
Chui-Hua Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6417622/publications.pdf Version: 2024-02-01

Сниц-Нил Комс

#	Article	IF	CITATIONS
1	Urease, invertase, dehydrogenase and polyphenoloxidase activities in paddy soil influenced by allelopathic rice variety. European Journal of Soil Biology, 2009, 45, 436-441.	3.2	193
2	Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nature Communications, 2018, 9, 3867.	12.8	170
3	Echinochloa crus-galli genome analysis provides insight into its adaptation and invasiveness as a weed. Nature Communications, 2017, 8, 1031.	12.8	138
4	Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. Phytochemistry, 2004, 65, 1123-1128.	2.9	116
5	Release and Activity of Allelochemicals from Allelopathic Rice Seedlings. Journal of Agricultural and Food Chemistry, 2004, 52, 2861-2865.	5.2	113
6	Impact of allelochemical exuded from allelopathic rice on soil microbial community. Soil Biology and Biochemistry, 2008, 40, 1862-1869.	8.8	113
7	Allelochemicals released by rice roots and residues in soil. Plant and Soil, 2006, 288, 47-56.	3.7	112
8	Allelochemicals and Signaling Chemicals in Plants. Molecules, 2019, 24, 2737.	3.8	108
9	Root exudate signals in plant–plant interactions. Plant, Cell and Environment, 2021, 44, 1044-1058.	5.7	101
10	Rhizosphere isoflavones (daidzein and genistein) levels and their relation to the microbial community structure of mono-cropped soybean soil in field and controlled conditions. Soil Biology and Biochemistry, 2011, 43, 2257-2264.	8.8	91
11	Enhanced removal of p-nitrophenol in a microbial fuel cell after long-term operation and the catabolic versatility of its microbial community. Chemical Engineering Journal, 2018, 339, 424-431.	12.7	90
12	Activity and Allelopathy of Soil of FlavoneO-Glycosides from Rice. Journal of Agricultural and Food Chemistry, 2007, 55, 6007-6012.	5.2	74
13	Allelopathic potential and chemical constituents of volatiles from Ageratum conyzoides under stress. Journal of Chemical Ecology, 2002, 28, 1173-1182.	1.8	70
14	Breeding of commercially acceptable allelopathic rice cultivars in China. Pest Management Science, 2011, 67, 1100-1106.	3.4	67
15	Developing an ecological context for allelopathy. Plant Ecology, 2012, 213, 1221-1227.	1.6	66
16	5-Fluorouracil Derivatives from the SpongePhakellia fusca. Journal of Natural Products, 2003, 66, 285-288.	3.0	60
17	Distribution and Function of Allantoin (5-Ureidohydantoin) in Rice Grains. Journal of Agricultural and Food Chemistry, 2012, 60, 2793-2798.	5.2	60
18	A broadleaf species enhances an autotoxic conifers growth through belowground chemical interactions. Ecology, 2016, 97, 2283-2292.	3.2	58

Сниі-Ниа Колд

#	Article	IF	CITATIONS
19	Herbicidal potential of allelochemicals from Lantana camara against Eichhornia crassipes and the alga Microcystis aeruginosa. Weed Research, 2006, 46, 290-295.	1.7	57
20	Kin recognition in rice (<i>Oryza sativa</i>) lines. New Phytologist, 2018, 220, 567-578.	7.3	57
21	Allelopathic interference of Ambrosia trifida with wheat (Triticum aestivum). Agriculture, Ecosystems and Environment, 2007, 119, 416-420.	5.3	56
22	Crabgrass (Digitaria sanguinalis) Allelochemicals That Interfere with Crop Growth and the Soil Microbial Community. Journal of Agricultural and Food Chemistry, 2013, 61, 5310-5317.	5.2	55
23	Allelopathic Potential and Chemical Constituents of Volatile Oil from Ageratum conyzoides. Journal of Chemical Ecology, 1999, 25, 2347-2356.	1.8	45
24	Effect of allelopathic rice varieties combined with cultural management options on paddy field weeds. Pest Management Science, 2008, 64, 276-282.	3.4	44
25	Interference of allelopathic wheat with different weeds. Pest Management Science, 2016, 72, 172-178.	3.4	44
26	Discovery of (2-benzoylethen-1-ol)-containing 1,2-benzothiazine derivatives as novel 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibiting-based herbicide lead compounds. Bioorganic and Medicinal Chemistry, 2016, 24, 92-103.	3.0	43
27	Fate and Impact on Microorganisms of Rice Allelochemicals in Paddy Soil. Journal of Agricultural and Food Chemistry, 2008, 56, 5043-5049.	5.2	42
28	Allelochemical tricin in rice hull and its aurone isomer against rice seedling rot disease. Pest Management Science, 2010, 66, 1018-1024.	3.4	42
29	Elimination of pyraclostrobin by simultaneous microbial degradation coupled with the Fenton process in microbial fuel cells and the microbial community. Bioresource Technology, 2018, 258, 227-233.	9.6	42
30	2,4-Dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 6-Methoxy-benzoxazolin-2-one (MBOA) Levels in the Wheat Rhizosphere and Their Effect on the Soil Microbial Community Structure. Journal of Agricultural and Food Chemistry, 2010, 58, 12710-12716.	5.2	41
31	Allelochemicals and Activities in a Replanted Chinese Fir (Cunninghamia lanceolata (Lamb.) Hook) Tree Ecosystem. Journal of Agricultural and Food Chemistry, 2008, 56, 11734-11739.	5.2	39
32	Autoinhibition and soil allelochemical (cyclic dipeptide) levels in replanted Chinese fir (Cunninghamia) Tj ETQq0 () 0 ₃ rgBT /(Overlock 10 T
33	Volatile Allelochemicals in the Ageratum conyzoides Intercropped Citrus Orchard and their Effects on Mites Amblyseius newsami and Panonychus citri. Journal of Chemical Ecology, 2005, 31, 2193-2203.	1.8	37
34	Developing an ecological context for allelopathy. Plant Ecology, 2012, 213, 1861-1867.	1.6	37
35	Allelochemicals and their transformations in the Ageratum conyzoides intercropped citrus orchard soils. Plant and Soil, 2004, 264, 149-157.	3.7	36

