Martin Reindl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6422218/publications.pdf

Version: 2024-02-01

471371 501076 1,046 66 17 28 citations h-index g-index papers 66 66 66 1397 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Impact of COVID-19 pandemic restrictions on ST-elevation myocardial infarction: a cardiac magnetic resonance imaging study. European Heart Journal, 2022, 43, 1141-1153.	1.0	35
2	Determinants and prognostic relevance of aortic stiffness in patients with recent ST-elevation myocardial infarction. International Journal of Cardiovascular Imaging, 2022, 38, 237-247.	0.7	7
3	Prognostic value of depressed cardiac index after STEMI: a phase-contrast magnetic resonance study. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 53-61.	0.4	O
4	Association of plasma interleukin-6 with infarct size, reperfusion injury, and adverse remodelling after ST-elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 113-123.	0.4	11
5	The classical 12‑lead ECG: Much more to offer than just a diagnosis in STEMI?. International Journal of Cardiology, 2022, 349, 29-30.	0.8	O
6	A novel approach to determine aortic valve area with phase-contrastÂcardiovascular magnetic resonance. Journal of Cardiovascular Magnetic Resonance, 2022, 24, 7.	1.6	5
7	Risk Stratification by CMR After STEMI. JACC: Cardiovascular Imaging, 2022, 15, 441-444.	2.3	1
8	Cardiac injury after COVID-19: Primary cardiac and primary non-cardiac etiology makes a difference. International Journal of Cardiology, 2022, 350, 17-18.	0.8	3
9	Predicting cardiac remodeling after myocardial infarction with machine learning: are we there yet?. International Journal of Cardiology, 2022, 355, 6-7.	0.8	O
10	Evolution of Myocardial Tissue Injury. JACC: Cardiovascular Imaging, 2022, 15, 1030-1042.	2.3	14
11	Association between inflammation and left ventricular thrombus formation following ST-elevation myocardial infarction. International Journal of Cardiology, 2022, 361, 1-6.	0.8	8
12	Prevalence and prognostic impact of mitral annular disjunction in patients with STEMI – A cardiac magnetic resonance study. Journal of Cardiology, 2022, , .	0.8	1
13	Global longitudinal strain by feature tracking for optimized prediction of adverse remodeling after ST-elevation myocardial infarction. Clinical Research in Cardiology, 2021, 110, 61-71.	1.5	25
14	Clinical Risk Score to Predict Early Left Ventricular Thrombus After ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Imaging, 2021, 14, 308-310.	2.3	8
15	Self-navigated 3D whole-heart MRA for non-enhanced surveillance of thoracic aortic dilation: A comparison to CTA. Magnetic Resonance Imaging, 2021, 76, 123-130.	1.0	11
16	High sensitivity C-reactive protein is associated with worse infarct healing after revascularized ST-elevation myocardial infarction. International Journal of Cardiology, 2021, 328, 191-196.	0.8	13
17	Estimating the extent of myocardial damage in patients with STEMI using the DETERMINE score. Open Heart, 2021, 8, e001538.	0.9	3
18	Global longitudinal strain improves risk assessment after ST-segment elevation myocardial infarction: a comparative prognostic evaluation of left ventricular functional parameters. Clinical Research in Cardiology, 2021, 110, 1599-1611.	1.5	13

