Gary David Housley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6421575/publications.pdf

Version: 2024-02-01

146 papers 6,674 citations

45 h-index 76900 74 g-index

153 all docs

153 docs citations

153 times ranked 4917 citing authors

#	Article	IF	CITATIONS
1	lonic currents of outer hair cells isolated from the guineaâ€pig cochlea Journal of Physiology, 1992, 448, 73-98.	2.9	291
2	Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system. Journal of Comparative Neurology, 1999, 407, 11-32.	1.6	253
3	Brain stem projections of the glossopharyngeal nerve and its carotid sinus branch in the rat. Neuroscience, 1987, 22, 237-250.	2.3	224
4	Cellular mechanisms of noise-induced hearing loss. Hearing Research, 2017, 349, 129-137.	2.0	224
5	N -Glycolylneuraminic Acid Deficiency in Mice: Implications for Human Biology and Evolution. Molecular and Cellular Biology, 2007, 27, 4340-4346.	2.3	180
6	Purinergic signaling in special senses. Trends in Neurosciences, 2009, 32, 128-141.	8.6	174
7	Expression of the P2X ₂ Receptor Subunit of the ATP-Gated Ion Channel in the Cochlea: Implications for Sound Transduction and Auditory Neurotransmission. Journal of Neuroscience, 1999, 19, 8377-8388.	3 . 6	164
8	A Forward Genetics Screen in Mice Identifies Recessive Deafness Traits and Reveals That Pejvakin Is Essential for Outer Hair Cell Function. Journal of Neuroscience, 2007, 27, 2163-2175.	3.6	159
9	Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nature Communications, 2017, 8, 473.	12.8	134
10	Close-Field Electroporation Gene Delivery Using the Cochlear Implant Electrode Array Enhances the Bionic Ear. Science Translational Medicine, 2014, 6, 233ra54.	12.4	130
11	Localization by kainic acid lesions of neurones transmitting the carotid chemoreceptor stimulus for respiration in rat Journal of Physiology, 1988, 406, 99-114.	2.9	120
12	Mutation of the ATP-gated P2X ₂ receptor leads to progressive hearing loss and increased susceptibility to noise. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 2228-2233.	7.1	119
13	Spatiotemporal definition of neurite outgrowth, refinement and retraction in the developing mouse cochlea. Development (Cambridge), 2007, 134, 2925-2933.	2.5	115
14	Glial Promoter Selectivity following AAV-Delivery to the Immature Brain. PLoS ONE, 2013, 8, e65646.	2.5	108
15	ATP-gated ion channels mediate adaptation to elevated sound levels. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7494-7499.	7.1	100
16	Quinacrine staining of marginal cells in the stria vascularis of the guinea-pig cochlea: a possible source of extracellular ATP?. Hearing Research, 1995, 90, 97-105.	2.0	90
17	Type I vs type II spiral ganglion neurons exhibit differential survival and neuritogenesis during cochlear development. Neural Development, 2011, 6, 33.	2.4	90
18	Extracellular adenosine 5′-triphosphate (ATP) in the endolymphatic compartment influences cochlear function. Hearing Research, 1995, 90, 106-118.	2.0	81

