Kenichi Oyaizu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6426981/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toward Flexible Batteries. Science, 2008, 319, 737-738.	6.0	1,017
2	Radical Polymers for Organic Electronic Devices: A Radical Departure from Conjugated Polymers?. Advanced Materials, 2009, 21, 2339-2344.	11.1	417
3	Emerging Nâ€Type Redoxâ€Active Radical Polymer for a Totally Organic Polymerâ€Based Rechargeable Battery. Advanced Materials, 2009, 21, 1627-1630.	11.1	360
4	Organic Radical Battery Approaching Practical Use. Chemistry Letters, 2011, 40, 222-227.	0.7	254
5	Modifying Carbon Particles with Polypyrrole for Adsorption of Cobalt Ions as Electrocatatytic Site for Oxygen Reduction. Chemistry of Materials, 2005, 17, 4278-4281.	3.2	226
6	p―and nâ€Type Bipolar Redoxâ€Active Radical Polymer: Toward Totally Organic Polymerâ€Based Rechargeable Devices with Variable Configuration. Advanced Materials, 2011, 23, 751-754.	11.1	226
7	Nernstian Adsorbate-like Bulk Layer of Organic Radical Polymers for High-Density Charge Storage Purposes. Journal of the American Chemical Society, 2008, 130, 14459-14461.	6.6	209
8	Aqueous Electrochemistry of Poly(vinylanthraquinone) for Anode-Active Materials in High-Density and Rechargeable Polymer/Air Batteries. Journal of the American Chemical Society, 2011, 133, 19839-19843.	6.6	206
9	Electron-Transfer Kinetics of Nitroxide Radicals as an Electrode-Active Material. Bulletin of the Chemical Society of Japan, 2004, 77, 2203-2204.	2.0	171
10	Synthesis and Properties of Novel Sulfonated Arylene Ether/Fluorinated Alkane Copolymers. Macromolecules, 2001, 34, 2065-2071.	2.2	169
11	An ultrafast chargeable polymer electrode based on the combination of nitroxide radical and aqueous electrolyte. Chemical Communications, 2009, , 836-838.	2.2	164
12	Battery-Inspired, Nonvolatile, and Rewritable Memory Architecture:  a Radical Polymer-Based Organic Device. Journal of the American Chemical Society, 2007, 129, 14128-14129.	6.6	158
13	A TEMPO-substituted polyacrylamide as a new cathode material: an organic rechargeable device composed of polymer electrodes and aqueous electrolyte. Green Chemistry, 2010, 12, 1573.	4.6	153
14	Synthesis and Characterization of Radical-Bearing Polyethers as an Electrode-Active Material for Organic Secondary Batteries. Macromolecules, 2008, 41, 6646-6652.	2.2	145
15	Diffusion-Cooperative Model for Charge Transport by Redox-Active Nonconjugated Polymers. Journal of the American Chemical Society, 2018, 140, 1049-1056.	6.6	130
16	Synthesis and Charge Transport Properties of Redox-Active Nitroxide Polyethers with Large Site Density. Macromolecules, 2010, 43, 10382-10389.	2.2	121
17	An Aqueous, Electrolyteâ€Type, Rechargeable Device Utilizing a Hydrophilic Radical Polymerâ€Cathode. Macromolecular Chemistry and Physics, 2009, 210, 1989-1995.	1.1	116
18	Oxovanadium(III–V) mononuclear complexes and their linear assemblies bearing tetradentate Schiff base ligands: structure and reactivity as multielectron redox catalysts. Coordination Chemistry Reviews, 2003, 237, 213-228.	9.5	106

#	Article	IF	CITATIONS
19	Radical Polymerâ€Wrapped SWNTs at a Molecular Level: Highâ€Rate Redox Mediation Through a Percolation Network for a Transparent Chargeâ€&torage Material. Advanced Materials, 2011, 23, 4440-4443.	11.1	103
20	Polyviologen Hydrogel with High-Rate Capability for Anodes toward an Aqueous Electrolyte-Type and Organic-Based Rechargeable Device. ACS Applied Materials & Interfaces, 2013, 5, 1355-1361.	4.0	102
21	Linear Ladder-Type π-Conjugated Polymers Composed of Fused Thiophene Ring Systems. Macromolecules, 2004, 37, 1257-1270.	2.2	98
22	Catalytic Cycle of a Divanadium Complex with Salen Ligands in O2Reduction:Â Two-Electron Redox Process of the Dinuclear Center (salen =N,Nâ€~-Ethylenebis(salicylideneamine)). Journal of the American Chemical Society, 1996, 118, 12665-12672.	6.6	95
23	Nitroxide Radicals as Highly Reactive Redox Mediators in Dyeâ€ S ensitized Solar Cells. Angewandte Chemie - International Edition, 2012, 51, 10177-10180.	7.2	93
24	Structural Implication of Oxoammonium Cations for Reversible Organic One-electron Redox Reaction to Nitroxide Radicals. Chemistry Letters, 2007, 36, 866-867.	0.7	92
25	Expanding the Dimensionality of Polymers Populated with Organic Robust Radicals toward Flow Cell Application: Synthesis of TEMPO-Crowded Bottlebrush Polymers Using Anionic Polymerization and ROMP. Macromolecules, 2014, 47, 8611-8617.	2.2	91
26	Synthesis of Pendant Nitronyl Nitroxide Radical-Containing Poly(norbornene)s as Ambipolar Electrode-Active Materials. Macromolecules, 2013, 46, 1361-1367.	2.2	87
27	Electrochemical Investigations of the Complexes Resulting from the Acid-Promoted Deoxygenation and Dimerization of (N,N'-Ethylenebis(salicylideneaminato))oxovanadium(IV). Inorganic Chemistry, 1994, 33, 1056-1063.	1.9	85
28	Redox-active polyimide/carbon nanocomposite electrodes for reversible charge storage at negative potentials: expanding the functional horizon of polyimides. Journal of Materials Chemistry, 2010, 20, 5404.	6.7	83
29	Environmentally benign batteries based on organic radical polymers. Pure and Applied Chemistry, 2009, 81, 1961-1970.	0.9	79
30	High-Density and Robust Charge Storage with Poly(anthraquinone-substituted norbornene) for Organic Electrode-Active Materials in Polymer–Air Secondary Batteries. Macromolecules, 2015, 48, 2429-2434.	2.2	78
31	Totally Organic Polymer-Based Electrochromic Cell Using TEMPO-Substituted Polynorbornene as a Counter Electrode-Active Material. Polymer Journal, 2008, 40, 763-767.	1.3	73
32	A Quasi-Solid State DSSC with 10.1% Efficiency through Molecular Design of the Charge-Separation and -Transport. Scientific Reports, 2016, 6, 28022.	1.6	73
33	An Ultrahigh Output Rechargeable Electrode of a Hydrophilic Radical Polymer/Nanocarbon Hybrid with an Exceptionally Large Current Density beyond 1 A cm ^{â^2} . Advanced Materials, 2018, 30, e1800900.	11.1	73
34	Cationic polysulfonium membrane as separator in zinc–air cell. Journal of Power Sources, 2003, 115, 149-152.	4.0	70
35	Micellar Cobaltporphyrin Nanorods in Alcohols. Journal of the American Chemical Society, 2004, 126, 11128-11129.	6.6	69
36	Nitroxide radical polymers for emerging plastic energy storage and organic electronics: fundamentals, materials, and applications. Materials Horizons, 2021, 8, 803-829.	6.4	69

