
Tatsuya Nishimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6422881/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Speciation analysis of inorganic selenium in wastewater using a highly selective cellulose-based adsorbent via liquid electrode plasma optical emission spectrometry. Journal of Hazardous Materials, 2022, 424, 127250.	12.4	9
2	Synthesis of Pentaarylcyclobutenylrhodium(I) Complexes and Their Reactivity and Initiation Mechanism in Polymerization of Monosubstituted Acetylenes. Organometallics, 2022, 41, 472-479.	2.3	1
3	Wellâ€Controlled Living Polymerization of <i>N</i> â€Propargylamides and Their Derivatives by Rhodium Catalysis. Angewandte Chemie, 2022, 134, .	2.0	1
4	Wellâ€Controlled Living Polymerization of <i>N</i> â€Propargylamides and Their Derivatives by Rhodium Catalysis. Angewandte Chemie - International Edition, 2022, 61, .	13.8	5
5	Titelbild: Wellâ€Controlled Living Polymerization of <i>N</i> â€Propargylamides and Their Derivatives by Rhodium Catalysis (Angew. Chem. 17/2022). Angewandte Chemie, 2022, 134, .	2.0	Ο
6	Wellâ€Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie - International Edition, 2022, 61, .	13.8	8
7	Wellâ€Controlled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie, 2022, 134, .	2.0	0
8	Frontispiece: Well ontrolled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€Soluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie - International Edition, 2022, 61, .	13.8	0
9	Frontispiz: Well ontrolled Living Polymerization of Phenylacetylenes in Water: Synthesis of Waterâ€6oluble Stereoregular Telechelic Poly(phenylacetylene)s. Angewandte Chemie, 2022, 134, .	2.0	0
10	Cross-linked dithiocarbamate-modified cellulose with enhanced thermal stability and dispersibility as a sorbent for arsenite removal. Chemosphere, 2022, 307, 135671.	8.2	6
11	Selective recovery of silver and palladium from acidic waste solutions using dithiocarbamate-functionalized cellulose. Chemical Engineering Journal, 2021, 407, 127225.	12.7	36
12	Highly selective and straightforward recovery of gold and platinum from acidic waste effluents using cellulose-based bio-adsorbent. Journal of Hazardous Materials, 2021, 410, 124569.	12.4	54
13	Synthesis of Stereoregular Telechelic Poly(phenylacetylene)s: Facile Terminal Chain-End Functionalization of Poly(phenylacetylene)s by Terminative Coupling with Acrylates and Acrylamides in Rhodium-Catalyzed Living Polymerization of Phenylacetylenes. Journal of the American Chemical Society, 2021, 143, 3604-3612.	13.7	18
14	Helical springs as a color indicator for determining chirality and enantiomeric excess. Science Advances, 2021, 7, .	10.3	44
15	Rhodium(I) Complexes Bearing an Arylâ€Substituted 1,3,5â€Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5â€Hexatrienes. Angewandte Chemie - International Edition, 2021, 60, 22201-22206.	13.8	10
16	Rhodium(I) Complexes Bearing an Arylâ€Substituted 1,3,5â€Hexatriene Chain: Catalysts for Living Polymerization of Phenylacetylene and Potential Helical Chirality of 1,3,5â€Hexatrienes. Angewandte Chemie, 2021, 133, 22375-22380.	2.0	5
17	Understanding the Polymerization of Diphenylacetylenes with Tantalum(V) Chloride and Cocatalysts: Production of Cyclic Poly(diphenylacetylene)s by Low-Valent Tantalum Species Generated in Situ. Journal of the American Chemical Society, 2021, 143, 16136-16146.	13.7	16
18	Comparative evaluation of dithiocarbamate-modified cellulose and commercial resins for recovery of precious metals from aqueous matrices. Journal of Hazardous Materials, 2021, 418, 126308.	12.4	21