#	Article	IF	CITATIONS
19	Hair Cells – Beyond the Transducer. Journal of Membrane Biology, 2006, 209, 89-118.	2.1	80
20	Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea. Neural Development, 2012, 7, 38.	2.4	79
21	Transient receptor potential canonical type 3 channels facilitate endothelium-derived hyperpolarization-mediated resistance artery vasodilator activity. Cardiovascular Research, 2012, 95, 439-447.	3.8	77
22	Identification of a Short Form of the P2xR1-Purinoceptor Subunit Produced by Alternative Splicing in the Pituitary and Cochlea. Biochemical and Biophysical Research Communications, 1995, 212, 501-508.	2.1	72
23	P2Y1 Receptor Modulation of the Pre-Botzinger Complex Inspiratory Rhythm Generating Network In Vitro. Journal of Neuroscience, 2007, 27, 993-1005.	3.6	72
24	Adenosine 5′-triphosphate (ATP) concentrations in the endolymph and perilymph of the guinea-pig cochlea. Hearing Research, 1995, 90, 119-125.	2.0	70
25	Purinergic Regulation of Sound Transduction and Auditory Neurotransmission. Audiology and Neuro-Otology, 2002, 7, 55-61.	1.3	70
26	Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5?-triphosphate-gated ion channel in the adult and developing rat inner ear by in situ hybridization. Journal of Comparative Neurology, 1998, 393, 403-414.	1.6	69
27	Membrane properties of type II spiral ganglion neurones identified in a neonatal rat cochlear slice. Journal of Physiology, 2003, 552, 525-533.	2.9	69
28	Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior. Neuropsychopharmacology, 2015, 40, 1969-1978.	5.4	67
29	Expression of the P2X2 receptor subunit of the ATP-gated ion channel in the retina. NeuroReport, 1997, 8, 1083-1088.	1.2	66
30	Noise induces up-regulation of P2X2 receptor subunit of ATP-gated ion channels in the rat cochlea. NeuroReport, 2003, 14, 817-823.	1.2	64
31	Electrophysiological properties and morphology of hair cells isolated from the semicircular canal of the frog. Hearing Research, 1989, 38, 259-276.	2.0	63
32	Immunohistochemical localization of adenosine 5`-triphosphate-gated ion channel P2X2 receptor subunits in adult and developing rat cochlea., 2000, 421, 289-301.		62
33	Purinergic Modulation of Cochlear Partition Resistance and Its Effect on the Endocochlear Potential in the Guinea Pig. JARO - Journal of the Association for Research in Otolaryngology, 2004, 5, 58-65.	1.8	61
34	Localization of ATP-gated ion channels in cerebellum using P2x2R subunit-specific antisera. NeuroReport, 1996, 7, 2665-2670.	1.2	60
35	Purinergic signalling in sensory systems. Seminars in Neuroscience, 1996, 8, 233-246.	2.2	60
36	P2 Receptor Excitation of Rodent Hypoglossal Motoneuron Activity (i>In Vitro (i>and (i>In Vivo (i>: A Molecular Physiological Analysis. Journal of Neuroscience, 1997, 17, 6325-6337.	3.6	60

3

#	Article	IF	Citations
37	Type II spiral ganglion afferent neurons drive medial olivocochlear reflex suppression of the cochlear amplifier. Nature Communications, 2015, 6, 7115.	12.8	60
38	Extracellular nucleotide signaling in the inner ear. Molecular Neurobiology, 1998, 16, 21-48.	4.0	56
39	Regulation of P2X2 Receptors by the Neuronal Calcium Sensor VILIP1. Science Signaling, 2008, 1, ra8.	3.6	55
40	Noise exposure induces up-regulation of ecto-nucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Neuroscience, 2004, 126, 763-773.	2.3	53
41	P2X receptor signaling inhibits BDNF-mediated spiral ganglion neuron development in the neonatal rat cochlea. Development (Cambridge), 2007, 134, 1407-1417.	2.5	51
42	Expression of the P2X ₇ Receptor Subunit of the Adenosine 5'-Triphosphate-Gated Ion Channel in the Developing and Adult Rat Cochlea. Audiology and Neuro-Otology, 2003, 8, 28-37.	1.3	50
43	Evidence for alternative splicing of ecto-ATPase associated with termination of purinergic transmission. Molecular Brain Research, 1999, 73, 85-92.	2.3	49
44	Cholinergically-induced changes: outward currents in hair cells isolated from the semicircular canal of the frog. Hearing Research, 1990, 43, 121-133.	2.0	47
45	Expression of ATP-gated ion channels by Reissner $\hat{E}^{1}\!\!/\!\!4$ s membrane epithelial cells. NeuroReport, 1998, 9, 2467-2474.	1.2	47
46	Developmental regulation of neuron-specific P2X3 receptor expression in the rat cochlea. Journal of Comparative Neurology, 2005, 484, 133-143.	1.6	47
47	Adenosine and the Auditory System. Current Neuropharmacology, 2009, 7, 246-256.	2.9	46
48	Developmentally regulated expression of the P2X3 receptor in the mouse cochlea. Histochemistry and Cell Biology, 2006, 125, 681-692.	1.7	45
49	Differential actions of isoflurane and ketamine-based anaesthetics on cochlear function in the mouse. Hearing Research, 2012, 292, 71-9.	2.0	45
50	Histamine and related substances influence neurotransmission in the semicircular canal. Hearing Research, 1988, 35, 87-97.	2.0	44
51	The acetylcholine receptors of the semicircular canal in the frog (Rana pipiens). Hearing Research, 1988, 32, 197-206.	2.0	44
52	Physiological Effects Of Extracellular Nucleotides In The Inner Ear. Clinical and Experimental Pharmacology and Physiology, 2000, 27, 575-580.	1.9	44
53	Differential distribution of adenosine receptors in rat cochlea. Cell and Tissue Research, 2007, 328, 461-471.	2.9	44
54	Fluorescence imaging of Na+ influx via P2X receptors in cochlear hair cells. Hearing Research, 1998, 119, 1-13.	2.0	43