#	Article	IF	Citations
19	Self-navigated versus navigator-gated 3D MRI sequence for non-enhanced aortic root measurement in transcatheter aortic valve implantation. European Journal of Radiology, 2021, 137, 109573.	1.2	7
20	E-wave propagation index (EPI) – A promising echocardiographic marker to improve left ventricular thrombus detection after STEMI?. International Journal of Cardiology, 2021, 331, 331-332.	0.8	1
21	Transient STEMI – No STEMI at all?. International Journal of Cardiology, 2021, 339, 12-13.	0.8	1
22	Glycemic Status and Reperfusion Injury in Patients With ST-Segment Elevation Myocardial Infarction. JACC: Cardiovascular Imaging, 2021, 14, 1875-1877.	2.3	3
23	C-reactive protein velocity predicts microvascular pathology after acute ST-elevation myocardial infarction. International Journal of Cardiology, 2021, 338, 30-36.	0.8	19
24	Association of C-Reactive Protein Velocity with Early Left Ventricular Dysfunction in Patients with First ST-Elevation Myocardial Infarction. Journal of Clinical Medicine, 2021, 10, 5494.	1.0	8
25	Cardiac magnetic resonance imaging improves prognostic stratification of patients with ST-elevation myocardial infarction and preserved ejection fraction. European Heart Journal Open, 2021, 1 , .	0.9	1
26	Determinants and prognostic value of cardiac magnetic resonance imaging-derived infarct characteristics in non-ST-elevation myocardial infarction. European Heart Journal Cardiovascular Imaging, 2020, 21, 67-76.	0.5	5
27	Mitral annular plane systolic excursion by cardiac MR is an easy tool for optimized prognosis assessment in ST-elevation myocardial infarction. European Radiology, 2020, 30, 620-629.	2.3	17
28	Baseline LV ejection fraction by cardiac magnetic resonance and 2D echocardiography after ST-elevation myocardial infarction – influence of infarct location and prognostic impact. European Radiology, 2020, 30, 663-671.	2.3	8
29	Impact of posteromedial papillary muscle infarction on mitral regurgitation during ST-segment elevation myocardial infarction. International Journal of Cardiovascular Imaging, 2020, 36, 503-511.	0.7	4
30	Impact of infarct location and size on clinical outcome after ST-elevation myocardial infarction treated by primary percutaneous coronary intervention. International Journal of Cardiology, 2020, 301, 14-20.	0.8	16
31	Assessment of area at risk and infarct size in acute STEMI: How much information does the ECG really provide?. International Journal of Cardiology, 2020, 303, 14-15.	0.8	0
32	Predictors of Long-Term Outcome in STEMI and NSTEMIâ€"Insights from J-MINUET. Journal of Clinical Medicine, 2020, 9, 3166.	1.0	3
33	Effect of the COVID-19 Pandemic on Treatment Delays in Patients with ST-Segment Elevation Myocardial Infarction. Journal of Clinical Medicine, 2020, 9, 2183.	1.0	51
34	Association of Myocardial Injury With Serum Procalcitonin Levels in Patients With ST-Elevation Myocardial Infarction. JAMA Network Open, 2020, 3, e207030.	2.8	12
35	Non-contrast MRI protocol for TAVI guidance: quiescent-interval single-shot angiography in comparison with contrast-enhanced CT. European Radiology, 2020, 30, 4847-4856.	2.3	14
36	Role of Cardiac Magnetic Resonance to Improve Risk Prediction following Acute ST-elevation Myocardial Infarction. Journal of Clinical Medicine, 2020, 9, 1041.	1.0	37