Tatsuya Nishimura

#	Article	IF	CITATIONS
19	Visualisation of helical structures of poly(diphenylacetylene)s bearing chiral amide pendants by atomic force microscopy. Chemical Communications, 2021, 57, 12266-12269.	4.1	10
20	Dithiocarbamate-modified cellulose-based sorbents with high storage stability for selective removal of arsenite and hazardous heavy metals. RSC Advances, 2020, 10, 30238-30244.	3.6	7
21	Frontispiece: Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie - International Edition, 2020, 59, .	13.8	0
22	Frontispiz: Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie, 2020, 132, .	2.0	0
23	Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie, 2020, 132, 14882-14890.	2.0	3
24	Spin Filtering Along Chiral Polymers. Angewandte Chemie, 2020, 132, 14779-14784.	2.0	8
25	Spin Filtering Along Chiral Polymers. Angewandte Chemie - International Edition, 2020, 59, 14671-14676.	13.8	64
26	Facile and Versatile Synthesis of Endâ€Functionalized Poly(phenylacetylene)s: A Multicomponent Catalytic System for Wellâ€Controlled Living Polymerization of Phenylacetylenes. Angewandte Chemie, 2020, 132, 8748-8758.	2.0	10
27	Helix-Sense-Selective Synthesis of Right- and Left-Handed Helical Luminescent Poly(diphenylacetylene)s with Memory of the Macromolecular Helicity and Their Helical Structures. Journal of the American Chemical Society, 2020, 142, 7668-7682.	13.7	83
28	Facile and Versatile Synthesis of Endâ€Functionalized Poly(phenylacetylene)s: A Multicomponent Catalytic System for Wellâ€Controlled Living Polymerization of Phenylacetylenes. Angewandte Chemie - International Edition, 2020, 59, 8670-8680.	13.8	33
29	Revisiting the Polymerization of Diphenylacetylenes with Tungsten(VI) Chloride and Tetraphenyltin: An Alternative Mechanism by a Metathesis Catalytic System. Angewandte Chemie - International Edition, 2020, 59, 14772-14780.	13.8	17
30	Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nature Communications, 2018, 9, 568.	12.8	74
31	Bioinspired Environmentally Friendly Amorphous CaCO ₃ -Based Transparent Composites Comprising Cellulose Nanofibers. ACS Omega, 2018, 3, 12722-12729.	3.5	21
32	One-dimensional supramolecular hybrids: self-assembled nanofibrous materials based on a sugar gelator and calcite developed along an unusual axis. CrystEngComm, 2017, 19, 1580-1584.	2.6	9
33	Periodic Surface-Ring Pattern Formation for Hydroxyapatite Thin Films Formed by Biomineralization-Inspired Processes. Langmuir, 2017, 33, 10077-10083.	3.5	6
34	Use of Amorphous Calcium Carbonate for the Design of New Materials. ChemPlusChem, 2017, 82, 107-120.	2.8	85
35	Rapid and topotactic transformation from octacalcium phosphate to hydroxyapatite (HAP): a new approach to self-organization of free-standing thin-film HAP-based nanohybrids. CrystEngComm, 2016, 18, 8388-8395.	2.6	21
36	Heterogeneous growth of calcite at aragonite {001}- and vaterite {001}-melt interfaces: A molecular dynamics simulation study. Journal of Crystal Growth, 2016, 450, 148-159.	1.5	12