#	Article	IF	CITATIONS
55	P2X2 receptor subunit expression in a subpopulation of cochlear type I spiral ganglion neurones. NeuroReport, 1998, 9, 279-282.	1.2	43
56	Autoradiographic labelling of P2 purinoceptors in the guinea-pig cochlea. Hearing Research, 1995, 84, 177-193.	2.0	41
57	ATP sensitivity of preBötzinger complex neurones in neonatal rat <i>in vitro</i> : mechanism underlying a P2 receptorâ€mediated increase in inspiratory frequency. Journal of Physiology, 2008, 586, 1429-1446.	2.9	41
58	Lateral line function in an antarctic fish related to the signals produced by planktonic prey. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1988, 163, 827-833.	1.6	40
59	P2X2 receptor expression by interstitial cells of Cajal in vas deferens implicated in semen emission. Autonomic Neuroscience: Basic and Clinical, 2000, 84, 147-161.	2.8	39
60	A-type potassium currents dominate repolarisation of neonatal rat primary auditory neurones in situ. Neuroscience, 2002, 109, 169-182.	2.3	39
61	Differential expression of P2Y receptors in the rat cochlea during development. Purinergic Signalling, 2010, 6, 231-248.	2.2	39
62	Recombinant Human Myelin-Associated Glycoprotein Promoter Drives Selective AAV-Mediated Transgene Expression in Oligodendrocytes. Frontiers in Molecular Neuroscience, 2016, 9, 13.	2.9	39
63	The pharmacology and kinetics of ecto-nucleotidases in the perilymphatic compartment of the guinea-pig cochlea. Hearing Research, 1998, 117, 71-80.	2.0	38
64	Post exposure administration of A1 adenosine receptor agonists attenuates noise-induced hearing loss. Hearing Research, 2010, 260, 81-88.	2.0	38
65	Uncoupling N-acetylaspartate from brain pathology: implications for Canavan disease gene therapy. Acta Neuropathologica, 2018, 135, 95-113.	7.7	38
66	Transient expression of P2X1 receptor subunits of ATP-gated ion channels in the developing rat cochlea. Developmental Brain Research, 2001, 126, 173-182.	1.7	37
67	ATP-gated ion channels assembled from P2X2 receptor subunits in the mouse cochlea. NeuroReport, 2002, 13, 1979-1984.	1.2	37
68	Reduced P2x2 receptor-mediated regulation of endocochlear potential in the ageing mouse cochlea. Purinergic Signalling, 2010, 6, 263-272.	2.2	36
69	Distribution of ectonucleoside triphosphate diphosphohydrolases 1 and 2 in rat cochlea. Hearing Research, 2002, 170, 127-138.	2.0	35
70	Scorpion toxin peptide action at the ion channel subunit level. Neuropharmacology, 2017, 127, 46-78.	4.1	35
71	ATP-gated ion channel expression in primary auditory neurones. NeuroReport, 1999, 10, 2579-2586.	1.2	34
72	A technique for slicing the rat cochlea around the onset of hearing. Journal of Neuroscience Methods, 2000, 104, 77-86.	2.5	34