#	Article	IF	CITATIONS
37	Oxovanadium-catalyzed oxidative polymerization of diphenyl disulfides with oxygen. Macromolecules, 1993, 26, 3432-3437.	2.2	64
38	Functionalization of poly(4 hloromethylstyrene) with anthraquinone pendants for organic anodeâ€active materials. Polymers for Advanced Technologies, 2011, 22, 1242-1247.	1.6	62
39	Efficient charge transport of a radical polyether/SWCNT composite electrode for an organic radical battery with high charge-storage density. RSC Advances, 2015, 5, 15448-15452.	1.7	60
40	Nitroxide Radicals for Highly Efficient Redox Mediation in Dye-sensitized Solar Cells. Chemistry Letters, 2010, 39, 464-465.	0.7	59
41	Al-Assisted Exploration of Superionic Glass-Type Li ⁺ Conductors with Aromatic Structures. Journal of the American Chemical Society, 2020, 142, 3301-3305.	6.6	59
42	Multielectron Redox Process of Vanadium Complexes in Oxidation of Low-Coordinate Vanadium(III) to Oxovanadium(V) with Dioxygen. Inorganic Chemistry, 1996, 35, 6634-6635.	1.9	58
43	Catalysis of the Electroreduction of O2 to H2O by Vanadiumâ^'salen Complexes in Acidified Dichloromethane. Inorganic Chemistry, 1999, 38, 3704-3708.	1.9	57
44	Improving Charge/Discharge Properties of Radical Polymer Electrodes Influenced Strongly by Current Collector/Carbon Fiber Interface. Journal of Physical Chemistry B, 2010, 114, 8335-8340.	1.2	57
45	Anionic Polymerization of 4-Methacryloyloxy-TEMPO Using an MMA-Capped Initiator. ACS Macro Letters, 2014, 3, 240-243.	2.3	57
46	Dual Dopable Poly(phenylacetylene) with Nitronyl Nitroxide Pendants for Reversible Ambipolar Charging and Discharging. Chemistry Letters, 2011, 40, 184-185.	0.7	50
47	Robust and efficient charge storage by uniform grafting of TEMPO radical polymer around multi-walled carbon nanotubes. Journal of Materials Chemistry A, 2013, 1, 2999.	5.2	46
48	Poly(vinyldibenzothiophenesulfone): Its Redox Capability at Very Negative Potential Toward an Allâ€Organic Rechargeable Device with Highâ€Energy Density. Advanced Functional Materials, 2018, 28, 1805858.	7.8	45
49	Electrochemical sensor for superoxide anion radical using polymeric iron porphyrin complexes containing axial 1-methylimidazole ligand as cytochromec mimics. Polymers for Advanced Technologies, 2005, 16, 287-292.	1.6	44
50	Electrolyte anion-assisted charge transportation in poly(oxoammonium cation/nitroxyl radical) redox gels. Journal of Materials Chemistry, 2012, 22, 13669.	6.7	42
51	Self-doping inspired zwitterionic pendant design of radical polymers toward a rocking-chair-type organic cathode-active material. Journal of Materials Chemistry A, 2013, 1, 1326-1333.	5.2	42
52	Full Organic Aqueous Battery Based on TEMPO Small Molecule with Millimeter-Thick Electrodes. Chemistry of Materials, 2019, 31, 1869-1880.	3.2	42
53	Synthetic Routes to Polyheteroacenes:Â Characterization of a Heterocyclic Ladder Polymer Containing Phenoxathiinium-type Building Blocks. Macromolecules, 2002, 35, 67-78.	2.2	41
54	Electrochemical Detection and Sensing of Reactive Oxygen Species. Current Organic Chemistry, 2005, 9, 1685-1697.	0.9	41

#	Article	IF	CITATIONS
55	Hydrophilic Organic Redox-Active Polymer Nanoparticles for Higher Energy Density Flow Batteries. ACS Applied Polymer Materials, 2019, 1, 188-196.	2.0	40
56	High-Spin Polyphenoxyl Based on Poly(1,4-phenyleneethynylene). Journal of Organic Chemistry, 1999, 64, 7129-7134.	1.7	39
57	First Synthesis of High Molecular Weight Poly(2,6-difluoro-1,4-phenylene oxide) by Oxidative Polymerization. Macromolecules, 2000, 33, 5766-5769.	2.2	39
58	Charge–Discharge with Rocking-Chair-Type Li+ Migration Characteristics in a Zwitterionic Radical Copolymer Composed of TEMPO and Trifluoromethanesulfonylimide with Carbonate Electrolytes for a High-Rate Li-Ion Battery. Macromolecules, 2017, 50, 1950-1958.	2.2	39
59	Low ost, Organic Lightâ€Emitting Electrochemical Cells with Massâ€Producible Nanoimprinted Substrates Made Using Rollâ€ŧoâ€Roll Methods. Advanced Materials Technologies, 2017, 2, 1600293.	3.0	38
60	Synthesis of Reactive Functionalized Oligo(p-phenylene sulfide)s. Macromolecules, 1995, 28, 409-416.	2.2	37
61	Reversible Reduction of the TEMPO Radical: One Step Closer to an All-Organic Redox Flow Battery. ACS Sustainable Chemistry and Engineering, 2020, 8, 17988-17996.	3.2	37
62	Redox equilibrium of a zwitterionic radical polymer in a non-aqueous electrolyte as a novel Li+ host material in a Li-ion battery. Journal of Materials Chemistry A, 2013, 1, 9608.	5.2	36
63	Designing current collector/composite electrode interfacial structure of organic radical battery. Journal of Power Sources, 2011, 196, 7806-7811.	4.0	35
64	Rechargeable proton exchange membrane fuel cell containing an intrinsic hydrogen storage polymer. Communications Chemistry, 2020, 3, .	2.0	35
65	Synthesis of amphiphilic block copolymers bearing stable nitroxyl radicals. Journal of Polymer Science Part A, 2010, 48, 5404-5410.	2.5	33
66	TEMPO-substituted polyacrylamide for an aqueous electrolyte-typed and organic-based rechargeable device. Science China Chemistry, 2012, 55, 822-829.	4.2	32
67	Synthesis of Lithium-ion Conducting Polymers Designed by Machine Learning-based Prediction and Screening. Chemistry Letters, 2019, 48, 130-132.	0.7	32
68	Liposomal Surface-Loading of Water-Soluble Cationic Iron(III) Porphyrins as Anticancer Drugs. Molecular Pharmaceutics, 2004, 1, 387-389.	2.3	31
69	Structure and redox properties of electropolymerized film obtained from ironmeso-tetrakis(3-thienyl)porphyrin. Polymers for Advanced Technologies, 2005, 16, 616-621.	1.6	31
70	Highly Stable Gold(III) Complex with a Hydantoin Ligand in Alkaline Media. Inorganic Chemistry, 2005, 44, 6915-6917.	1.9	31
71	Facilitated oxygen transport through a Nafion membrane containing cobaltporphyrin as a fixed oxygen carrier. Polymer, 2008, 49, 5659-5664.	1.8	31
72	A Novel Decavanadium(V) Cluster with a Chiral Framework: [(OV)10(μ2-O)9(μ3-O)3(C5H7O2)6] Having an ApproximateC3Symmetry. Journal of the American Chemical Society, 1998, 120, 237-238.	6.6	30

