituted 1,3-emthiolaneS-oxides. Organic Mass Spectrometry, 1988, 23, 841-845.	1.3	5
153	Metal catalysis in oxidation by peroxides. 29. A oxygen-17 NMR spectroscopic investigation of neutral and anionic molybdenum peroxo complexes. Journal of Organic Chemistry, 1988, 53, 4581-4582.	3.2	23
154	ASYMMETRIC OXIDATION OF \hat{l}^2 -HYDROXYSULFIDES. THE ROLE OF THE HYDROXY GROUP. Phosphorous and Sulfur and the Related Elements, 1988, 37, 171-174.	0.2	11
155	Proximal effect of the nitrogen ligands in the catalytic epoxidation of olefins by the sodium hypochlorite/manganese(III) porphyrin system. Inorganic Chemistry, 1988, 27, 161-164.	4.0	71
156	Metal catalysis in oxidation by peroxides. 30. Electrophilic oxygen transfer from anionic, coordinatively saturated molybdenum peroxo complexes. Journal of Organic Chemistry, 1988, 53, 5721-5724.	3.2	80
157	Metal catalysis in oxidation by peroxides. 28. Kinetics and mechanism of the molybdenum-catalyzed oxidation of sulfoxides to sulfones with hydrogen peroxide. Journal of Organic Chemistry, 1987, 52, 5093-5095.	3.2	45
158	Metal catalysis in oxidation by peroxides. 27. Anionic molybdenum-picolinate N-oxido-peroxo complex: an effective oxidant of primary and secondary alcohols in nonpolar solvents. Journal of Organic Chemistry, 1987, 52, 5467-5469.	3.2	86
159	Metal catalysis in oxidation by peroxides. Part 25. Molybdenum- and tungsten-catalyzed oxidations of alcohols by diluted hydrogen peroxide under phase-transfer conditions. Journal of Organic Chemistry, 1986, 51, 2661-2663.	3.2	96
160	Metal catalysis in oxidation by peroxides. 24. Extraction of aqueous peroxomolybdenum species into organic media and their reactivity. Canadian Journal of Chemistry, 1986, 64, 1189-1195.	1.1	14
161	Oxidations with peroxotungsten complexes: rates and mechanism of stoichiometric olefin epoxidations. Journal of Molecular Catalysis, 1986, 37, 165-175.	1.2	53
162	Asymmetric epoxidation by Mo(VI)-peroxo complexes: a mechanistic analysis. Journal of Molecular Catalysis, 1986, 35, 47-53.	1.2	21

#	Article	IF	Citations
163	Asymmetric oxidation of 1,3-dithiolanes. A route to the optical resolution of carbonyl compounds. Tetrahedron Letters, 1986, 27, 6257-6260.	1.4	69
164	Catalytic hydroxylation of saturated hydrocarbons with the sodium hypohalite/manganese porphyrin system. Journal of Molecular Catalysis, 1985, 31, 221-224.	1.2	33
165	Metal catalysis in oxidation by peroxides. Journal of Molecular Catalysis, 1985, 33, 241-244.	1.2	7
166	Metal catalysis in oxidation by peroxides. Sulfide oxidation and olefin epoxidation by dilute hydrogen peroxide, catalyzed by molybdenum and tungsten derivatives under phase-transfer conditions. Journal of Organic Chemistry, 1985, 50, 2688-2690.	3.2	98
167	Metal catalysis in oxidation by peroxides. Journal of Molecular Catalysis, 1984, 22, 313-317.	1.2	26
168	Definitive evidence for a proximal effect of pyridine in the NaOCl/Mn(porphyrin)x / pyridine catalytic oxygenation system. Tetrahedron Letters, 1984, 25, 5773-5776.	1.4	26
169	Enhanced selectivity by an â€~open-well effect' in a metalloporphyrin-catalysed oxygenation reaction. Journal of the Chemical Society Perkin Transactions II, 1984, , 1967-1970.	0.9	62
170	Metal catalysis in oxidation by peroxides. Journal of Molecular Catalysis, 1983, 19, 319-329.	1.2	15
171	Metal catalysis in oxidation by peroxides. Journal of Molecular Catalysis, 1983, 19, 331-343.	1.2	19
172	Isolation of a high-valent â€~oxo-like' manganese porphyrin complex obtained from NaOCl oxidation. Journal of the Chemical Society Chemical Communications, 1983, .	2.0	36
173	Metal catalysis in oxidation by peroxides part 13. The electrophilic character of the oxygen transfer from peroxomolybdenum(VI) to sulphides. Journal of Molecular Catalysis, 1982, 14, 53-62.	1.2	26
174	Metal catalysis in oxidation by peroxides part 14. Kinetics and mechanism of titanium-catalyzed oxidation of sulphides with t-butyl hydroperoxide. Journal of Molecular Catalysis, 1982, 14, 63-73.	1.2	22
175	Metal catalysis in oxidation by peroxides. Part 15. Steric effects in the oxidation of organic sulphides with $V(V)$ and $Mo(VI)$ peroxo complexes. Journal of Molecular Catalysis, 1982, 16, 61-68.	1.2	21
176	Metal catalysis in oxidation by peroxides. Part 16. Kinetics and mechanism of titanium-catalyzed oxidation of sulphides with hydrogen peroxide. Journal of Molecular Catalysis, 1982, 16, 69-80.	1.2	21
177	Oxo-peroxo oxygen exchange in peroxovanadium(V) and peroxomolybdenum(VI) compounds. Journal of the American Chemical Society, 1981, 103, 3924-3926.	13.7	20
178	Metal catalysis in oxidation by peroxides. Part II. Kinetics and mechanism of molybdenum-catalyzed oxidation of sulphides and alkenes with hydrogen peroxide. Journal of Molecular Catalysis, 1981, 11, 107-118.	1.2	32
179	Metal catalysis in oxidation by peroxides. Part 10. On the nature of the peroxovanadium(V) species in non-aqueous solvents. Journal of Molecular Catalysis, 1980, 9, 323-334.	1.2	23
180	Metal catalysis in oxidation by peroxides part 8 [1] further insight on the mechanism of vanadium(V) catalyzed oxidation of sulphides and alkenes by hydrogen peroxide. Journal of Molecular Catalysis, 1980, 7, 59-74.	1,2	50

ARTICLE IF CITATIONS

181 Transition Metal Peroxides. Synthesis and Role in Oxidation Reactions. , 0, , 1053-1128. 4