List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6416456/publications.pdf Version: 2024-02-01

RUXANCUL IAMAL

#	Article	IF	CITATIONS
1	Enhanced electrocatalytic performance of hydroxyl‑grafted PProDOT:PSS/YRFC/Pt composites for direct alcohol fuel cells. Electrochimica Acta, 2022, 403, 139724.	5.2	2
2	Construction of thiol-grafted PProDOT/yolk shell carbon sphere/Pt hybrid catalyst for methanol oxidation. Materials Letters, 2022, 309, 131437.	2.6	2
3	Self-powered TiO2 NRs UV photodetectors: Heterojunction with PTTh and enhanced responsivity by Au nanoparticles. Journal of Alloys and Compounds, 2022, 899, 163279.	5.5	37
4	Electrochemical synthesis of Zinc oxide/polymer/phosphotungstic acid composites for a UV detector. Polish Journal of Chemical Technology, 2022, 24, 7-14.	0.5	1
5	Preparation of Co/N-CNT@poly(3,4-ethylenedioxythiophene)–NH2/Pt as an efficient catalyst for ethanol oxidation reaction. Applied Surface Science, 2022, 591, 153139.	6.1	4
6	Ultraviolet sensor-based TiO2 nanorods/PProDOT-Pz conducting polymer using different bias voltage. Optical Materials, 2022, 129, 112477.	3.6	2
7	Electrochemical synthesis of hydroxyl group-functionalized PProDOT/ZnO for an ultraviolet photodetector. RSC Advances, 2021, 11, 15825-15834.	3.6	3
8	Preparation of thiol-grafted poly(3,4-ethylenedioxythiophene)/yolk–shell carbon sphere/Au composites for the simultaneous detection of caffeic acid and levofloxacin. Journal of Materials Chemistry C, 2021, 9, 13876-13885.	5.5	5
9	Synthesis of poly (3,4-ethylenedioxythiophene)/sulfonated cellulose composites in different systems for the electrochemical sensing of paracetamol. Cellulose, 2021, 28, 5559.	4.9	5
10	Carboxylated Cellulose as a Soft Template Combined with PEDOT Derivatives in [BMIM]Cl: A Competent Biosensor for Detection of Guanine and Uric Acid in the Blood. ACS Sustainable Chemistry and Engineering, 2021, 9, 5860-5871.	6.7	7
11	Electrochemical Sensor for Detection of Paracetamol Based on Pendent Nitrogen Heterocyclic Ringâ€Functionalized Polyterthiophene Derivatives. ChemistrySelect, 2021, 6, 4473-4481.	1.5	4
12	Preparation of PEDOT-modified double-layered hollow carbon spheres as Pt catalyst support for methanol oxidation. International Journal of Hydrogen Energy, 2021, 46, 31623-31633.	7.1	13
13	Electrochemical Preparation of ZnO/PEDOTâ€Type Conducting Polymers Composites for Ultraviolet Photodetector. ChemistrySelect, 2021, 6, 9427-9434.	1.5	2
14	One-pot self-assembly preparation of thiol-functionalized poly(3,4-ethylenedioxythiophene) hollow nanosphere/Au composites, and their electrocatalytic properties. RSC Advances, 2021, 11, 33425-33430.	3.6	2
15	Ultraviolet photodetectors based on TiO2 nanorod arrays/PEDOT-type conducting polymers. Optical Materials, 2021, 122, 111805.	3.6	13
16	Electrochemical sensor formed from poly(3,4-ethylenedioxyselenophene) and nitrogen-doped graphene composite for dopamine detection. RSC Advances, 2021, 11, 37544-37551.	3.6	5
17	The pendent thiol group grafed poly(3,4-proplenedioxythiophene) hollow nanofiber for electrochemical sensing. Materials Letters, 2020, 263, 127206.	2.6	1
18	PEDOT-Type Conducting Polymers/Black TiO ₂ Composites for Electrochemical Determination of Cd ²⁺ and Pb ²⁺ . Journal of the Electrochemical Society, 2020, 167, 067514.	2.9	12

#	Article	IF	CITATIONS
19	Electrochemical synthesis of multilayered PEDOT/PEDOT-SH/Au nanocomposites for electrochemical sensing of nitrite. Mikrochimica Acta, 2020, 187, 248.	5.0	32
20	Functionalized PProDOT@nitrogen-doped carbon hollow spheres composites for electrochemical sensing of tryptophan. Carbon, 2020, 161, 842-855.	10.3	29
