
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6427801/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Large-scale analyses of the X chromosome in 2,354 infertile men discover recurrently affected genes associated with spermatogenic failure. American Journal of Human Genetics, 2022, 109, 1458-1471.	6.2	10
2	The tumour suppressor brain tumour (Brat) regulates linker histone dBigH1 expression in the <i>Drosophila</i> female germline and the early embryo. Open Biology, 2021, 11, 200408.	3.6	2
3	A fraction of barrier-to-autointegration factor (BAF) associates with centromeres and controls mitosis progression. Communications Biology, 2020, 3, 454.	4.4	17
4	The embryonic linker histone dBigH1 alters the functional state of active chromatin. Nucleic Acids Research, 2020, 48, 4147-4160.	14.5	10
5	The zinc-finger proteins WOC and ROW play distinct functions within the HP1c transcription complex. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194492.	1.9	5
6	The E3-ligases SCFPpa and APC/CCdh1 co-operate to regulate CENP-ACID expression across the cell cycle. Nucleic Acids Research, 2019, 47, 3395-3406.	14.5	12
7	Chromatin remodeling in Drosophila preblastodermic embryo extract. Scientific Reports, 2018, 8, 10927.	3.3	3
8	Variations on a nucleosome theme: The structural basis of centromere function. BioEssays, 2017, 39, 1600241.	2.5	4
9	Linker histone H1 prevents R-loop accumulation and genome instability in heterochromatin. Nature Communications, 2017, 8, 283.	12.8	64
10	The Germline Linker Histone dBigH1 and the Translational Regulator Bam Form a Repressor Loop Essential for Male Germ Stem Cell Differentiation. Cell Reports, 2017, 21, 3178-3189.	6.4	19
11	The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1314-1321.	1.9	5
12	Histone H1: Lessons from Drosophila. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 526-532.	1.9	18
13	Germline-specific H1 variants: the "sexy―linker histones. Chromosoma, 2016, 125, 1-13.	2.2	27
14	The Drosophila histone demethylase dKDM5/LID regulates hematopoietic development. Developmental Biology, 2015, 405, 260-268.	2.0	12
15	dDsk2 regulates H2Bub1 and RNA polymerase II pausing at dHP1c complex target genes. Nature Communications, 2015, 6, 7049.	12.8	21
16	chroGPS, a global chromatin positioning system for the functional analysis and visualization of the epigenome. Nucleic Acids Research, 2014, 42, 2126-2137.	14.5	6
17	The Embryonic Linker Histone H1 Variant of Drosophila, dBigH1, Regulates Zygotic Genome Activation. Developmental Cell, 2013, 26, 578-590.	7.0	91
18	dKDM5/LID regulates H3K4me3 dynamics at the transcription-start site (TSS) of actively transcribed developmental genes. Nucleic Acids Research, 2012, 40, 9493-9505.	14.5	47

#	Article	IF	CITATIONS
19	Drosophila melanogaster linker histone dH1 is required for transposon silencing and to preserve genome integrity. Nucleic Acids Research, 2012, 40, 5402-5414.	14.5	51
20	Combined bottom-up and top-down mass spectrometry analyses of the pattern of post-translational modifications of Drosophila melanogaster linker histone H1. Journal of Proteomics, 2012, 75, 4124-4138.	2.4	38
21	Drosophila vigilin, DDP1, localises to the cytoplasm and associates to the rough endoplasmic reticulum. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2011, 1809, 46-55.	1.9	13
22	The F Box Protein Partner of Paired Regulates Stability of Drosophila Centromeric Histone H3, CenH3CID. Current Biology, 2011, 21, 1488-1493.	3.9	60
23	A Conserved Arginine-Rich Motif within the Hypervariable N-Domain of Drosophila Centromeric Histone H3 (CenH3CID) Mediates BubR1 Recruitment. PLoS ONE, 2010, 5, e13747.	2.5	12