#	Article	IF	CITATIONS
73	A μ-oxo diiron(III) complex with a short Fe–Fe distance: crystal structure of (μ-oxo)bis[N,N′-o-phenylenebis(salicylideneiminato)iron(III)]. Inorganica Chimica Acta, 2001, 321, 205-208.	1.2	30
74	Synthesis of Poly(oxoammonium salt)s and Their Electrical Properties in the Organic Thin Film Device. Chemistry Letters, 2009, 38, 1160-1161.	0.7	30
75	Synthesis and Charge–Discharge Properties of Organometallic CoÂpolymers of Ferrocene and TriphenÂylamine as Cathode Active Materials for Organicâ€Battery Applications. European Journal of Inorganic Chemistry, 2016, 2016, 1030-1035.	1.0	30
76	Characterization of PEDOT-Quinone conducting redox polymers in water-in-salt electrolytes for safe and high-energy Li-ion batteries. Electrochemistry Communications, 2019, 105, 106489.	2.3	30
77	Ultrathin and Stretchable Rechargeable Devices with Organic Polymer Nanosheets Conformable to Skin Surface. Small, 2019, 15, 1805296.	5.2	30
78	Alkylsulfonioarylene and Thioarylene Polymers Derived from Sulfonium Electrophiles. Bulletin of the Chemical Society of Japan, 2003, 76, 15-47.	2.0	29
79	Oxygen-enriched electrolytes based on perfluorochemicals for high-capacity lithium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 10845-10850.	5.2	29
80	Facile charge transport and storage by a TEMPO-populated redox mediating polymer integrated with polyaniline as electrical conducting path. Polymer Journal, 2015, 47, 212-219.	1.3	29
81	Poly(dihydroxybenzoquinone): its high-density and robust charge storage capability in rechargeable acidic polymer–air batteries. Chemical Communications, 2020, 56, 4055-4058.	2.2	29
82	Electrochemical Synthesis of a Polypyrrole Thin Film with Supercritical Carbon Dioxide as a Solvent. Langmuir, 2005, 21, 12303-12308.	1.6	28
83	Nanolithographic patterning via electrochemical oxidation of stable poly(nitroxide radical)s to poly(oxoammonium salt)s. Journal of Materials Chemistry, 2010, 20, 9616.	6.7	28
84	A ketone/alcohol polymer for cycle of electrolytic hydrogen-fixing with water and releasing under mild conditions. Nature Communications, 2016, 7, 13032.	5.8	28
85	Coordination of BF4- to Oxovanadium(V) Complexes, Evidenced by the Redox Potential of Oxovanadium(IV/V) Couples in CH2Cl2. Inorganic Chemistry, 2003, 42, 1070-1075.	1.9	27
86	TEMPO/Viologen Electrochemical Heterojunction for Diffusion-Controlled Redox Mediation: A Highly Rectifying Bilayer-Sandwiched Device Based on Cross-Reaction at the Interface between Dissimilar Redox Polymers. ACS Applied Materials & Interfaces, 2014, 6, 4043-4049.	4.0	27
87	Metallopolyyne polymers with ferrocenyl pendant ligands as cathode-active materials for organic battery application. Journal of Organometallic Chemistry, 2016, 812, 51-55.	0.8	27
88	Nonconjugated Redox-Active Polymer Mediators for Rapid Electrocatalytic Charging of Lithium Metal Oxides. ACS Applied Energy Materials, 2019, 2, 6375-6382.	2.5	27
89	Toward Improved Performance of All-Organic Nitroxide Radical Batteries with Ionic Liquids: A Theoretical Perspective. ACS Sustainable Chemistry and Engineering, 2019, 7, 5367-5375.	3.2	27
90	Perovskite/TiO ₂ Interface Passivation Using Poly(vinylcarbazole) and Fullerene for the Photovoltaic Conversion Efficiency of 21%. ACS Applied Energy Materials, 2019, 2, 2848-2853.	2.5	27

#	Article	IF	CITATIONS
91	Depolymerization of Poly(2,6-dimethyl-1,4-phenylene oxide) under Oxidative Conditions. Chemistry - A European Journal, 2003, 9, 4240-4246.	1.7	26
92	Preparation of pH-sensitive liposomes retaining SOD mimic and their anticancer effect. Colloids and Surfaces B: Biointerfaces, 2008, 67, 54-58.	2.5	26
93	Supramolecular Organic Radical Gels Formed with 2,2,6,6-Tetramethylpiperidin-1-oxyl-Substituted Cyclohexanediamines: A Very Efficient Charge-Transporting and -Storable Soft Material. Chemistry of Materials, 2017, 29, 5942-5947.	3.2	26
94	Electroreduction of1¼-Oxo Iron(III) Porphyrins Adsorbed on an Electrode Leading to a Cofacial Geometry for the Iron(II) Complex: Unexpected Active Site for the Catalytic Reduction of O2to H2O. Bulletin of the Chemical Society of Japan, 2000, 73, 1153-1163.	2.0	25
95	Facile grafting-onto-preparation of block copolymers of TEMPO and glycidyl methacrylates on an oxide substrate as an electrode-active layer. Polymer, 2015, 68, 310-314.	1.8	25
96	Conducting Redox Polymer as a Robust Organic Electrodeâ€Active Material in Acidic Aqueous Electrolyte towards Polymer–Air Secondary Batteries. ChemSusChem, 2020, 13, 2280-2285.	3.6	25
97	Electrocatalysis for dioxygen reduction by a $\hat{1}$ 4-oxo decavanadium complex in alkaline medium and its application to a cathode catalyst in air batteries. Journal of Power Sources, 2004, 130, 286-290.	4.0	24
98	Emerging Organosulfonium Electrophiles as Unique Reagents for Carbon–Sulfur Bond Formation: Prospects in Synthetic Chemistry of Organosulfur Compounds. Chemistry Letters, 2016, 45, 102-109.	0.7	24
99	Electrochemical and Ferromagnetic Couplings in 4,4â€~,4â€~Ââ€~-(1,3,5-Benzenetriyl)tris(phenoxyl) Radical Formation. Journal of Organic Chemistry, 2001, 66, 1680-1685.	1.7	23
100	Ultrafast Charge/Discharge by a 99.9% Conventional Lithium Iron Phosphate Electrode Containing 0.1% Redox-Active Fluoflavin Polymer. ACS Energy Letters, 2020, 5, 1712-1717.	8.8	23
101	Catalytic behavior of a μ-oxo dimanganese(III) octaethylporphyrin in O2 reduction. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3393-3399.	1.7	22
102	Crystal structure and reactivity of a five-coordinate chloroiron(III) complex with a bulky tetradentate Schiff base ligand. Inorganica Chimica Acta, 2003, 355, 414-419.	1.2	22
103	Biodegradable and Electroactive TEMPO‣ubstituted Acrylamide/Lactide Copolymers. Macromolecular Bioscience, 2010, 10, 1203-1209.	2.1	22
104	Polymerization of lactic O-carboxylic anhydride using organometallic catalysts. Chinese Journal of Polymer Science (English Edition), 2011, 29, 197-202.	2.0	22
105	Redox-active Hydroxy-TEMPO Radical Immobilized in Nafion Layer for an Aqueous Electrolyte-based and Dye-sensitized Solar Cell. Chemistry Letters, 2014, 43, 480-482.	0.7	22
106	Integrating multiple materials science projects in a single neural network. Communications Materials, 2020, 1, .	2.9	22
107	Oxidative polymerization of pyrrole with a vanadium dinuclear complex as a two-electron redox catalyst. Journal of Electroanalytical Chemistry, 1997, 438, 167-171.	1.9	21
108	The First Oxovanadium Ring in [{OV(salen)}2(μ-F)][VO(salen)][BF4]·(CH2Cl2)xCrystals. Journal of the American Chemical Society, 2003, 125, 5630-5631.	6.6	21