#	Article	IF	CITATIONS
73	NTPDase1 and NTPDase2 Immunolocalization in Mouse Cochlea: Implications for Regulation of P2 Receptor Signaling. Journal of Histochemistry and Cytochemistry, 2002, 50, 1435-1441.	2.5	34
74	Alternative Splicing of the TRPC3 Ion Channel Calmodulin/IP ₃ Receptor-Binding Domain in the Hindbrain Enhances Cation Flux. Journal of Neuroscience, 2012, 32, 11414-11423.	3.6	34
75	Disinhibition-like behavior in a P301S mutant tau transgenic mouse model of frontotemporal dementia. Neuroscience Letters, 2016, 631, 24-29.	2.1	34
76	P2X receptor-mediated changes in cochlear potentials arising from exogenous adenosine $5\hat{a}\in^2$ -triphosphate in endolymph. Hearing Research, 1999, 138, 56-64.	2.0	32
77	Noise-induced up-regulation of NTPDase3 expression in the rat cochlea: Implications for auditory transmission and cochlear protection. Brain Research, 2006, 1104, 55-63.	2.2	32
78	Adenosine amine congener mitigates noise-induced cochlear injury. Purinergic Signalling, 2010, 6, 273-281.	2.2	32
79	Adenosine kinase inhibition in the cochlea delays the onset of age-related hearing loss. Experimental Gerontology, 2011, 46, 905-914.	2.8	32
80	Cholinergic and Purinergic Neurohumoral Signalling in the Inner Ear: A Molecular Physiological Analysis. Audiology and Neuro-Otology, 1997, 2, 92-110.	1.3	31
81	P2 receptors modulate respiratory rhythm but do not contribute to central CO2 sensitivity in vitro. Respiratory Physiology and Neurobiology, 2004, 142, 27-42.	1.6	31
82	Î ² -Hydroxybutyrate Boosts Mitochondrial and Neuronal Metabolism but is not Preferred Over Glucose Under Activated Conditions. Neurochemical Research, 2017, 42, 1710-1723.	3.3	30
83	Nicotinic acetylcholine receptor subunits expressed in rat cochlea detected by the polymerase chain reaction. Hearing Research, 1994, 75, 47-53.	2.0	29
84	Ectonucleotidase activity in the perilymphatic compartment of the guinea pig cochlea. Hearing Research, 1996, 99, 31-37.	2.0	29
85	C-terminal splicing of NTPDase2 provides distinctive catalytic properties, cellular distribution and enzyme regulation. Biochemical Journal, 2005, 385, 729-736.	3.7	29
86	ATP-gated currents in rat primary auditory neurones in situ arise from a heteromultimetric P2X receptor subunit assembly. Neuropharmacology, 2002, 42, 386-395.	4.1	28
87	TRPC-like conductance mediates restoration of intracellular Ca2+in cochlear outer hair cells in the guinea pig and rat. Journal of Physiology, 2007, 579, 101-113.	2.9	28
88	Potential Role of Purinergic Signalling in Cochlear Pathology. Audiology and Neuro-Otology, 2002, 7, 180-184.	1.3	27
89	Adenosine receptors regulate susceptibility to noise-induced neural injury in the mouse cochlea and hearing loss. Hearing Research, 2017, 345, 43-51.	2.0	27
90	Developmental expression of two-pore domain K+ channels, TASK-1 and TREK-1, in the rat cochlea. NeuroReport, 2004, 15, 437-441.	1.2	26