24	Focus on the centre: the role of chromatin on the regulation of centromere identity and function. EMBO Journal, 2009, 28, 2337-2348.	7.8	51
25	The fission yeast homologue of CENP-B, Abp1, regulates directionality of mating-type switching. EMBO Journal, 2008, 27, 1029-1038.	7.8	20
26	Drosophila HP1c isoform interacts with the zinc-finger proteins WOC and Relative-of-WOC to regulate gene expression. Genes and Development, 2008, 22, 3007-3023.	5.9	62
27	Characterization of new regulatory elements within the Drosophila bithorax complex. Nucleic Acids Research, 2008, 36, 6926-6933.	14.5	35
28	Characterization of Drosophila melanogaster JmjC+N histone demethylases. Nucleic Acids Research, 2008, 36, 2852-2863.	14.5	58
29	RNA Is an Integral Component of Chromatin that Contributes to Its Structural Organization. PLoS ONE, 2007, 2, e1182.	2.5	94
30	Drosophila dSAP18 is a nuclear protein that associates with chromosomes and the nuclear matrix, and interacts with pinin, a protein factor involved in RNA splicing. Chromosome Research, 2006, 14, 515-526.	2.2	13
31	Proteolysis restricts localization of CID, the centromere-specific histone H3 variant of Drosophila, to centromeres. Nucleic Acids Research, 2006, 34, 6247-6255.	14.5	117
32	The Multi-KH Domain Protein of Saccharomyces cerevisiae Scp160p Contributes to the Regulation of Telomeric Silencing. Journal of Biological Chemistry, 2006, 281, 18227-18235.	3.4	15
33	dSAP18 and dHDAC1 contribute to the functional regulation of the Drosophila Fab-7 element. Nucleic Acids Research, 2005, 33, 4857-4864.	14.5	12
34	The GAGA Protein of Drosophila is Phosphorylated by CK2. Journal of Molecular Biology, 2005, 351, 562-572.	4.2	16
35	Repression by TTK69 of GAGA-mediated Activation Occurs in the Absence of TTK69 Binding to DNA and Solely Requires the Contribution of the POZ/BTB Domain of TTK69. Journal of Biological Chemistry, 2004, 279, 9725-9732.	3.4	18
36	Drosophila DDP1, a Multi-KH-Domain Protein, Contributes to Centromeric Silencing and Chromosome Segregation. Current Biology, 2004, 14, 1611-1620.	3.9	45

#	Article	IF	CITATIONS
37	Analysing the contribution of nucleic acids to the structure and properties of centric heterochromatin. Genetica, 2003, 117, 117-125.	1.1	4
38	Functional characterization of the human phosphodiesterase 7A1 promoter. Biochemical Journal, 2003, 373, 835-843.	3.7	21
39	Properties of triple helices formed by parallel-stranded hairpins containing 8-aminopurines. Nucleic Acids Research, 2002, 30, 2609-2619.	14.5	39
40	The Drosophila transcription factor tramtrack (TTK) interacts with Trithorax-like (GAGA) and represses GAGA-mediated activation. Nucleic Acids Research, 2002, 30, 4406-4413.	14.5	44
41	The GAGA factor ofDrosophilainteracts with SAP18, a Sin3â€associated polypeptide. EMBO Reports, 2000, 1, 253-259.	4.5	58
42	d(GAmiddle dotTC)n microsatellite DNA sequences enhance homologous DNA recombination in SV40 minichromosomes. Nucleic Acids Research, 2000, 28, 4617-4622.	14.5	22
43	DDP1, a Heterochromatin-Associated Multi-KH-Domain Protein of Drosophila melanogaster , Interacts Specifically with Centromeric Satellite DNA Sequences. Molecular and Cellular Biology, 2000, 20, 3860-3869.	2.3	38
44	Functional Mapping of the GAGA Factor Assigns Its Transcriptional Activity to the C-terminal Glutamine-rich Domain. Journal of Biological Chemistry, 2000, 275, 19461-19468.	3.4	32
45	Benzyl Derivatives of 2,1,3-Benzo- and Benzothieno[3,2-a]thiadiazine 2,2-Dioxides:  First Phosphodiesterase 7 Inhibitors. Journal of Medicinal Chemistry, 2000, 43, 683-689.	6.4	74
46	The N-terminal POZ Domain of GAGA Mediates the Formation of Oligomers That Bind DNA with High Affinity and Specificity. Journal of Biological Chemistry, 1999, 274, 16461-16469.	3.4	95
