Jacobus C De Roode

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6426410/publications.pdf

Version: 2024-02-01

67 papers

4,133 citations

147801 31 h-index 61 g-index

67 all docs

67
docs citations

67 times ranked

4225 citing authors

#	Article	IF	CITATIONS
1	Virulence and competitive ability in genetically diverse malaria infections. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7624-7628.	7.1	353
2	Why infectious disease research needs community ecology. Science, 2015, 349, 1259504.	12.6	330
3	The genetics of monarch butterfly migration and warning colouration. Nature, 2014, 514, 317-321.	27.8	264
4	Virulence-transmission trade-offs and population divergence in virulence in a naturally occurring butterfly parasite. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 7489-7494.	7.1	245
5	Self-Medication in Animals. Science, 2013, 340, 150-151.	12.6	217
6	WITHIN-HOST COMPETITION IN GENETICALLY DIVERSE MALARIA INFECTIONS: PARASITE VIRULENCE AND COMPETITIVE SUCCESS. Evolution; International Journal of Organic Evolution, 2006, 60, 1358-1371.	2.3	209
7	Behavioral Immunity in Insects. Insects, 2012, 3, 789-820.	2.2	160
8	Non-immunological defense in an evolutionary framework. Trends in Ecology and Evolution, 2011, 26, 242-248.	8.7	152
9	Monarch butterfly migration and parasite transmission in eastern North America. Ecology, 2011, 92, 342-351.	3.2	146
10	Evidence for transâ€generational medication in nature. Ecology Letters, 2010, 13, 1485-1493.	6.4	113
11	Host plant species affects virulence in monarch butterfly parasites. Journal of Animal Ecology, 2008, 77, 120-126.	2.8	109
12	FOOD PLANT DERIVED DISEASE TOLERANCE AND RESISTANCE IN A NATURAL BUTTERFLY-PLANT-PARASITE INTERACTIONS. Evolution; International Journal of Organic Evolution, 2012, 66, 3367-3376.	2.3	109
13	Ecological immunology and tolerance in plants and animals. Functional Ecology, 2011, 25, 18-28.	3.6	94
14	Demystifying Monarch Butterfly Migration. Current Biology, 2018, 28, R1009-R1022.	3.9	92
15	Lack of genetic differentiation between monarch butterflies with divergent migration destinations. Molecular Ecology, 2012, 21, 3433-3444.	3.9	85
16	HOST-PARASITE GENETIC INTERACTIONS AND VIRULENCE-TRANSMISSION RELATIONSHIPS IN NATURAL POPULATIONS OF MONARCH BUTTERFLIES. Evolution; International Journal of Organic Evolution, 2010, 64, 502-514.	2.3	84
17	Do Healthy Monarchs Migrate Farther? Tracking Natal Origins of Parasitized vs. Uninfected Monarch Butterflies Overwintering in Mexico. PLoS ONE, 2015, 10, e0141371.	2.5	80
18	Arbuscular mycorrhizal fungi affect plant tolerance andÂchemical defences to herbivory through different mechanisms. Journal of Ecology, 2016, 104, 561-571.	4.0	75

#	Article	IF	Citations
19	Serial founder effects and genetic differentiation during worldwide range expansion of monarch butterflies. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20142230.	2.6	73
20	Ecological and evolutionary approaches to managing honeybee disease. Nature Ecology and Evolution, 2017, 1, 1250-1262.	7.8	73
21	Strength in numbers: high parasite burdens increase transmission of a protozoan parasite of monarch butterflies (Danaus plexippus). Oecologia, 2009, 161, 67-75.	2.0	70
22	Genetic variation in resistance, but not tolerance, to a protozoan parasite in the monarch butterfly. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 751-759.	2.6	68
23	Behavioural resistance against a protozoan parasite in the monarch butterfly. Journal of Animal Ecology, 2012, 81, 70-79.	2.8	59
24	Aphids indirectly increase virulence and transmission potential of a monarch butterfly parasite by reducing defensive chemistry of a shared food plant. Ecology Letters, 2011, 14, 453-461.	6.4	53
25	Secondary Defense Chemicals in Milkweed Reduce Parasite Infection in Monarch Butterflies, Danaus plexippus. Journal of Chemical Ecology, 2015, 41, 520-523.	1.8	52
26	Within-host competition can delay evolution of drug resistance in malaria. PLoS Biology, 2018, 16, e2005712.	5.6	51
27	Within-host competition and drug resistance in the human malaria parasite <i>Plasmodium falciparum</i> . Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20153038.	2.6	50
28	Diet–microbiome–disease: Investigating diet's influence on infectious disease resistance through alteration of the gut microbiome. PLoS Pathogens, 2019, 15, e1007891.	4.7	49
29	Migratory monarchs that encounter resident monarchs show lifeâ€history differences and higher rates of parasite infection. Ecology Letters, 2018, 21, 1670-1680.	6.4	48
30	Transcriptomics of monarch butterflies (<i>Danaus plexippus</i>) reveals that toxic host plants alter expression of detoxification genes and downâ€regulate a small number of immune genes. Molecular Ecology, 2019, 28, 4845-4863.	3.9	40
31	Fitness costs of animal medication: antiparasitic plant chemicals reduce fitness of monarch butterfly hosts. Journal of Animal Ecology, 2016, 85, 1246-1254.	2.8	36
32	Genomic evidence for gene flow between monarchs with divergent migratory phenotypes and flight performance. Molecular Ecology, 2020, 29, 2567-2582.	3.9	35
33	Phoresy. Current Biology, 2017, 27, R578-R580.	3.9	34
34	Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie, 2017, 48, 93-101.	2.0	32
35	Variation in Forewing Size Linked to Migratory Status in Monarch Butterflies. Animal Migration, 2016, 3, 27-34.	1.0	29
36	Reduced density and visually complex apiaries reduce parasite load and promote honey production and overwintering survival in honey bees. PLoS ONE, 2019, 14, e0216286.	2.5	29

