Sriram Chandrasekaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6417744/publications.pdf

Version: 2024-02-01

48 papers

2,099 citations

331670 21 h-index 42 g-index

63 all docs 63 docs citations

63 times ranked

3654 citing authors

#	Article	IF	CITATIONS
1	Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in <i>Escherichia coli</i> and <i>Mycobacterium tuberculosis</i> of Sciences of the National Academy of Sciences of the United States of America, 2010, 107, 17845-17850.	7.1	378
2	LIN28 Regulates Stem Cell Metabolism and Conversion to Primed Pluripotency. Cell Stem Cell, 2016, 19, 66-80.	11.1	278
3	Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 18020-18025.	7.1	156
4	Purine metabolism regulates DNA repair and therapy resistance in glioblastoma. Nature Communications, 2020, 11, 3811.	12.8	103
5	Molecular signatures from omics data: From chaos to consensus. Biotechnology Journal, 2012, 7, 946-957.	3.5	101
6	Chemogenomics and orthologyâ€based design of antibiotic combination therapies. Molecular Systems Biology, 2016, 12, 872.	7.2	96
7	A systemâ€level model for the microbial regulatory genome. Molecular Systems Biology, 2014, 10, 740.	7.2	64
8	Comprehensive Mapping of Pluripotent Stem Cell Metabolism Using Dynamic Genome-Scale Network Modeling. Cell Reports, 2017, 21, 2965-2977.	6.4	61
9	Aggression is associated with aerobic glycolysis inÂtheÂhoney bee brain ¹ . Genes, Brain and Behavior, 2015, 14, 158-166.	2.2	59
10	Behavioral, transcriptomic and epigenetic responses to social challenge in honey bees. Genes, Brain and Behavior, 2017, 16, 579-591.	2.2	57
11	Granzyme B Disrupts Central Metabolism and Protein Synthesis in Bacteria to Promote an Immune Cell Death Program. Cell, 2017, 171, 1125-1137.e11.	28.9	56
12	Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. Genome Research, 2017, 27, 959-972.	5 . 5	54
13	Temporal dynamics of neurogenomic plasticity in response to social interactions in male threespined sticklebacks. PLoS Genetics, 2017, 13, e1006840.	3 . 5	52
14	Dissecting Murine Muscle Stem Cell Aging through Regeneration Using Integrative Genomic Analysis. Cell Reports, 2020, 32, 107964.	6.4	49
15	Metabolic remodelling during early mouse embryo development. Nature Metabolism, 2021, 3, 1372-1384.	11.9	45
16	Transcriptomic Signatures Predict Regulators of Drug Synergy and Clinical Regimen Efficacy against Tuberculosis. MBio, 2019, 10, .	4.1	37
17	Tissue of origin dictates GOT1 dependence and confers synthetic lethality to radiotherapy. Cancer & Metabolism, 2020, 8, 1.	5.0	34
18	Genome-scale network model of metabolism and histone acetylation reveals metabolic dependencies of histone deacetylase inhibitors. Genome Biology, 2019, 20, 49.	8.8	33