47	The identification of nuclear proteins that bind the homopyrimidine strand of d(GATC)n DNA sequences, but not the homopurine strand. Nucleic Acids Research, 1999, 27, 3267-3275.	14.5	12
48	Crystal structure of a DNA Holliday junction. Nature Structural Biology, 1999, 6, 913-917.	9.7	196
49	DDP1, a single-stranded nucleic acid-binding protein of Drosophila, associates with pericentric heterochromatin and is functionally homologous to the yeast Scp160p, which is involved in the control of cell ploidy. EMBO Journal, 1999, 18, 3820-3833.	7.8	68
50	The formation of triple-stranded DNA prevents spontaneous branch-migration. Journal of Molecular Biology, 1999, 294, 851-857.	4.2	11
51	The Interaction of Zinc(II) Ions with Antiparallel-Stranded d(GA) _n DNA Homoduplexes. Journal of Biomolecular Structure and Dynamics, 1998, 16, 243-251.	3.5	5
52	Tandem 5′-GA:GA-3′ mismatches account for the high stability of the fold-back structures formed by the centromeric Drosophila dodeca-satellite 1 1Edited by I. Tinoco. Journal of Molecular Biology, 1998, 277, 757-762.	4.2	23
53	Telomeric interactions result in the formation of intramolecular circles behaving as topologically constrained. Journal of Molecular Biology, 1998, 283, 1-7.	4.2	3
54	The GAGA Factor of Drosophila Binds Triple-stranded DNA. Journal of Biological Chemistry, 1998, 273, 24640-24648.	3.4	41

#	Article	IF	CITATIONS
55	Structural Polymorphism of Homopurine DNA Sequences. d(GGA)nand d(GGGA)nRepeats Form Intramolecular Hairpins Stabilized by Different Base-Pairing Interactionsâ€. Biochemistry, 1996, 35, 13125-13135.	2.5	32
56	Influence of Elsamicin A on the Activity of Mammalian Topoisomerase lâ€. Biochemistry, 1996, 35, 11177-11182.	2.5	9
57	Formation of Triple-stranded DNA at d(GA·TC) Sequences Prevents Nucleosome Assembly and Is Hindered by Nucleosomes. Journal of Biological Chemistry, 1996, 271, 31807-31812.	3.4	51
58	Through-bond correlation of adenine H2 and H8 protons in unlabeled DNA fragments by HMBC spectroscopy. Journal of Biomolecular NMR, 1996, 8, 207-212.	2.8	35
59	Preparation of Oligonucleotides Containing 5-Bromouracil and 5-Methylcytidine Nucleosides & Nucleotides, 1996, 15, 907-921.	0.5	10
60	TBP binds the transcriptionally inactive TA5 sequence but the resulting complex is not efficiently recognised by TFIIB and TFIIA. Nucleic Acids Research, 1996, 24, 2950-2958.	14.5	25
61	Zinc(II) ions selectively interact with DNA sequences present at the TFIIIA binding site of the Xenopus5S-RNA gene. Nucleic Acids Research, 1995, 23, 2464-2471.	14.5	15
62	Intramolecular TAT triplex in (dA) ₅₈ .(dT) ₅₈ . Influence of ions. Journal of Biomolecular Structure and Dynamics, 1995, 13, 29-46.	3.5	6
63	Divalent Zinc Cations Induce the Formation of Two Distinct Homoduplexes of a d(GA)20 DNA Sequence. Biochemistry, 1995, 34, 14408-14415.	2.5	27
64	Centromeric dodeca-satellite DNA sequences form fold-back structures. Journal of Molecular Biology, 1995, 245, 8-21.	4.2	48
65	Structural characterization of intrinsically curved AT-rich DNA sequences. Nucleic Acids Research, 1994, 22, 3671-3680.	14.5	15
66	Characterization of the Structural Conformation Adopted by (TTAGGG)nTelomeric DNA Repeats of Different Length in Closed Circular DNA. Journal of Biomolecular Structure and Dynamics, 1994, 12, 79-90.	3.5	8
67	Characterization of the Zinc-induced Structural Transition to *H-DNA at a d(GA·CT)22 Sequence. Journal of Molecular Biology, 1993, 230, 966-978.	4.2	30
68	Structural Polymorphism of d(GA · TC)n DNA Sequences. Journal of Molecular Biology, 1993, 233, 671-681.	4.2	31
69	The effect of zinc on the secondary structure of d(GA·TC)nDNA sequences of different length: a model for the formation *H-DNA. Nucleic Acids Research, 1993, 21, 2557-2562.	14.5	30