#	Article	IF	Citations
37	Self-medication in insects: when altered behaviors of infected insects are a defense instead of a parasite manipulation. Current Opinion in Insect Science, 2019, 33, 1-6.	4.4	27
38	Elevated atmospheric concentrations of carbon dioxide reduce monarch tolerance and increase parasite virulence by altering the medicinal properties of milkweeds. Ecology Letters, 2018, 21, 1353-1363.	6.4	26
39	Of poisons and parasitesâ€"the defensive role of tetrodotoxin against infections in newts. Journal of Animal Ecology, 2018, 87, 1192-1204.	2.8	24
40	Host heterogeneity mitigates virulence evolution. Biology Letters, 2020, 16, 20190744.	2.3	23
41	Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host–parasite interactions. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20151993.	2.6	20
42	Transâ€generational parasite protection associated with paternal diet. Journal of Animal Ecology, 2015, 84, 310-321.	2.8	20
43	Effects of the parasite, Ophryocystis elektroscirrha, on wing characteristics important for migration in the monarch butterfly. Animal Migration, 2018, 5, 84-93.	1.0	15
44	Phytochemical changes in milkweed induced by elevated CO ₂ alter wing morphology but not toxin sequestration in monarch butterflies. Functional Ecology, 2019, 33, 411-421.	3.6	15
45	Ethanol confers differential protection against generalist and specialist parasitoids of Drosophila melanogaster. PLoS ONE, 2017, 12, e0180182.	2.5	14
46	Parasite dynamics in North American monarchs predicted by host density and seasonal migratory culling. Journal of Animal Ecology, 2022, 91, 780-793.	2.8	14
47	Occurrence and host specificity of a neogregarine protozoan in four milkweed butterfly hosts (Danaus spp.). Journal of Invertebrate Pathology, 2016, 140, 75-82.	3.2	13
48	Are eastern and western monarch butterflies distinct populations? A review of evidence for ecological, phenotypic, and genetic differentiation and implications for conservation. Conservation Science and Practice, 2021, 3, e432.	2.0	13
49	Host Diet Affects the Morphology of Monarch Butterfly Parasites. Journal of Parasitology, 2017, 103, 228-236.	0.7	12
50	Extreme Heterogeneity in Parasitism Despite Low Population Genetic Structure among Monarch Butterflies Inhabiting the Hawaiian Islands. PLoS ONE, 2014, 9, e100061.	2.5	11
51	The Effects of Milkweed Induced Defense on Parasite Resistance in Monarch Butterflies, Danaus plexippus. Journal of Chemical Ecology, 2018, 44, 1040-1044.	1.8	11
52	Comparative genetics of Na ⁺ /K ⁺ -ATPase in monarch butterfly populations with varying host plant toxicity. Biological Journal of the Linnean Society, 2016, 119, 194-200.	1.6	10
53	Inbreeding depression in monarch butterflies. Journal of Insect Conservation, 2016, 20, 477-483.	1.4	9
54	Assessing virulence of Varroa destructor mites from different honey bee management regimes. Apidologie, 2020, 51, 276-289.	2.0	9

#	Article	IF	CITATIONS
55	Persistent effects of management history on honeybee colony virus abundances. Journal of Invertebrate Pathology, 2021, 179, 107520.	3.2	9
56	Self-Medication: A Learning Process?—Response. Science, 2013, 340, 1042-1042.	12.6	8
57	Thermal tolerance and environmental persistence of a protozoan parasite in monarch butterflies. Journal of Invertebrate Pathology, 2021, 183, 107544.	3.2	7
58	GRAPHITE: A graphical environment for scalable <i>in situ</i> video tracking of moving insects. Methods in Ecology and Evolution, 2018, 9, 956-964.	5.2	6
59	Effects of cardenolides of milkweed plants on immunity of the monarch butterfly. Arthropod-Plant Interactions, 2021, 15, 249-252.	1.1	4
60	Population genomics reveals variable patterns of immune gene evolution in monarch butterflies (<i>Danaus plexippus</i>). Molecular Ecology, 2021, 30, 4381-4391.	3.9	4
61	Elevated atmospheric concentrations of CO ₂ increase endogenous immune function in a specialist herbivore. Journal of Animal Ecology, 2021, 90, 628-640.	2.8	3
62	Crowding does not affect monarch butterflies' resistance to a protozoan parasite. Ecology and Evolution, 2022, 12, e8791.	1.9	2
63	Flying on empty: Reduced mitochondrial function and flight capacity in food-deprived monarch butterflies. Journal of Experimental Biology, 0, , .	1.7	2
64	Constant Light and Frequent Schedule Changes Do Not Impact Resistance to Parasites in Monarch Butterflies. Journal of Biological Rhythms, 2021, 36, 286-296.	2.6	1
65	An experimental test of parasite adaptation to common versus rare host genotypes. Biology Letters, 2020, 16, 20200210.	2.3	1
66	Lack of inbreeding avoidance during mate selection in migratory monarch butterflies. Behavioural Processes, 2022, 198, 104630.	1.1	1
67	Experimental Infection with a Naturally Occurring Protozoan Parasite Reduces Monarch Butterfly (Danaus plexippus) Mating Success. Journal of Parasitology, 2022, 108, .	0.7	1