Kenichi Oyaizu

#	Article	IF	CITATIONS
109	Reduction of 2,3,5-Triphenyl-2 <i>H</i> -tetrazolium Chloride in the Presence of Polyelectrolytes Containing 4-Styrenesulfonate Moieties. Journal of Physical Chemistry B, 2008, 112, 5350-5354.	1.2	21
110	Synthesis of Poly(TEMPOâ€Substituted Glycidyl Ether) by Utilizing <i>t</i> â€BuOK/18â€Crownâ€6 for an Organic Cathodeâ€Active Material. Macromolecular Symposia, 2015, 351, 90-96.	0.4	21
111	Metalâ€Free, Solidâ€State, Paperlike Rechargeable Batteries Consisting of Redoxâ€Active Polyethers. ChemSusChem, 2020, 13, 2443-2448.	3.6	21
112	Unravelling kinetic and mass transport effects on two-electron storage in radical polymer batteries. Journal of Materials Chemistry A, 2021, 9, 13071-13079.	5.2	21
113	Acid-Promoted Electron Transfer to Facilitate Oxidative Polymerization of Diaryl Disulfides. Bulletin of the Chemical Society of Japan, 1994, 67, 1456-1461.	2.0	20
114	(μ-Peroxo)bis[pyridine(phthalocyaninato)iron(III)] as a convenient catalyst for the four-electron reduction of dioxygen. Journal of the Chemical Society, Faraday Transactions, 1998, 94, 3737-3742.	1.7	20
115	Antiâ€Oxidizing Radical Polymerâ€Incorporated Perovskite Layers and their Photovoltaic Characteristics in Solar Cells. ChemSusChem, 2019, 12, 5207-5212.	3.6	20
116	Structure and redox properties of a novel decavanadium cluster [(Vĩ`O)10(μ2-O)9(μ3-O)3(C5H7O2)6] in dichloromethane. Journal of Electroanalytical Chemistry, 2001, 498, 136-141.	1.9	19
117	Synthesis and Electrochemistry of Schiff Base Cobalt(III) Complexes and Their Catalytic Activity for Copolymerization of Epoxide and Carbon Dioxide. Macromolecular Chemistry and Physics, 2010, 211, 669-676.	1.1	19
118	Enhanced bimolecular exchange reaction through programmed coordination of a five-coordinate oxovanadium complex for efficient redox mediation in dye-sensitized solar cells. Dalton Transactions, 2013, 42, 16090.	1.6	19
119	BODIPY-Sensitized Photocharging of Anthraquinone-Populated Polymer Layers for Organic Photorechargeable Air Battery. Journal of Inorganic and Organometallic Polymers and Materials, 2013, 23, 243-250.	1.9	19
120	Dynamic switching of ionic conductivity by cooperative interaction of polyviologen and liquid crystals for efficient charge storage. Journal of Materials Chemistry A, 2016, 4, 3249-3252.	5.2	19
121	Polymerâ€Based Whiteâ€Lightâ€Emitting Electrochemical Cells with Very High Colorâ€Rendering Index Based on Blueâ€Green Fluorescent Polyfluorenes and Redâ€Phosphorescent Iridium Complexes. ChemPlusChem, 2018, 83, 463-469.	1.3	19
122	Crystal structures of dimeric manganese(III) complexes of tetradentate Schiff-base ligands with ancillary axial donors. Inorganica Chimica Acta, 2000, 305, 184-188.	1.2	18
123	Polymerization of Methyl Phenyl Sulfoxide under Acidic Conditions:Â Synthesis and X-ray Structure Analysis of a Phenylene Sulfonium Polymer. Macromolecules, 2001, 34, 1172-1179.	2.2	18
124	Low-Energy Driven Electrochromic Devices Using Radical Polymer as Transparent Counter Electroactive Material. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2007, 20, 29-34.	0.1	18
125	Reversible Hydrogen Releasing and Fixing with Poly(Vinylfluorenol) through a Mild Ir atalyzed Dehydrogenation and Electrochemical Hydrogenation. Macromolecular Rapid Communications, 2019, 40, e1900139.	2.0	18
126	Synthesis and Characterization of Nickel Dithiocarbamate Complexes Bearing Ferrocenyl Subunits. Chemistry - A European Journal, 1999, 5, 3193-3201.	1.7	17