#	Article	IF	CITATIONS
19	Metabolic Constraint-Based Refinement of Transcriptional Regulatory Networks. PLoS Computational Biology, 2013, 9, e1003370.	3.2	31
20	Chemogenomic model identifies synergistic drug combinations robust to the pathogen microenvironment. PLoS Computational Biology, 2018, 14, e1006677.	3.2	31
21	Crossâ€species systems analysis of evolutionary toolkits of neurogenomic response to social challenge. Genes, Brain and Behavior, 2019, 18, e12502.	2.2	30
22	Metabolism, HDACs, and HDAC Inhibitors: A Systems Biology Perspective. Metabolites, 2021, 11, 792.	2.9	28
23	Individual differences in honey bee behavior enabled by plasticity in brain gene regulatory networks. ELife, 2020, 9, .	6.0	27
24	The deacylase SIRT5 supports melanoma viability by influencing chromatin dynamics. Journal of Clinical Investigation, 2021, 131, .	8.2	23
25	Dynamic Network Modeling of Stem Cell Metabolism. Methods in Molecular Biology, 2019, 1975, 305-320.	0.9	21
26	Honey bee neurogenomic responses to affiliative and agonistic social interactions. Genes, Brain and Behavior, 2019, 18, e12509.	2.2	20
27	Next-Generation Genome-Scale Metabolic Modeling through Integration of Regulatory Mechanisms. Metabolites, 2021, 11, 606.	2.9	18
28	A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs. Scientific Reports, 2021, 11, 5643.	3.3	15
29	A Guide to Integrating Transcriptional Regulatory and Metabolic Networks Using PROM (Probabilistic) Tj ETQq1 1	0,784314	· rgBT /Overle
30	Dynamic genome-scale cell-specific metabolic models reveal novel inter-cellular and intra-cellular metabolic communications during ovarian follicle development. BMC Bioinformatics, 2019, 20, 307.	2.6	13
31	Structure and function of gene regulatory networks associated with worker sterility in honeybees. Ecology and Evolution, 2016, 6, 1692-1701.	1.9	12
32	Acetyl-CoA metabolism drives epigenome change and contributes to carcinogenesis risk in fatty liver disease. Genome Medicine, 2022, 14 , .	8.2	12
33	Systems biology of embryogenesis. Reproduction, Fertility and Development, 2010, 22, 98.	0.4	10
34	Common biochemical properties of metabolic genes recurrently dysregulated in tumors. Cancer & Metabolism, 2020, 8, 5.	5.0	9
35	Nutrient Sensing by Histone Marks: Reading the Metabolic Histone Code Using Tracing, Omics, and Modeling. BioEssays, 2020, 42, e2000083.	2.5	9
36	Metabolic signatures of regulation by phosphorylation and acetylation. IScience, 2022, 25, 103730.	4.1	8

#	Article	IF	CITATIONS
37	Inferring Metabolic Flux from Time-Course Metabolomics. Methods in Molecular Biology, 2020, 2088, 299-313.	0.9	7
38	Brain \hat{l}_{\pm} -Tocopherol Concentration and Stereoisomer Profile Alter Hippocampal Gene Expression in Weanling Mice. Journal of Nutrition, 2020, 150, 3075-3085.	2.9	6
39	Machine learning to design antimicrobial combination therapies: Promises and pitfalls. Drug Discovery Today, 2022, 27, 1639-1651.	6.4	6
40	A Protocol for the Construction and Curation of Genome-Scale Integrated Metabolic and Regulatory Network Models. Methods in Molecular Biology, 2019, 1927, 203-214.	0.9	5
41	Lipid exposure activates gene expression changes associated with estrogen receptor negative breast cancer. Npj Breast Cancer, 2022, 8, 59.	5.2	4
42	On the automatic generation of the minimally restrictive liveness enforcing supervisory policy for manufacturing- and service-systems modeled by a class of general Free Choice Petri nets. , $2013, \ldots$		3
43	Predicting Drug Interactions From Chemogenomics Using INDIGO. Methods in Molecular Biology, 2019, 1888, 219-231.	0.9	3
44	The Axes of Life: A Roadmap for Understanding Dynamic Multiscale Systems. Integrative and Comparative Biology, 2021, , .	2.0	3
45	Predicting Phenotype from Genotype Through Reconstruction and Integrative Modeling of Metabolic and Regulatory Networks., 2014,, 307-325.		2
46	Deep Learning for Reintegrating Biology. Integrative and Comparative Biology, 2021, , .	2.0	2
47	An experimental investigation of flow parameters inside a spherical swirl pre-chamber of a diesel engine under motoring condition. Experiments in Fluids, 1998, 24, 462-469.	2.4	1
48	Tying Metabolic Branches With Histone Tails Using Systems Biology. Epigenetics Insights, 2019, 12, 251686571986968.	2.0	1