#	Article	IF	CITATIONS
37	Biomineralizationâ€Inspired Preparation of Zinc Hydroxide Carbonate/Polymer Hybrids and Their Conversion into Zinc Oxide Thinâ€Film Photocatalysts. Chemistry - A European Journal, 2016, 22, 7094-7101.	3.3	16
38	Frontispiece: Biomineralization-Inspired Preparation of Zinc Hydroxide Carbonate/Polymer Hybrids and Their Conversion into Zinc Oxide Thin-Film Photocatalysts. Chemistry - A European Journal, 2016, 22, .	3.3	0
39	Chitin: Formation of Helically Structured Chitin/CaCO3Hybrids through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles (Small 38/2015). Small, 2015, 11, 5126-5126.	10.0	3
40	Liquidâ€Crystalline Biomacromolecular Templates for the Formation of Oriented Thinâ€Film Hybrids Composed of Ordered Chitin and Alkalineâ€Earth Carbonate. Chemistry - an Asian Journal, 2015, 10, 2356-2360.	3.3	10
41	Formation of Helically Structured Chitin/CaCO ₃ Hybrids through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles. Small, 2015, 11, 5127-5133.	10.0	69
42	Liquid-crystalline calcium carbonate: biomimetic synthesis and alignment of nanorod calcite. Chemical Science, 2015, 6, 6230-6234.	7.4	36
43	Macromolecular templates for the development of organic/inorganic hybrid materials. Polymer Journal, 2015, 47, 235-243.	2.7	26
44	Hydroxyapatite formation on oxidized cellulose nanofibers in a solution mimicking body fluid. Polymer Journal, 2015, 47, 158-163.	2.7	25
45	Organic/inorganic fusion materials: cyclodextrin-based polymer/CaCO3 hybrids incorporating dye molecules through host–guest interactions. Polymer Journal, 2015, 47, 122-127.	2.7	8
46	Biomineralization-inspired synthesis of functional organic/inorganic hybrid materials: organic molecular control of self-organization of hybrids. Organic and Biomolecular Chemistry, 2015, 13, 974-989.	2.8	139
47	Aragonite Nanorods in Calcium Carbonate/Polymer Hybrids Formed through Selfâ€Organization Processes from Amorphous Calcium Carbonate Solution. Small, 2014, 10, 1634-1641.	10.0	46
48	Morphology tuning in the formation of vaterite crystal thin films with thermoresponsive poly(N-isopropylacrylamide) brush matrices. CrystEngComm, 2014, 16, 3540-3547.	2.6	19
49	Supramolecular effects on formation of CaCO3thin films on a polymer matrix. CrystEngComm, 2014, 16, 1496-1501.	2.6	12
50	Bioinspired stiff and flexible composites of nanocellulose-reinforced amorphous CaCO3. Materials Horizons, 2014, 1, 321.	12.2	70
51	Biomineralization-inspired approach to the development of hybrid materials: preparation of patterned polymer/strontium carbonate thin films using thermoresponsive polymer brush matrices. Polymer Journal, 2014, 46, 499-504.	2.7	13
52	Design and Synthesis of Organic/Inorganic Hybrid Materials Inspired by Biomineralization: Morphology Control of Calcium Carbonate Thin Films using Polymers and Mg ²⁺ lons. Oleoscience, 2014, 14, 417-423.	0.0	0
53	Effects of Magnesium Ions and Water Molecules on the Structure of Amorphous Calcium Carbonate: A Molecular Dynamics Study. Journal of Physical Chemistry B, 2013, 117, 14849-14856.	2.6	38
54	Tuning the Stability of CaCO ₃ Crystals with Magnesium Ions for the Formation of Aragonite Thin Films on Organic Polymer Templates. Chemistry - an Asian Journal, 2013, 8, 3002-3009.	3.3	35