#	Article	IF	CITATIONS
127	Copper-Catalyzed Oxidative Coupling of 2,4,6-Trimethylphenol with Oxygen. Chemistry Letters, 2000, 29, 1318-1319.	0.7	17
128	Conducting Redox Polymer as Organic Anode Material for Polymerâ€Manganese Secondary Batteries. ChemElectroChem, 2020, 7, 3336-3340.	1.7	17
129	Preparation of Poly(thio-1,4-phenylene)s by Oxygen-Oxidative Polymerization of Diaryl Disulfides. Bulletin of the Chemical Society of Japan, 1994, 67, 251-256.	2.0	16
130	Palladium-catalyzed synthesis of oligo(methylthio)aniline and conversion to polyacene-type electrolytes bearing phenothiazinium repeating units. Macromolecular Chemistry and Physics, 2002, 203, 1328-1336.	1.1	16
131	Porphyrin-Dye Sensitized Solar Cell Utilizing Nitroxide Radical Mediator. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2010, 23, 353-355.	0.1	16
132	Polyviologen as the charge-storage electrode of an aqueous electrolyte- and organic-based dye-sensitized solar cell. Polymer, 2015, 68, 353-357.	1.8	16
133	Charge- and Proton-Storage Capability of Naphthoquinone-Substituted Poly(allylamine) as Electrode-Active Material for Polymer–Air Secondary Batteries. ACS Applied Energy Materials, 2020, 3, 12019-12024.	2.5	16
134	Electrocatalytic Reduction of Dioxygen to Water by a Carbon Electrode Coated with (μ-Oxo)bis[(meso-tetraphenylporphyrinato)iron(III)]: a Convenient Template for Cofacially Oriented Iron(II) Porphyrins. Chemistry Letters, 1998, 27, 233-234.	0.7	15
135	Molecular Structure of aî¼-Oxo Chromium–Iron Complex: Rare Example of a Crystallographically Characterizedî¼-Oxo Heterometallic Porphyrin. Bulletin of the Chemical Society of Japan, 1999, 72, 1781-1784.	2.0	15
136	Cobaltporphyrin-adsorbed carbon black: highly efficient electrocatalysts for oxygen reduction. Polymers for Advanced Technologies, 2005, 16, 702-705.	1.6	15
137	A rechargeable battery based on hydrophilic radical polymer electrode and its green assessment. Green Chemistry Letters and Reviews, 2009, 2, 169-174.	2.1	15
138	Ag nanocluster-based color converters for white organic light-emitting devices. Journal of Applied Physics, 2017, 122, .	1.1	15
139	Hole-transporting diketopyrrolopyrrole-thiophene polymers and their additive-free application for a perovskite-type solar cell with an efficiency of 16.3%. Polymer Journal, 2019, 51, 91-96.	1.3	15
140	Hydrophilic Anthraquinone-Substituted Polymer: Its Environmentally Friendly Preparation and Efficient Charge/Proton-Storage Capability for Polymer–Air Secondary Batteries. Macromolecules, 2021, 54, 4854-4859.	2.2	15
141	Tackling the Challenge of a Huge Materials Science Search Space with Quantumâ€Inspired Annealing. Advanced Intelligent Systems, 2021, 3, 2000209.	3.3	15
142	Poly(norbornyl-NDIs) as a potential cathode-active material in rechargeable charge storage devices. RSC Advances, 2016, 6, 42911-42916.	1.7	14
143	Command Surface of Self-Organizing Structures by Radical Polymers with Cooperative Redox Reactivity. Journal of the American Chemical Society, 2017, 139, 13600-13603.	6.6	14
144	Polysulfonium as a new electrode-modifying polyelectrolyte. Journal of Electroanalytical Chemistry, 2001, 498, 232-236.	1.9	13

#	Article	IF	CITATIONS
145	Enhanced catalytic activity of oxovanadium complexes in oxidative polymerization of diphenyl disulfide. Polymer Chemistry, 2016, 7, 2087-2091.	1.9	13
146	High-color-rendering-index white polymer light-emitting electrochemical cells based on ionic host-guest systems: Utilization of blend films of blue-fluorescent cationic polyfluorenes and red-phosphorescent cationic iridium complexes. Organic Electronics, 2017, 51, 168-172.	1.4	13
147	Poly(diphenanthrenequinone-substituted norbornene) for Long Life and Efficient Lithium Battery Cathodes. Bulletin of the Chemical Society of Japan, 2018, 91, 721-727.	2.0	13
148	Reversible Hydrogen Fixation and Release under Mild Conditions by Poly(vinylquinoxaline). ACS Applied Polymer Materials, 2020, 2, 2756-2760.	2.0	13
149	Electrochemical characterization and thermodynamic analysis of TEMPO derivatives in ionic liquids. Physical Chemistry Chemical Physics, 2021, 23, 10205-10217.	1.3	13
150	SYNTHESIS AND THERMAL PROPERTIES OF A POLYSULFONIUM SALT WITH A COMB-LIKE STRUCTURE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 851-859.	1.2	12
151	Preparation of a tetraphenylporphyrinatocobalt(ii)-poly(3,4-azopyridylene) complex and its oxygen enrichment effect at an oxygen electrode. Journal of Materials Chemistry, 2004, 14, 3308.	6.7	12
152	pH-sensitive liposome retaining Fe-porphyrin as SOD mimic for novel anticancer drug delivery system. Polymers for Advanced Technologies, 2007, 18, 82-87.	1.6	12
153	Totally Organic-based Bendable Rechargeable Devices Composed of Hydrophilic Redox Polymers and Aqueous Electrolyte. Chemistry Letters, 2017, 46, 693-694.	0.7	12
154	TEMPOâ€Substituted Poly(ethylene sulfide) for Solidâ€State Electroâ€Chemical Charge Storage. Macromolecular Rapid Communications, 2021, 42, e2000607.	2.0	12
155	Generative Models for Extrapolation Prediction in Materials Informatics. ACS Omega, 2021, 6, 14566-14574.	1.6	12
156	Catechol End-Capped Poly(arylene sulfide) as a High-Refractive-Index "TiO ₂ /ZrO ₂ -Nanodispersible―Polymer. ACS Applied Polymer Materials, 2021, 3, 4495-4503.	2.0	12
157	Four-electron reduction of dioxygen catalyzed by a decavanadium complex. Inorganica Chimica Acta, 2003, 342, 316-318.	1.2	11
158	Redox Mediation through TEMPO-substituted Polymer with Nanogap Electrodes for Electrochemical Amplification. Chemistry Letters, 2017, 46, 647-650.	0.7	11
159	A PROXYLâ€Type Norbornene Polymer for Highâ€Voltage Cathodes in Lithium Batteries. Macromolecular Rapid Communications, 2021, 42, e2100374.	2.0	11
160	Surface-Modified Mesoporous Silicas as Recyclable Adsorbents of an Endocrine Disrupter, Bisphenol A. Journal of Nanoscience and Nanotechnology, 2006, 6, 1689-1694.	0.9	10
161	Electrocatalytic Activities for the Reduction of Oxygen of Carbon Particles Modified with Polypyrrole Including Various Metal Ions as Electrocatalytic Sites. Electrochemistry, 2007, 75, 800-806.	0.6	10
162	Poly(1,4-phenylene sulfide) (PPS) Synthesis via Oxidative Polymerization of Diphenyl Disulfide: Mechanistic Insight into the Selective Formation of 1,4-Thiophenylene Chain. Chemistry Letters, 2015, 44, 767-769.	0.7	10