#	Article	IF	CITATIONS
91	Differential expression of ryanodine receptors in the rat cochlea. Neuroscience, 2006, 137, 275-286.	2.3	26
92	Positional Analysis of Guinea Pig Inner Hair Cell Membrane Conductances: Implications for Regulation of the Membrane Filter. JARO - Journal of the Association for Research in Otolaryngology, 2001, 2, 362-376.	1.8	24
93	Neuronal expression of peripherin, a type III intermediate filament protein, in the mouse hindbrain. Histochemistry and Cell Biology, 2007, 128, 541-550.	1.7	24
94	Ca2+ entry via AMPA-type glutamate receptors triggers Ca2+-induced Ca2+ release from ryanodine receptors in rat spiral ganglion neurons. Cell Calcium, 2008, 43, 356-366.	2.4	24
95	Developmental regulation of TRPC3 ion channel expression in the mouse cochlea. Histochemistry and Cell Biology, 2010, 133, 437-448.	1.7	23
96	TRPC3 ion channel subunit immunolocalization in the cochlea. Histochemistry and Cell Biology, 2010, 133, 137-147.	1.7	23
97	Type III intermediate filament peripherin inhibits neuritogenesis in type II spiral ganglion neurons in vitro. Neuroscience Letters, 2010, 478, 51-55.	2.1	21
98	In vivo characterization of the aspartyl-tRNA synthetase DARS: Homing in on the leukodystrophy HBSL. Neurobiology of Disease, 2017, 97, 24-35.	4.4	20
99	Neurotrophin gene augmentation by electrotransfer to improve cochlear implant hearing outcomes. Hearing Research, 2019, 380, 137-149.	2.0	20
100	Developmental downregulation of P2X3receptors in motoneurons of the compact formation of the nucleus ambiguus. European Journal of Neuroscience, 2005, 22, 809-824.	2.6	19
101	Expression Pattern of the Aspartyl-tRNA Synthetase DARS in the Human Brain. Frontiers in Molecular Neuroscience, 2018, 11, 81.	2.9	19
102	Evaluation of Gene Therapy as an Intervention Strategy to Treat Brain Injury from Stroke. Frontiers in Molecular Neuroscience, 2016, 9, 34.	2.9	18
103	Allosteric Modulation of Native Cochlear P2X Receptors: Insights from Comparison with Recombinant P2X ₂ Receptors. Audiology and Neuro-Otology, 2003, 8, 115-128.	1.3	17
104	Canonical transient receptor potential channel subtype 3â€mediated hair cell Ca ²⁺ entry regulates sound transduction and auditory neurotransmission. European Journal of Neuroscience, 2013, 37, 1478-1486.	2.6	17
105	Developmentally regulated expression of ectonucleotidases NTPDase5 and NTPDase6 and UDP-responsive P2Y receptors in the rat cochlea. Histochemistry and Cell Biology, 2010, 133, 425-436.	1.7	16
106	Focal Ischaemic Infarcts Expand Faster in Cerebellar Cortex than Cerebral Cortex in a Mouse Photothrombotic Stroke Model. Translational Stroke Research, 2018, 9, 643-653.	4.2	16
107	Adenosine Amine Congener as a Cochlear Rescue Agent. BioMed Research International, 2014, 2014, 1-10.	1.9	14
108	Properties of ATP-gated ion channels assembled from P2X2 subunits in mouse cochlear Reissner's membrane epithelial cells. Purinergic Signalling, 2015, 11, 551-560.	2.2	14

#	Article	IF	CITATIONS
109	Purinergic signalling: an experimental perspective. Journal of the Autonomic Nervous System, 2000, 81, 139-145.	1.9	13
110	Distribution of NTPDase5 and NTPDase6 and the regulation of P2Y receptor signalling in the rat cochlea. Purinergic Signalling, 2010, 6, 249-261.	2.2	13
111	L-Aspartate, L-Ornithine and L-Ornithine-L-Aspartate (LOLA) and Their Impact on Brain Energy Metabolism. Neurochemical Research, 2020, 45, 1438-1450.	3.3	13
112	Purinergic Signaling and Aminoglycoside Ototoxicity: The Opposing Roles of P1 (Adenosine) and P2 (ATP) Receptors on Cochlear Hair Cell Survival. Frontiers in Cellular Neuroscience, 2019, 13, 207.	3.7	12
113	Onset of hippocampal network aberration and memory deficits in P301S tau mice are associated with an early gene signature. Brain, 2020, 143, 1889-1904.	7.6	12
114	Mapping of bionic array electric field focusing in plasmid DNA-based gene electrotransfer. Gene Therapy, 2016, 23, 369-379.	4.5	11
115	Comparing perilymph proteomes across species. Laryngoscope, 2018, 128, E47-E52.	2.0	11
116	Human Brain Region-Specific Alternative Splicing of TRPC3, the Type 3 Canonical Transient Receptor Potential Non-Selective Cation Channel. Cerebellum, 2019, 18, 536-543.	2.5	11
117	Dual-Plasmid Bionic Array-Directed Gene Electrotransfer in HEK293 Cells and Cochlear Mesenchymal Cells Probes Transgene Expression and Cell Fate. Human Gene Therapy, 2019, 30, 211-224.	2.7	11
118	Role of adenosine kinase in cochlear development and response to noise. Journal of Neuroscience Research, 2010, 88, 2598-2609.	2.9	9
119	The Leukodystrophies HBSL and LBSLâ€"Correlates and Distinctions. Frontiers in Cellular Neuroscience, 2020, 14, 626610.	3.7	9
120	Nucleoside transporter expression and adenosine uptake in the rat cochlea. NeuroReport, 2007, 18, 235-239.	1.2	8
121	Neural Cell Adhesion Molecule L1 Modulates Type I But Not Type II Inner Ear Spiral Ganglion Neurite Outgrowth in an In Vitro Alternate Choice Assay. Journal of Molecular Neuroscience, 2013, 51, 663-670.	2.3	8
122	Onset kinetics of noise-induced purinergic adaptation of the †cochlear amplifierâ€. Purinergic Signalling, 2019, 15, 343-355.	2.2	8
123	Activation-dependent trafficking of NTPDase2 in Chinese hamster ovary cells. International Journal of Biochemistry and Cell Biology, 2007, 39, 810-817.	2.8	7
124	Purinergic signalling in the inner earâ€"perspectives and progress. Purinergic Signalling, 2010, 6, 151-153.	2.2	7
125	The role of GTF2IRD1 in the auditory pathology of Williams–Beuren Syndrome. European Journal of Human Genetics, 2015, 23, 774-780.	2.8	7
126	Hair cell specific NTPDase6 immunolocalisation in vestibular end organs: Potential role of purinergic signaling in vestibular sensory transduction. Journal of Vestibular Research: Equilibrium and Orientation, 2012, 22, 213-219.	2.0	6