21	Self-assembly of pendant functional groups grafted PEDOT as paracetamol detection material. Physical Chemistry Chemical Physics, 2020, 22, 3592-3603.	2.8	5
22	Composites of thiol-grafted PEDOT with N-doped graphene or graphitic carbon nitride as an electrochemical sensor for the detection of paracetamol. Journal of Materials Science, 2020, 55, 5571-5586.	3.7	27
23	Preparation and photocatalytic activity of pendant heteroaryl groups (pyrimidine and pyridine) grafted polyterthiophene/TiO2 composites. Materials Express, 2020, 10, 1877-1891.	0.5	1
24	Poly(3,4â€Propylenedioxythiophene) Capsulated Yolk–Shell Carbon Spheres for Highâ€Performance Electrochemical Capacitors. Polymer Composites, 2019, 40, 1989-1999.	4.6	9
25	Electrochemical Sensor of Double-Thiol Linked PProDOT@Si Composite for Simultaneous Detection of Cd(II), Pb(II), and Hg(II). Polymers, 2019, 11, 815.	4.5	15
26	A bromine-catalysis-synthesized poly(3,4-ethylenedioxythiophene)/graphitic carbon nitride electrochemical sensor for heavy metal ion determination. RSC Advances, 2019, 9, 34691-34698.	3.6	14
27	Hollow, Spherical, Poly(3,4-ethylenedioxythiophene)-Bearing Methanethiol as a Gold Stabilizer for High-Efficiency Electrochemical Sensors. Journal of the Electrochemical Society, 2018, 165, B335-B343.	2.9	12
28	Poly(EDOT-pyridine-EDOT) and poly(EDOT-pyridazine-EDOT) hollow nanosphere materials for the electrochemical detection of Pb2+and Cu2+. Journal of Electroanalytical Chemistry, 2018, 822, 112-122.	3.8	26
29	An Electrochemical Sensor of Poly(EDOT-pyridine-EDOT)/Graphitic Carbon Nitride Composite for Simultaneous Detection of Cd2+ and Pb2+. Materials, 2018, 11, 702.	2.9	31
30	Structure and photocatalytic activity of a low band gap donor–acceptor–donor (D–A–D) type conjugated polymer: poly(EDOT–pyridazine–EDOT). RSC Advances, 2017, 7, 1877-1886.	3.6	15
31	A donor–acceptor–donor-type conjugated polymer-modified TiO2 with enhanced photocatalytic activity under simulated sunlight and natural sunlight. Journal of Materials Science, 2017, 52, 4820-4832.	3.7	8
32	Synthesis of monodispersed PEDOT/Au hollow nanospheres and its application for electrochemical determination of dopamine and uric acid. Journal of Electroanalytical Chemistry, 2017, 787, 110-117.	3.8	30
33	Photodegradation of methylene blue by photocatalyst of D-A-D type polymer/functionalized multi-walled carbon nanotubes composite under visible-light irradiation. Chemosphere, 2017, 168, 1669-1676.	8.2	14
34	Solid-State Heating Synthesis of Poly (3,4-Ethylenedioxythiophene)/Gold/Graphene Composite and Its Application for Amperometric Determination of Nitrite and Iodate. Nanoscale Research Letters, 2017, 12, 568.	5.7	9
35	The structure and electrochemical properties of poly(3,4-propylenedioxythiophene)/SnO2 nanocomposites synthesized by mechanochemical route. Polymer Composites, 2016, 37, 2884-2896.	4.6	7
36	Synthesis of poly(3,4-propylenedioxythiophene)/MnO2 composites and their applications in the adsorptive removal of methylene blue. Progress in Natural Science: Materials International, 2016, 26, 32-40.	4.4	55

#	Article	IF	CITATIONS
37	Preparation of PEDOT/GO, PEDOT/MnO2, and PEDOT/GO/MnO2 nanocomposites and their application in catalytic degradation of methylene blue. Nanoscale Research Letters, 2015, 10, 148.	5.7	86
38	Functionalization of Graphene Oxide and its Composite with Poly(3,4-ethylenedioxythiophene) as Electrode Material for Supercapacitors. Nanoscale Research Letters, 2015, 10, 370.	5.7	45
39	The structure and photocatalytic performances of mechanically synthesized poly(3′,4′â€ethylenedioxyâ€₂,2′:5′,2″â€Terthiophene)/Zno composites. Polymer Composites, 2015	5, 36 , 159:	7-9605.