#	Article	IF	CITATIONS
163	Electrochemical current rectification with cross reaction at a TEMPO/viologen-substituted polymer thin-layer heterojunction. RSC Advances, 2016, 6, 99195-99201.	1.7	10
164	Grafted radical polymer brush for surface-driven switching of chiral nematic liquid crystals. Polymer Journal, 2017, 49, 691-693.	1.3	10
165	Arylamine polymers prepared via facile paraldehyde addition condensation: an effective holeâ€ŧransporting material for perovskite solar cells. Polymer International, 2018, 67, 670-674.	1.6	10
166	Phenolic antioxidant-incorporated durable perovskite layers and their application for a solar cell. MRS Communications, 2020, 10, 312-316.	0.8	10
167	Designing Ultrahigh-Refractive-Index Amorphous Poly(phenylene sulfide)s Based on Dense Intermolecular Hydrogen-Bond Networks. Macromolecules, 2022, 55, 2252-2259.	2.2	10
168	Electroreduction of oxygen enriched in a [poly(ethyleneiminato)]cobalt(ii) layer. Journal of Materials Chemistry, 2002, 12, 3162-3166.	6.7	9
169	Oxovanadium(V) hydroxide with a tetradentate Schiff base ligand resulting from oxidation of oxovanadium(IV) with O2. Inorganica Chimica Acta, 2003, 353, 332-335.	1.2	9
170	Controlled Oxidation of Dextran for Evolution of Polyether Segment Bearing Pendant Carboxyl Groups for Corrosion Inhibition Applications. Polymer Journal, 2006, 38, 343-348.	1.3	9
171	Synthesis and characterization of a π-conjugated hybrid of oligothiophene and porphyrin. Journal of Polymer Science Part A, 2006, 44, 5403-5412.	2.5	9
172	Synthesis of Dimethyl-Substituted Polyviologen and Control of Charge Transport in Electrodes for High-Resolution Electrochromic Displays. Polymers, 2017, 9, 86.	2.0	9
173	Oxoammonium cation of 2,2,6,6-tetramethylpiperidin-1-oxyl: a very efficient dopant for hole-transporting triaryl amines in a perovskite solar cell. MRS Communications, 2018, 8, 122-126.	0.8	9
174	A Polymer Sheetâ€Based Hydrogen Carrier. European Journal of Organic Chemistry, 2020, 2020, 5876-5879.	1.2	9
175	Highly Selective Oxygen Transport through a Cobalt Porphyrin Liquid Membrane. Journal of Physical Chemistry B, 1997, 101, 5725-5729.	1.2	8
176	Oxidative Polymerization of Pyrrole Promoted by Four-Electron Transfer to O2: Catalysis of O2-Oxidation byl¼-Oxo Dinuclear Complexes with Macrocyclic Ligands. Macromolecular Chemistry and Physics, 2001, 202, 1273-1279.	1.1	8
177	Non-Cyanide Electroless Gold Plating Using Polyphenols as Reducing Agents. Journal of the Electrochemical Society, 2006, 153, C63.	1.3	8
178	Macromolecular Complexes Leading to Highâ€Performance Energy Devices. Macromolecular Symposia, 2012, 317-318, 248-258.	0.4	8
179	A hydrogen-storing quinaldine polymer: nickel-electrodeposition-assisted hydrogenation and subsequent hydrogen evolution. Polymer International, 2017, 66, 647-652.	1.6	8
180	Charge-Transfer Complexes for Solid-State Li+ Conduction. ACS Applied Electronic Materials, 2020, 2, 2211-2217.	2.0	8

#	Article	IF	CITATIONS
181	Facile reversible hydrogenation of a poly(6â€vinylâ€2,3â€dimethylâ€1,2,3,4â€tetrahydroquinoxaline) gelâ€like s Polymers for Advanced Technologies, 2021, 32, 1162-1167.	olid. 1.6	8
182	Synthesis of vinyl polymers substituted with 2-propanol and acetone and investigation of their reversible hydrogen storage capabilities. Polymer Journal, 2021, 53, 799-804.	1.3	8
183	Methoxy-Substituted Phenylenesulfide Polymer with Excellent Dispersivity of TiO2 Nanoparticles for Optical Application. Bulletin of the Chemical Society of Japan, 2020, 93, 1287-1292.	2.0	8
184	Automated Design of Li ⁺ â€Conducting Polymer by Quantumâ€Inspired Annealing. Macromolecular Rapid Communications, 2022, 43, .	2.0	8
185	Thermolysis of reactive oligo(p-phenylene sulfide) containing disulfide bond. Polymers for Advanced Technologies, 1991, 2, 155-159.	1.6	7
186	Electrochemical Confirmation of Disproportionate of μ-Oxo-bis[(N,N′-ethylenebis(salicylideneaminato))vanadium(IV)] Tetrafluoroborate. Chemistry Letters, 1993, 22, 1223-1226.	0.7	7
187	Synthesis of poly(2,6-dimethylphenylene sulfide) by photooxidative polymerization. Macromolecular Chemistry and Physics, 1994, 195, 3087-3094.	1.1	7
188	Multi-electron transfer process of vanadyl complexes for oxidative polymerization of diphenyl disulfide. Polymers for Advanced Technologies, 1995, 6, 155-158.	1.6	7
189	Ion-Exchange and Apparent Diffusion Coefficients Within Cationic Polysulfonium Coatings Containing Ferricyanide. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 37-47.	1.2	7
190	New π-Conjugated Polyelectrolyte Composed of Alkylphenoxathiinium-Type Repeating Units. Macromolecules, 2004, 37, 2325-2327.	2.2	7
191	Facile Synthesis of Isotactic Polyacrylonitrile via Template Polymerization in Interlayer Space for Dielectric Energy Storage. ACS Applied Polymer Materials, 2020, 2, 775-781.	2.0	7
192	Synthesis of colorless and high-refractive-index sulfoxide-containing polymers by the oxidation of poly(phenylene sulfide) derivatives. Polymer Chemistry, 2022, 13, 1705-1711.	1.9	7
193	Investigation of Hydantoin Derivatives as Complexing Agent for Gold Plating. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2004, 55, 933-936.	0.1	6
194	Novel Functional Nano-size Nonionic Surfactant Particles on Which Cationic Metalloporphyrins Are Absorbed; Preparation, Characterization, and Anti-oxidant Properties. Journal of Oleo Science, 2005, 54, 465-471.	0.6	6
195	Highly Stable Polymerizable Vesicles in Anionic Surfactant/Ammonium Salt Mixtures in the Presence of Cross-linking Monomers for Convenient Preparation of Hollow Nanospheres. Langmuir, 2006, 22, 5261-5265.	1.6	6
196	Improved Activity of Cathode Catalysts for Fuel Cells by Optimizing the Conditions for Preparation of Carbon Particles Modified with Cobalt-polypyrrole Complex. Kobunshi Ronbunshu, 2006, 63, 601-606.	0.2	6
197	Vanadyl-TrBR ₄ -Catalyzed Oxidative Polymerization of Diphenyl Disulfide. Macromolecular Chemistry and Physics, 2015, 216, 1850-1855.	1.1	6
198	Facile Synthesis of Poly(Glycidyl Ether)s with Ionic Pendant Groups by Thiolâ€Ene Reactions. Macromolecular Rapid Communications, 2020, 41, 1900399.	2.0	6