Tatsuya Nishimura

#	Article	IF	CITATIONS
55	Formation of Rectangular Plate-like α-MnOOH and Sheet-like γ-MnOOH by Slow Diffusion of Ammonia Vapor. Chemistry Letters, 2013, 42, 341-343.	1.3	5
56	CaCO3/Chitin hybrids: recombinant acidic peptides based on a peptide extracted from the exoskeleton of a crayfish controls the structures of the hybrids. Faraday Discussions, 2012, 159, 483.	3.2	22
57	Preparation of Thin-film Hydroxyapatite/Polymer Hybrids. Chemistry Letters, 2011, 40, 458-460.	1.3	15
58	Photoimaging of Selfâ€Organized CaCO ₃ /Polymer Hybrid Films by Formation of Regular Relief and Flat Surface Morphologies. Angewandte Chemie - International Edition, 2011, 50, 5856-5859.	13.8	26
59	Synthesis of Functional Hybrid Materials through Approaches Inspired by Biomineralization. Funtai Oyobi Fummatsu Yakin/Journal of the Japan Society of Powder and Powder Metallurgy, 2010, 57, 495-499.	0.2	0
60	CaCO3/chitin-whisker hybrids: formation of CaCO3 crystals in chitin-based liquid-crystalline suspension. Polymer Journal, 2010, 42, 583-586.	2.7	57
61	Macromolecular Templating for the Formation of Inorganic-Organic Hybrid Structures. MRS Bulletin, 2010, 35, 127-132.	3.5	107
62	Crystallization of unidirectionally oriented fibrous calcium carbonate on thermo-responsive polymer brush matrices. CrystEngComm, 2010, 12, 2021.	2.6	26
63	Calcium Carbonate/Polymer Thin-Film Hybrids: Induction of the Formation of Patterned Aragonite Crystals by Thermal Treatment of a Polymer Matrix. Polymer Journal, 2009, 41, 522-523.	2.7	38
64	An Acidic Matrix Protein, Pif, Is a Key Macromolecule for Nacre Formation. Science, 2009, 325, 1388-1390.	12.6	625
65	Three-Dimensional Relief Structures of CaCO ₃ Crystal Assemblies Formed by Spontaneous Two-Step Crystal Growth on a Polymer Thin Film. Crystal Growth and Design, 2009, 9, 622-625.	3.0	57
66	Macroscopically Ordered Polymer/CaCO ₃ Hybrids Prepared by Using a Liquid rystalline Template. Angewandte Chemie - International Edition, 2008, 47, 2800-2803.	13.8	89
67	Nanosegregated Amorphous Composites of Calcium Carbonate and an Organic Polymer. Advanced Materials, 2008, 20, 3633-3637.	21.0	119
68	Selective synthesis and thin-film formation of α-cobalt hydroxide through an approach inspired by biomineralization. Journal of Materials Chemistry, 2008, 18, 4140.	6.7	40
69	Effects of Peptides on CaCO ₃ Crystallization: Mineralization Properties of an Acidic Peptide Isolated from Exoskeleton of Crayfish and Its Derivatives. Crystal Growth and Design, 2008, 8, 4062-4065.	3.0	48
70	Self-Organization of Oriented Calcium Carbonate/Polymer Composites: Effects of a Matrix Peptide Isolated from the Exoskeleton of a Crayfish. Angewandte Chemie - International Edition, 2006, 45, 2876-2879.	13.8	143
71	Helical Arrays of Pendant Fullerenes on Optically Active Poly(phenylacetylene)s. Chemistry - A European Journal, 2005, 11, 1181-1190.	3.3	20
72	Synthesis and property of helical poly(phenylacetylene)s bearing chiral ruthenium complexes and real space imaging of meso- and nanoscopic structures by atomic force microscopy. Journal of Polymer Science Part A, 2004, 42, 4621-4640.	2.3	31

TATSUYA NISHIMURA

#	Article	IF	CITATIONS
73	Supramolecular Chirality of Thermotropic Liquid-Crystalline Folic Acid Derivatives. Angewandte Chemie - International Edition, 2004, 43, 1969-1972.	13.8	181
74	Detection and Amplification of Chirality by Helical Polymers. ChemInform, 2004, 35, no.	0.0	0
75	Detection and Amplification of Chirality by Helical Polymers. Chemistry - A European Journal, 2004, 10, 42-51.	3.3	535
76	Chirality induction on achiralN-methyl aromatic amide oligomers bearing terminal carboxy groups with chiral amines. Chirality, 2004, 16, S12-S22.	2.6	16
77	A helical array of pendant fullerenes on a helical poly(phenylacetylene) induced by non-covalent chiral interactionsElectronic Supplementary Information (ESI) available: Full synthetic and analytical details and UV-vis, CD, IR and NMR spectra of the copolymers. See http://www.rsc.org/suppdata/cc/b3/b312511d/. Chemical Communications. 2004 646.	4.1	26
78	Macromolecular Helicity Induction on a Poly(phenylacetylene) with C2-Symmetric Chiral [60]Fullerene-Bisadducts. Journal of the American Chemical Society, 2004, 126, 11711-11717.	13.7	88
79	Systematic Enantiomeric Separation of [60]Fullerene Bisadducts Possessing an Inherent Chiral Addition Pattern. Journal of Organic Chemistry, 2003, 68, 3251-3257.	3.2	27
80	A Helical Array of Pendant Fullerenes on an Optically Active Polyphenylacetylene. Angewandte Chemie, 2002, 114, 3754-3756.	2.0	12
81	A Helical Array of Pendant Fullerenes on an Optically Active Polyphenylacetylene. Angewandte Chemie - International Edition, 2002, 41, 3602-3604.	13.8	78
82	First Isolation and Characterization of Eight Regioisomers for [60]Fullereneâ^'Benzyne Bisadducts. Organic Letters, 2001, 3, 1193-1196.	4.6	81
83	Bioinspired macromolecular templates for crystallographic orientation control of ZnO thin films through zinc hydroxide carbonate. Polymer Journal, 0, , .	2.7	1