Jeffrey E Gerst

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6420677/publications.pdf Version: 2024-02-01

IFFEDEV F CEDST

#	Article	IF	CITATIONS
1	An Aptamer-based mRNA Affinity Purification Procedure (RaPID) for the Identification of Associated RNAs (RaPID-seq) and Proteins (RaPID-MS) in Yeast. Bio-protocol, 2022, 12, e4274.	0.4	1
2	Multiplexed mRNA assembly into ribonucleoprotein particles plays an operon-like role in the control of yeast cell physiology. ELife, 2021, 10, .	6.0	16
3	RNA transfer through tunneling nanotubes. Biochemical Society Transactions, 2021, 49, 145-160.	3.4	16
4	A Protocol for Non-biased Identification of RNAs Transferred Between Heterologous Mammalian Cell Types Using RNA Tagging, Cell Sorting, and Sequencing. Methods in Molecular Biology, 2020, 2166, 195-214.	0.9	3
5	A secretion-enhancing cis regulatory targeting element (SECReTE) involved in mRNA localization and protein synthesis. PLoS Genetics, 2019, 15, e1008248.	3.5	23
6	Detection of mRNA Transfer Between Mammalian Cells in Coculture by Single-Molecule Fluorescent In Situ Hybridization (smFISH). Methods in Molecular Biology, 2019, 2038, 109-129.	0.9	6
7	Evolthon: A community endeavor to evolve lab evolution. PLoS Biology, 2019, 17, e3000182.	5.6	10
8	Cdc48 and ubiquilins confer selective anterograde protein sorting and entry into the multivesicular body in yeast. Molecular Biology of the Cell, 2018, 29, 948-963.	2.1	9
9	Specialized ribosomes and specific ribosomal protein paralogs control translation of mitochondrial proteins. Journal of Cell Biology, 2018, 217, 117-126.	5.2	82
10	Pimp My Ribosome: Ribosomal Protein Paralogs Specify Translational Control. Trends in Genetics, 2018, 34, 832-845.	6.7	61
11	Single-molecule Fluorescence in situ Hybridization (smFISH) for RNA Detection in Adherent Animal Cells. Bio-protocol, 2018, 8, e3070.	0.4	25
12	Localizing mRNAs Encoding Mitochondrial Proteins in Yeast by Fluorescence Microscopy and Subcellular Fractionation. Methods in Molecular Biology, 2017, 1567, 197-216.	0.9	0
13	Intercellular mRNA trafficking via membrane nanotube-like extensions in mammalian cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E9873-E9882.	7.1	75
14	An Essential Role for COPI in mRNA Localization to Mitochondria and Mitochondrial Function. Cell Reports, 2016, 15, 540-549.	6.4	41
15	A role for mRNA trafficking and localized translation in peroxisome biogenesis and function?. Biochimica Et Biophysica Acta - Molecular Cell Research, 2016, 1863, 911-921.	4.1	15
16	Use of the MS2 aptamer and coat protein for RNA localization in yeast: A response to "MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system― Rna, 2016, 22, 660-666.	3.5	53
17	Starvation-Dependent Regulation of Golgi Quality Control Links the TOR Signaling and Vacuolar Protein Sorting Pathways. Cell Reports, 2015, 12, 1876-1886.	6.4	46
18	Translation- and SRP-independent mRNA targeting to the endoplasmic reticulum in the yeast <i>Saccharomyces cerevisiae</i> . Molecular Biology of the Cell, 2013, 24, 3069-3084.	2.1	66