#	Article	IF	CITATIONS
199	Redox-Active Polymers as an Organic Energy Storage Material. , 2019, , 587-594.		6
200	Surface Modification of Reconstituted Hemoglobins Containing SOD-Active Metalloporphyrins. Journal of Oleo Science, 2005, 54, 115-123.	0.6	6
201	Hydrophilic Isopropanol/acetoneâ€substituted Polymers for Safe Hydrogen Storage. Polymer International, 0, , .	1.6	6
202	Copper(II) Complexes Resulting from the Oxygenation of (2,9-Dimethyl-1,10-phenanthroline)copper(I) Chloride in the Presence of Dimethylformamide. Bulletin of the Chemical Society of Japan, 2001, 74, 869-870.	2.0	5
203	Reduction of Oxygen at an Electrode Modified by Cobaltporphyrin Liquid Membrane. Chemistry Letters, 2002, 31, 712-713.	0.7	5
204	Preparation of Liposomes Surface-Loaded with Cationic Manganese Porphyrins as SOD Mimics. Journal of Oleo Science, 2005, 54, 233-239.	0.6	5
205	Chiral alkylated poly(m-phenylene)s: Optical activity and thermal stability of helical structures. Synthetic Metals, 2009, 159, 925-930.	2.1	5
206	Synthesis of Highly Crystallized Poly(1,4-phenylene sulfide) via Oxygen-Oxidative Polymerization of Diphenyl Disulfide. Bulletin of the Chemical Society of Japan, 2017, 90, 843-846.	2.0	5
207	Oxygen Scavenging and Oxygen Barrier Poly(1,2â€butadiene) Films Containing an Ironâ€Complex Catalyst. Macromolecular Chemistry and Physics, 2019, 220, 1900294.	1.1	5
208	<i>n</i> -Type Redox-active Benzoylpyridinium-substituted Supramolecular Gel for an Organogel-based Rechargeable Device. Chemistry Letters, 2019, 48, 555-557.	0.7	5
209	Synthesis of Polymeric Reconstituted Hemoglobins as Superoxide Dismutase Mimics Designed for Long-term Circulation Maintenance. Journal of Oleo Science, 2005, 54, 413-418.	0.6	5
210	Quadruply Fused Aromatic Heterocycles toward 4 Vâ€Class Robust Organic Cathodeâ€Active Materials. Batteries and Supercaps, 2022, 5, .	2.4	5
211	Electroreduction of Oxygen at a Pt/C-Modified Electrode with a Cobaltporphyrin Complex. Bulletin of the Chemical Society of Japan, 2004, 77, 401-405.	2.0	4
212	Synthesis of Hexameric Manganese Porphyrin as an SOD Mimic and SOD Activity. Journal of Oleo Science, 2005, 54, 513-518.	0.6	4
213	Investigations of Bath Compositions and Operating Conditions of Gold Plating Using Hydantoin-Gold Complex. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2006, 57, 167-171.	0.1	4
214	Novel Electrocatalysts for Oxygen Reduction Using Cobaltporphyrins That Undergo Facile Electropolymerization. Kobunshi Ronbunshu, 2006, 63, 182-188.	0.2	4
215	Investigation of Carbon Materials as Supports for Metalloporphyrins Used for Cathode Catalyst in Fuel Cells. Kobunshi Ronbunshu, 2006, 63, 607-612.	0.2	4
216	Synthesis of Cobalt Complex Using Pyrrole Derivative with Basic Ligand and Application to Cathodic Catalyst for Oxygen Reduction. Electrochemistry, 2007, 75, 964-968.	0.6	4

#	Article	IF	CITATIONS
217	Electronic Communication in the Formation of a Quartet Molecule 2,6,10-Tris[bis(<i>p</i> -methoxyphenyl)aminium]triphenylene. Chemistry Letters, 2010, 39, 356-357.	0.7	4
218	Anomalous Potential Shifts of Redox-active Molecules in Highly Concentrated Electrolytes. Chemistry Letters, 2021, 50, 1375-1377.	0.7	4
219	Photo-Oxidative Polymerization of Bis(3,5-dimethylphenyl) Disulfide for Synthesis of Poly(thioarylene). Chemistry Letters, 1993, 22, 1101-1104.	0.7	3
220	Convenient Syntheses of Methylsulfonioarylene and Thioarylene Polymers from 1,4-bis(Methylsulfinyl)benzene. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 415-423.	1.2	3
221	Heteropolyacene with Thianthrenium Ring Systems ProvingπElectron Delocalization over S Atoms. Journal of Macromolecular Science - Pure and Applied Chemistry, 2003, 40, 655-670.	1.2	3
222	Formation of Active Sites for the NO + CO Reaction over Palladium Catalysts Supported on Mesoporous Silica. Bulletin of the Chemical Society of Japan, 2005, 78, 192-194.	2.0	3
223	Preparation of Novel Conductive Polymer Ligand-Coated Carbon Particles by Electropolymerization of Pyridylthiophene and Application as Metal Complex Catalysts for Oxygen Reduction. Kobunshi Ronbunshu, 2006, 63, 189-195.	0.2	3
224	Fabrication of Electrodes for Highly Sensitive Detection of a Superoxide Anion Radical by Electropolymerization of Thienylporphyrins in the Prescence of Thiophene and Application to Active Oxygen Sensors. Kobunshi Ronbunshu, 2006, 63, 427-431.	0.2	3
225	å⁻¾æµãfœãf«ã,¿ãf³ãf¡ãf^ãfªãf¼ï¼ĩ¼ĩ¼³ï¼‰å›žè»¢ãfªãf³ã,°â€"ãf‡ã,£ã,¹ã,⁻電極系. Electrochemistry, 200	06 .7 4, 81	-83.
226	Synthesis of Six-coordination Proximal Base Conjugation Iron(III) porphyrin Complexes and Evaluation as a Superoxide Sensor. Kobunshi Ronbunshu, 2008, 65, 349-354.	0.2	3
227	Synthesis and Properties of Poly(phenylene ether) Diblock Copolymers Bearing Acid Substituents. Kobunshi Ronbunshu, 2008, 65, 145-149.	0.2	3
228	Mesoscale Radical Polymers: Bottom-Up Fabrication of Electrodes in Organic Polymer Batteries. , 0, , 319-332.		3
229	Ionic Liquid-inspired Redox Shuttles: Properties of a Ferrocenylimidazolium Salt as an Efficient Mediator for Dye-sensitized Solar Cells. Chemistry Letters, 2014, 43, 1134-1136.	0.7	3
230	Ultrahigh oxygen-scavenging norbornene copolymers bearing imidazolyl iron complexes for fabricating active and sustainable packaging films. Chemical Communications, 2020, 56, 964-967.	2.2	3
231	A Highly Flexible Yet >300 mAh cm â^'3 Energy Density Lithiumâ€ŀon Battery Assembled with the Cathod Redoxâ€Active Polyether Binder. Energy Technology, 2020, 8, 1901159.	e of a 1.8	3
232	Multi-Electron Transfer Process of a Vanadium Dinuclear Complex for Molecular Conversions. , 1996, , 139-149.		3
233	Poly(vinyl diphenylquinoxaline) as a hydrogen storage material toward rapid hydrogen evolution. MRS Communications, 2022, 12, 213-216.	0.8	3
234	Preparation of poly(1,4-phenylene)s by electro-oxidative polymerization. Polymers for Advanced Technologies, 1995, 6, 254-257.	1.6	2