#	Article	IF	CITATIONS
37	Aortic Stiffness and Infarct Healing in Survivors of Acute STâ€Segment–Elevation Myocardial Infarction. Journal of the American Heart Association, 2020, 9, e014740.	1.6	9
38	Prognostic implications of psoas muscle area in patients undergoing transcatheter aortic valve implantation. European Journal of Cardio-thoracic Surgery, 2019, 55, 210-216.	0.6	20
39	Intramyocardial haemorrhage and prognosis after ST-elevation myocardial infarction. European Heart Journal Cardiovascular Imaging, 2019, 20, 138-146.	0.5	70
40	Prognostic Implications of Global Longitudinal Strain by Feature-Tracking Cardiac Magnetic Resonance in ST-Elevation Myocardial Infarction. Circulation: Cardiovascular Imaging, 2019, 12, e009404.	1.3	61
41	Relationship between admission Q waves and microvascular injury in patients with ST-elevation myocardial infarction treated with primary percutaneous coronary intervention. International Journal of Cardiology, 2019, 297, 1-7.	0.8	6
42	Timeâ€Dependent Myocardial Necrosis in Patients With STâ€Segment–Elevation Myocardial Infarction Without Angiographic Collateral Flow Visualized by Cardiac Magnetic Resonance Imaging: Results From the Multicenter STEMIâ€SCAR Project. Journal of the American Heart Association, 2019, 8, e012429.	1.6	36
43	Biomarker assessment for early infarct size estimation in ST-elevation myocardial infarction. European Journal of Internal Medicine, 2019, 64, 57-62.	1.0	21
44	Impact of smoking on cardiac magnetic resonance infarct characteristics and clinical outcome in patients with non-ST-elevation myocardial infarction. International Journal of Cardiovascular Imaging, 2019, 35, 1079-1087.	0.7	3
45	Complete versus simplified Selvester QRS score for infarct severity assessment in ST-elevation myocardial infarction. BMC Cardiovascular Disorders, 2019, 19, 285.	0.7	6
46	Obesity paradox in ST-elevation myocardial infarction: is it all about infarct size?. European Heart Journal Quality of Care & Clinical Outcomes, 2019, 5, 180-182.	1.8	11
47	Prognosis-based definition of left ventricular remodeling after ST-elevation myocardial infarction. European Radiology, 2019, 29, 2330-2339.	2.3	40
48	Thyroid-stimulating hormone and adverse left ventricular remodeling following ST-segment elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2019, 8, 717-726.	0.4	9
49	ACEF score adapted to ST-elevation myocardial infarction patients: The ACEF-STEMI score. International Journal of Cardiology, 2018, 264, 18-24.	0.8	17
50	EuroSCORE II and the STS score are more accurate in transapical than in transfemoral transcatheter aortic valve implantationâ€. Interactive Cardiovascular and Thoracic Surgery, 2018, 26, 413-419.	0.5	14
51	Is MRI equivalent to CT in the guidance of TAVR? A pilot study. European Radiology, 2018, 28, 4625-4634.	2.3	26
52	Fibroblast growth factor 23 as novel biomarker for early risk stratification after ST-elevation myocardial infarction. Heart, 2017, 103, 856-862.	1.2	41
53	Acute kidney injury is associated with microvascular myocardial damage following myocardial infarction. Kidney International, 2017, 92, 743-750.	2.6	27
54	Persistent T-wave inversion predicts myocardial damage after ST-elevation myocardial infarction. International Journal of Cardiology, 2017, 241, 76-82.	0.8	14

#	Article	IF	CITATIONS
55	Relation of Lowâ€Density Lipoprotein Cholesterol With Microvascular Injury and Clinical Outcome in Revascularized STâ€Elevation Myocardial Infarction. Journal of the American Heart Association, 2017, 6, .	1.6	37
56	Prognostic Value of Aortic Stiffness in Patients After STâ€Elevation Myocardial Infarction. Journal of the American Heart Association, 2017, 6, .	1.6	31
57	Relation of inflammatory markers with myocardial and microvascular injury in patients with reperfused ST-elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2017, 6, 640-649.	0.4	58
58	Combined biomarker testing for the prediction of left ventricular remodelling in ST-elevation myocardial infarction. Open Heart, 2016, 3, e000485.	0.9	15
59	Multimarker approach for the prediction of microvascular obstruction after acute ST-segment elevation myocardial infarction: a prospective, observational study. BMC Cardiovascular Disorders, 2016, 16, 239.	0.7	18
60	Novel biomarkers predicting cardiac function after acute myocardial infarction. British Medical Bulletin, 2016, 119, 63-74.	2.7	23
61	Acute myocardial infarction as a manifestation of systemic vasculitis. Wiener Klinische Wochenschrift, 2016, 128, 841-843.	1.0	19
62	Cardiac index after acute ST-segment elevation myocardial infarction measured with phase-contrast cardiac magnetic resonance imaging. European Radiology, 2016, 26, 1999-2008.	2.3	6
63	Heart rate and left ventricular adverse remodelling after ST-elevation myocardial infarction. International Journal of Cardiology, 2016, 219, 339-344.	0.8	9
64	Utility of NT-proBNP in predicting infarct scar and left ventricular dysfunction at a chronic stage after myocardial infarction. European Journal of Internal Medicine, 2016, 29, e16-e18.	1.0	7
65	Prognostic significance of transaminases after acute ST-elevation myocardial infarction: insights from a cardiac magnetic resonance study. Wiener Klinische Wochenschrift, 2015, 127, 843-850.	1.0	11
66	<i>N</i> -Chlorotaurine Exhibits Fungicidal Activity against Therapy-Refractory Scedosporium Species and Lomentospora prolificans. Antimicrobial Agents and Chemotherapy, 2015, 59, 6454-6462.	1.4	16