JEFFREY E GERST

#	Article	IF	CITATIONS
19	Scp160-Dependent mRNA Trafficking Mediates Pheromone Gradient Sensing and Chemotropism in Yeast. Cell Reports, 2012, 1, 483-494.	6.4	38
20	RaPID: An Aptamer-Based mRNA Affinity Purification Technique for the Identification of RNA and Protein Factors Present in Ribonucleoprotein Complexes. Methods in Molecular Biology, 2011, 714, 387-406.	0.9	33
21	A genomic integration method for the simultaneous visualization of endogenous mRNAs and their translation products in living yeast. Rna, 2011, 17, 2249-2255.	3.5	22
22	The yeast Batten disease orthologue Btn1 controls endosome–Golgi retrograde transport via SNARE assembly. Journal of Cell Biology, 2011, 195, 203-215.	5.2	44
23	Localization of mRNAs coding for mitochondrial proteins in the yeast <i>Saccharomyces cerevisiae</i> . Rna, 2011, 17, 1551-1565.	3.5	123
24	lsolation of mRNAs Encoding Peroxisomal Proteins from Yeast Using a Combined Cell Fractionation and Affinity Purification Procedure. Methods in Molecular Biology, 2011, 714, 323-333.	0.9	2
25	Addressing mRNAs to the ER: cis sequences act up!. Trends in Biochemical Sciences, 2010, 35, 459-469.	7.5	63
26	A novel mRNA affinity purification technique for the identification of interacting proteins and transcripts in ribonucleoprotein complexes. Rna, 2010, 16, 2277-2290.	3.5	77
27	Localization of mRNAs coding for peroxisomal proteins in the yeast, Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 19848-19853.	7.1	77
28	Phosphoinositides, exocytosis and polarity in yeast: all about actin?. Trends in Cell Biology, 2009, 19, 677-684.	7.9	22
29	m-TAG: a PCR-based genomic integration method to visualize the localization of specific endogenous mRNAs in vivo in yeast. Nature Protocols, 2009, 4, 1274-1284.	12.0	41
30	Message on the web: mRNA and ER co-trafficking. Trends in Cell Biology, 2008, 18, 68-76.	7.9	46
31	mRNAs Encoding Polarity and Exocytosis Factors Are Cotransported with the Cortical Endoplasmic Reticulum to the Incipient Bud in Saccharomyces cerevisiae. Molecular and Cellular Biology, 2007, 27, 3441-3455.	2.3	120
32	Involvement of Specific COPI Subunits in Protein Sorting from the Late Endosome to the Vacuole in Yeast. Molecular and Cellular Biology, 2007, 27, 526-540.	2.3	61
33	Btn2, a Hook1 Ortholog and Potential Batten Disease-Related Protein, Mediates Late Endosome-Golgi Protein SortinginYeast. Molecular and Cellular Biology, 2007, 27, 605-621.	2.3	68
34	A genomic integration method to visualize localization of endogenous mRNAs in living yeast. Nature Methods, 2007, 4, 409-412.	19.0	110
35	Ddi1, a Eukaryotic Protein With the Retroviral Protease Fold. Journal of Molecular Biology, 2006, 364, 376-387.	4.2	78
36	Mso1 Is a Novel Component of the Yeast Exocytic SNARE Complex. Journal of Biological Chemistry, 2005, 280, 34033-34041.	3.4	13

JEFFREY E GERST

#	Article	IF	CITATIONS
37	Involvement of the Late Secretory Pathway in Actin Regulation and mRNA Transport in Yeast. Journal of Biological Chemistry, 2004, 279, 36962-36971.	3.4	47
38	SNARE regulators: matchmakers and matchbreakers. Biochimica Et Biophysica Acta - Molecular Cell Research, 2003, 1641, 99-110.	4.1	82
39	Phosphorylation of the Autoinhibitory Domain of the Sso t-SNAREs Promotes Binding of the Vsm1 SNARE Regulator in Yeast. Molecular Biology of the Cell, 2003, 14, 3114-3125.	2.1	35
40	t-SNARE Phosphorylation Regulates Endocytosis in Yeast. Molecular Biology of the Cell, 2002, 13, 1594-1607.	2.1	41
41	YOS9, the Putative Yeast Homolog of a Gene Amplified in Osteosarcomas, Is Involved in the Endoplasmic Reticulum (ER)-Golgi Transport of GPI-anchored Proteins. Journal of Biological Chemistry, 2002, 277, 35274-35281.	3.4	43
42	Dynamin and clathrin are required for the biogenesis of a distinct class of secretory vesicles in yeast. EMBO Journal, 2002, 21, 602-614.	7.8	99
43	Yeast Exocytic v-SNAREs Confer Endocytosis. Molecular Biology of the Cell, 2000, 11, 3629-3643.	2.1	66
44	Yeast <i>VSM1</i> Encodes a v-SNARE Binding Protein That May Act as a Negative Regulator of Constitutive Exocytosis. Molecular and Cellular Biology, 1999, 19, 4480-4494.	2.3	58
45	Involvement of Long Chain Fatty Acid Elongation in the Trafficking of Secretory Vesicles in Yeast. Journal of Cell Biology, 1998, 143, 1167-1182.	5.2	121
46	Conserved α-Helical Segments on Yeast Homologs of the Synaptobrevin/VAMP Family of v-SNAREs Mediate Exocytic Function. Journal of Biological Chemistry, 1997, 272, 16591-16598.	3.4	29
47	Identification of a Novel Ca2+-dependent, Phosphatidylethanolamine-hydrolyzing Phospholipase D in Yeast Bearing a Disruption in PLD1. Journal of Biological Chemistry, 1997, 272, 36-39.	3.4	78
48	Identification and Characterization of a Gene Encoding Phospholipase D Activity in Yeast. Journal of Biological Chemistry, 1996, 271, 2361-2364.	3.4	142
49	Two Separate Functions Are Encoded by the Carboxyl-terminal Domains of the Yeast Cyclase-associated Protein and Its Mammalian Homologs. Journal of Biological Chemistry, 1996, 271, 18243-18252.	3.4	57
50	Homologs of the synaptobrevin/VAMP family of synaptic vesicle proteins function on the late secretory pathway in S. cerevisiae. Cell, 1993, 74, 855-861.	28.9	312
51	Evidence for a functional link between profilin and CAP in the yeast S. cerevisiae. Cell, 1991, 66, 497-505.	28.9	206
52	Phorbol ester impairs melanotropin receptor function and stimulates growth of cultured M2R melanoma cells. European Journal of Pharmacology, 1989, 172, 29-39.	2.6	5
53	Regulation of adenylate cyclase by β-melanotropin in the M2R melanoma cell line. Molecular and Cellular Endocrinology, 1986, 46, 137-147.	3.2	47