#	Article	IF	CITATIONS
235	A NEW SYNTHETIC ROUTE TO POLY(SELENO-1,4-PHENYLENE) FROM SELENOANISOLE. Journal of Macromolecular Science - Pure and Applied Chemistry, 2001, 38, 1049-1057.	1.2	2
236	Coordination Equilibria of Hydantoin Derivatives with Gold Ions. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2005, 56, 479-480.	0.1	2
237	Electrochemical Synthesis of Polyaniline Film in Supercritical Carbon Dioxide as a Solvent. Kobunshi Ronbunshu, 2007, 64, 812-816.	0.2	2
238	Quantitative Analysis of Active Oxygen Species by Potentiometry. Kobunshi Ronbunshu, 2007, 64, 90-95.	0.2	2
239	Electrochemical Formation of a Polyviologen–ZnO Composite with an Efficient Charging Capability. Chemistry Letters, 2015, 44, 393-395.	0.7	2
240	A Highly Flexible Yet >300 mAh cm ^{â^'3} Energy Density Lithiumâ€lon Battery Assembled the Cathode of a Redoxâ€Active Polyether Binder. Energy Technology, 2020, 8, 2070035.	with 1.8	2
241	Synthesis of methylated phenylene sulfide polymers via bulk oxidative polymerization and their heat curing triggered by dynamic disulfide exchange. Polymer Journal, 2022, 54, 1-10.	1.3	2
242	Alcohol-Substituted Vinyl Polymers for Stockpiling Hydrogen. Bulletin of the Chemical Society of Japan, 2021, 94, 2770-2773.	2.0	2
243	Preparation of Poly(1,4-phenylene) by Oxidative Polymerization of Benzene with 2,3-Dichloro-5,6-dicyano-p-benzoquinone. Chemistry Letters, 1994, 23, 363-366.	0.7	1
244	Role of multinuclear complexes in coordination and 4-electron reduction of dioxygen. Journal of Inorganic Biochemistry, 1997, 67, 390.	1.5	1
245	Novel Approach for the Preparation of Metal Containing Mesoporous Silica Using Solubilization of Fatty Acid Salt. Chemistry Letters, 2005, 34, 346-347.	0.7	1
246	Construction of Manganese Porphyrin Modified Hemoglobin Complex and Its Antioxidant Activities. Kobunshi Ronbunshu, 2008, 65, 277-282.	0.2	1
247	Organic Batteries. , 2013, , 235-246.		1
248	In-situ Polymerization of Thiophene Derivatives Using a Gas-phase Oxidant to Form a Hole-transporting Layer in Dye-sensitized Solar Cell. Journal of Photopolymer Science and Technology = [Fotoporima Konwakai Shi], 2014, 27, 347-350.	0.1	1
249	Kinetic Control of Electron Transfer at Doped Zinc Oxide/Redox-active Molecule Interface for Photocurrent Rectification. Chemistry Letters, 2015, 44, 41-43.	0.7	1
250	Printed Electronics: Low-Cost, Organic Light-Emitting Electrochemical Cells with Mass-Producible Nanoimprinted Substrates Made Using Roll-to-Roll Methods (Adv. Mater. Technol. 5/2017). Advanced Materials Technologies, 2017, 2, .	3.0	1
251	Organic Batteries: An Ultrahigh Output Rechargeable Electrode of a Hydrophilic Radical Polymer/Nanocarbon Hybrid with an Exceptionally Large Current Density beyond 1 A cm ^{â^2} (Adv. Mater. 26/2018). Advanced Materials, 2018, 30, 1870194.	11.1	1
252	Organic Electronics: Ultrathin and Stretchable Rechargeable Devices with Organic Polymer Nanosheets Conformable to Skin Surface (Small 13/2019). Small, 2019, 15, 1970067.	5.2	1

#	Article	IF	CITATIONS
253	Allylic hydrocarbon polymers complexed with Fe(II)(salen) as a ultrahigh oxygen-scavenging and active packaging film. Pure and Applied Chemistry, 2020, 92, 871-882.	0.9	1
254	Indoline Dye-Coupled Polyviologen: Its Electrochemical Property and Electropolymerization. Japanese Journal of Applied Physics, 2012, 51, 10NE17.	0.8	1
255	Superoxide Dismutase Mimics. Oleoscience, 2006, 6, 307-317.	0.0	1
256	Oxidation of Disulfides by 4-Electron Transfer to O2: A Ru(bpy)3 2+-Catalyzed Photo-Oxidation System for Selective Formation of Polythioethers. Phosphorus, Sulfur and Silicon and the Related Elements, 1997, 120, 407-408.	0.8	0
257	Multielectron Transfer and Catalytic Mechanisms in Oxidative Polymerization. , 1999, , 535-562.		0
258	Polythiophenylene synthesis through multi-electron transfer process. Macromolecular Symposia, 2003, 204, 19-26.	0.4	0
259	Paints Containing Polyaniline as Corrosion Protective Paints of Iron Materials. Journal of the Japan Society of Colour Material, 2004, 77, 26-33.	0.0	0
260	Water-Soluble Poly(phenylene ether) Derivatives as Environmentally Benign and Heat-Resistant Coating Materials for Paper. Kobunshi Ronbunshu, 2005, 62, 591-597.	0.2	0
261	Methods for Prediction of Gold Plating Characteristics by Numerical Analysis. Hyomen Gijutsu/Journal of the Surface Finishing Society of Japan, 2006, 57, 789-792.	0.1	0
262	Synthesis of Poly(2,6-dimethyl-1,4-phenylene oxide) by Double-Step Polymerization in Supercritical Carbon Dioxide. Kobunshi Ronbunshu, 2008, 65, 688-694.	0.2	0
263	Indoline Dye-Coupled Polyviologen: Its Electrochemical Property and Electropolymerization. Japanese Journal of Applied Physics, 2012, 51, 10NE17.	0.8	0
264	Air Battery: Design of Organic Anode-Active Polymer Layers. Membrane, 2013, 38, 131-136.	0.0	0
265	Cover Feature: Quadruply Fused Aromatic Heterocycles toward 4 Vâ€Class Robust Organic Cathodeâ€Active Materials (Batteries & Supercaps 8/2022). Batteries and Supercaps, 2022, 5, . 	2.4	0