70	SV40 recombinants carrying a d(CT · GA)22 sequence show increased genomic instability. Gene, 1991, 108, 269-274.	2.2	13
71	A new ionizable chromophore of 1,4-bis(alkylamino)benzo[g]phthalazine which interacts with DNA by intercalation. Journal of Medicinal Chemistry, 1991, 34, 82-86.	6.4	21
72	Nuclease sensitivity of a maize HRGP gene in chromatin and in naked DNA. Plant Science, 1991, 78, 225-230.	3.6	7

#	Article	IF	CITATIONS
73	Identification of sequence elements contributing to the inrinsic curvature of the mouse satellite DNA repeat. Nucleic Acids Research, 1991, 19, 5639-5644.	14.5	14
74	The Effect of the Simple Repeating d(CG.GC)n, d(CA.GT)n, and d(A.T)nDNA Sequences on the Nucleosomal Organization of SV40 Minichromosomes. DNA and Cell Biology, 1991, 10, 751-756.	1.9	2
75	Determination of the DNA conformation of the simian virus 40 (SV40) enhancer in SV40 minichromosomes. FEBS Journal, 1990, 188, 269-273.	0.2	1
76	DNA-sequence and metal-ion specificity of the formation of*H-DNA. Nucleic Acids Research, 1990, 18, 4067-4067.	14.5	64
77	Detection and molecular cloning of highly repeated DNA in the sea cucumber sperm. Gene, 1989, 80, 57-64.	2.2	10
78	In vivo assessment of the Z-DNA-forming potential of d(CA · GT)n and d(CG · GC)n sequences cloned into SV40 minichromosomes. Journal of Molecular Biology, 1989, 208, 537-549.	4.2	17
79	Supercoiled induced transition to the Z-DNA conformation affects the ability of a d(CG/GC)12sequence to be organized into nucleosome-cores. Nucleic Acids Research, 1987, 15, 8899-8918.	14.5	18
80	The interaction of the histone H1-related protein φO with chromatin. Biophysical Chemistry, 1987, 28, 51-57.	2.8	6
81	The obtention of simian virus 40 recombinants carrying d(CG . GC)n, d(CA . GT)n and d(CT . GA)n sequences. Stability of the inserted simple repeating sequences. FEBS Journal, 1987, 167, 489-492.	0.2	15
82	Condensation of DNA by the C-terminal domain of histone H1 A circular dichroism study. Biophysical Chemistry, 1985, 22, 125-129.	2.8	42
83	Anomalous nuclease digestion of Holothuria, sperm chromatin containing histone H1 variants. FEBS Journal, 1985, 148, 529-532.	0.2	7
84	Solid-state conformation of some basic sequential polypeptides. Biopolymers, 1985, 24, 1801-1808.	2.4	5
85	Interaction of DNA with lysine-rich polypeptides and proteins. Journal of Molecular Biology, 1985, 185, 371-387.	4.2	23
86	Isolation of Z-DNA binding proteins from SV40 minichromosomes: evidence for binding to the viral control region. Cell, 1985, 41, 365-374.	28.9	77
87	Heterogeneity of the histone-containing chromatin in sea cucumber spermatozoa. Experimental Cell Research, 1983, 148, 331-344.	2.6	14
88	Stabilization and Detection of Natural Left-Handed Z-DNA. Journal of Biomolecular Structure and Dynamics, 1983, 1, 1-19.	3.5	27
89	Structural organization of sperm chromatin from the fish Carassius auratus. Experimental Cell Research, 1982, 137, 47-53.	2.6	41
90	Isolation of Drosophila proteins that bind selectively to left-handed Z-DNA Proceedings of the National Academy of Sciences of the United States of America, 1982, 79, 7729-7733.	7.1	122

#	Article	IF	CITATIONS
91	Aggregation of mono- and dinucleosomes into chromatin-like fibers. Chromosoma, 1982, 87, 437-445.	2.2	16
92	Supranucleosomal organization of chromatin. Chromosoma, 1982, 85, 251-260.	2.2	24
93	Structural organization of calf thymus chromatin depleted of histone H1 by acidic treatment. FEBS Letters, 1981, 133, 67-71.	2.8	3
94	Organization of nucleosomes and spacer DNA in chromatin fibres. International Journal of Biological Macromolecules, 1980, 2, 81-92.	7.5	29