#	Article	IF	CITATIONS
127	Loss of Central Auditory Processing in a Mouse Model of Canavan Disease. PLoS ONE, 2014, 9, e97374.	2.5	6
128	Emerging Concepts in Vector Development for Glial Gene Therapy: Implications for Leukodystrophies. Frontiers in Cellular Neuroscience, 2021, 15, 661857.	3.7	6
129	A Hypomorphic Dars1D367Y Model Recapitulates Key Aspects of the Leukodystrophy HBSL. Frontiers in Cellular Neuroscience, 2020, 14, 625879.	3.7	6
130	Localization of mRNA encoding the P2X2 receptor subunit of the adenosine 5′â€triphosphateâ€gated ion channel in the adult and developing rat inner ear by in situ hybridization. Journal of Comparative Neurology, 1998, 393, 403-414.	1.6	6
131	Preservation of cochlear function in Cd39 deficient mice. Hearing Research, 2009, 253, 77-82.	2.0	5
132	Recent insights into the regulation of breathing. Autonomic Neuroscience: Basic and Clinical, 2011, 164, 3-5.	2.8	5
133	Cochlear Implant Close-Field Electroporation. , 2016, , 1-20.		5
134	Resistance to neomycin ototoxicity in the extreme basal (hook) region of the mouse cochlea. Histochemistry and Cell Biology, 2018, 150, 281-289.	1.7	4
135	Developmental delay and late onset HBSL pathology in hypomorphic Dars1M256L mice. Neurochemical Research, 2022, 47, 1972-1984.	3.3	4
136	Brain function in antarctic fish: frequency response analysis of central vestibular units. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1990, 166, 407.	1.6	3
137	Computational Simulation of Array-based Electroporation in the Cochlea., 2018, 2018, 2462-2465.		3
138	Cochlear homeostasis: a molecular physiological perspective on maintenance of sound transduction and auditory neurotransmission with noise and ageing. Current Opinion in Physiology, 2020, 18, 106-115.	1.8	3
139	Australian Scorpion Hormurus waigiensis Venom Fractions Show Broad Bioactivity through Modulation of Bio-Impedance and Cytosolic Calcium. Biomolecules, 2020, 10, 617.	4.0	3
140	Computational Simulation Expands Understanding of Electrotransfer-Based Gene Augmentation for Enhancement of Neural Interfaces. Frontiers in Neuroscience, 2019, 13, 691.	2.8	2
141	Evidence for Ectonucleotidases in the Guinea-Pig Cochlea. , 1997, , 15-19.		2
142	Nonâ \in linear interaction between $\hat{l}\pm 1$ â \in noradrenergic and P2 receptor signaling cascades in XII motoneurons (MNs). FASEB Journal, 2007, 21, A1295.	0.5	2
143	Distribution of the P2X2 receptor subunit of the ATP-gated ion channels in the rat central nervous system., 1999, 407, 11.		1
144	Modeling Excitotoxic Ischemic Brain Injury of Cerebellar Purkinje Neurons by Intravital and In Vitro Multi-photon Laser Scanning Microscopy. Neuromethods, 2014, , 105-127.	0.3	1

#	Article	IF	CITATIONS
145	Cochlear Implant Close-Field Electroporation. , 2017, , 1679-1697.		O
146	Audiological and Surgical Correlates of Myringoplasty Associated with Ethnography in the Bay of Plenty, New Zealand. Audiology and Neuro-Otology, 2022, , 1-12.	1.3	0