36Allantoin involved in species interactions with rice and other organisms in paddy soil. Plant and Soil,
2007, 296, 43-51.3.736

Сниі-Ниа Колд

#	Article	IF	CITATIONS
37	Temporal variation of soil friedelin and microbial community under different land uses in a long-term agroecosystem. Soil Biology and Biochemistry, 2014, 69, 275-281.	8.8	33
38	Chemical Composition and Antimicrobial Activity of the Essential Oil from Ambrosia trifida L Molecules, 2006, 11, 549-555.	3.8	31
39	Effect of larch (Larix gmelini Rupr.) root exudates on Manchurian walnut (Juglans mandshurica) Tj ETQq1 1 0.784	4314 rgBT 3.7	/Overlock 10
40	Allelobiosis in the interference of allelopathic wheat with weeds. Pest Management Science, 2016, 72, 2146-2153.	3.4	31
41	Intraâ€specific kin recognition contributes to interâ€specific allelopathy: A case study of allelopathic rice interference with paddy weeds. Plant, Cell and Environment, 2021, 44, 3709-3721.	5.7	31
42	Allelochemical-mediated soil microbial community in long-term monospecific Chinese fir forest plantations. Applied Soil Ecology, 2015, 96, 52-59.	4.3	30
43	Ecological pest management and control by using allelopathic weeds (<i>Ageratum conyzoides</i> ,) Tj ETQq1 1 and Management, 2010, 10, 73-80.	0.784314 1.4	rgBT /Over 29
44	Interference of allelopathic rice with paddy weeds at the root level. Plant Biology, 2017, 19, 584-591.	3.8	29
45	Using specific secondary metabolites as markers to evaluate allelopathic potentials of rice varieties and individual plants. Science Bulletin, 2002, 47, 839.	1.7	27
46	Allantoin-induced changes of microbial diversity and community in rice soil. Plant and Soil, 2010, 332, 357-368.	3.7	25
47	The levels of jasmonic acid and salicylic acid in a rice-barnyardgrass coexistence system and their relation to rice allelochemicals. Biochemical Systematics and Ecology, 2011, 39, 491-497.	1.3	25
48	Synthesis and herbicidal potential of substituted aurones. Pest Management Science, 2012, 68, 1512-1522.	3.4	24
49	Mobility and Microbial Activity of Allelochemicals in Soil. Journal of Agricultural and Food Chemistry, 2013, 61, 5072-5079.	5.2	22
50	Plant-soil feedback in the interference of allelopathic rice with barnyardgrass. Plant and Soil, 2014, 377, 309-321.	3.7	21
51	(-)-Loliolide, the most ubiquitous lactone, is involved in barnyardgrass-induced rice allelopathy. Journal of Experimental Botany, 2019, 71, 1540-1550.	4.8	21
52	The response of allelopathic rice growth and microbial feedback to barnyardgrass infestation in a paddy field experiment. European Journal of Soil Biology, 2013, 56, 26-32.	3.2	19
53	Response and relation of allantoin production in different rice cultivars to competing barnyardgrass. Plant Ecology, 2012, 213, 1917-1926.	1.6	16
54	Chemical constituents of the essential oils of wild oat and crabgrass and their effects on the growth and allelochemical production of wheat. Weed Biology and Management, 2013, 13, 62-69.	1.4	16

Сниі-Ниа Колд

#	Article	IF	CITATIONS
55	Interference of allelopathic rice with penoxsulamâ€resistant barnyardgrass. Pest Management Science, 2017, 73, 2310-2317.	3.4	14
56	Geographical traceability of Eucommia ulmoides leaves using attenuated total reflection Fourier transform infrared and ultraviolet-visible spectroscopy combined with chemometrics and data fusion. Industrial Crops and Products, 2021, 160, 113090.	5.2	14
57	A Novel Diterpenoid from the Soft Coral <i>Sarcophyton crassocaule</i> . Chinese Journal of Chemistry, 2003, 21, 1506-1509.	4.9	12
58	Effect of allelochemical tricin and its related benzothiazine derivative on photosynthetic performance of herbicide-resistant barnyardgrass. Pesticide Biochemistry and Physiology, 2017, 143, 224-230.	3.6	11
59	Synthesis, fungicidal activity and structure-activity relationships of 3-benzoyl-4-hydroxylcoumarin derivatives. Pest Management Science, 2016, 72, 1381-1389.	3.4	10
60	Herbicidal efficacy and ecological safety of an allelochemicalâ€based benzothiazine derivative. Pest Management Science, 2019, 75, 2690-2697.	3.4	10
61	Reproduction allocation and potential mechanism of individual allelopathic rice plants in the presence of competing barnyardgrass. Pest Management Science, 2013, 69, 142-148.	3.4	7
62	Introduction to the special issue on allelopathy. Plant Ecology, 2012, 213, 1857-1859.	1.6	6
63	Mechanism of Aulacophora femoralis chinensis Weise feeding behavior and chemical response of host Cucumis sativus L Science Bulletin, 2004, 49, 1485.	1.7	5