40	The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Research Letters, 2014, 9, 557.	5.7	180
41	Solid-State Synthesis and Photocatalytic Activity of Polyterthiophene Derivatives/TiO2 Nanocomposites. Materials, 2014, 7, 3786-3801.	2.9	42
42	A facile solid-state heating method for preparation of poly(3,4-ethelenedioxythiophene)/ZnO nanocomposite and photocatalytic activity. Nanoscale Research Letters, 2014, 9, 89.	5.7	65
43	The study on the application of solid-state method for synthesizing the polyaniline/noble metal (Au or) Tj ETQq1	0.78431 5.7	4 rgBT /Over
44	The mechanochemical synthesis of poly(3′,4′-ethylenedioxy-2,2′:5′,2″-terthiophene)/graphene nano composites and the electrochemical performance. Electrochimica Acta, 2013, 113, 382-389.	oplatelet 5.2	7
45	Structure and properties of solid-state synthesized poly(3,4-propylenedioxythiophene)/nano-ZnO composite. Progress in Natural Science: Materials International, 2013, 23, 524-531.	4.4	23
46	Comparative study on poly(3,4-propylenedioxythiophene)/TiO2 nanocomposites synthesized by mechanochemical and chemical solution methods. Synthetic Metals, 2013, 179, 54-59.	3.9	11
47	Characterization and electrochemical properties of poly(aniline-co-o-methoxyaniline)/multi-walled carbon nanotubes composites synthesized by solid-state method. Fibers and Polymers, 2013, 14, 8-15.	2.1	11
48	Comparison of structure and electrochemical properties for PANI/TiO2/G and PANI/G composites synthesized by mechanochemical route. Journal of Materials Research, 2013, 28, 832-839.	2.6	10
49	The Effect of a Small Amount of Water on the Structure and Electrochemical Properties of Solid-State Synthesized Polyaniline. Materials, 2012, 5, 1811-1825.	2.9	130
50	Solid-State Synthesis of Polyaniline/Single-Walled Carbon Nanotubes: A Comparative Study with Polyaniline/Multi-Walled Carbon Nanotubes. Materials, 2012, 5, 1219-1231.	2.9	22
51	The effect of solvents and organic acids on the p-doping behaviors of poly(3′,4′-Ethylenedioxy-2,2′:5′,2″-terthiophene). Polymer Science - Series B, 2012, 54, 413-419.	0.8	10
52	Electrochemical properties of the poly(3,4-ethylenedioxythiophene)/single-walled carbon nanotubes composite synthesized by solid-state heating method. Synthetic Metals, 2012, 162, 1604-1608.	3.9	33
53	Solid-State Synthesis of Poly(3',4'-dimethoxy-2,2':5',2"- terthiophene): Comparison With Poly(terthiophene) and Poly(3',4'-ethylenedioxy-2,2':5',2"- terthiophene). Molecules, 2012, 17, 8647-8660.	3.8	13
54	Solidâ€state synthesis and characterization of polyaniline/nanoâ€TiO ₂ composite. Journal of Applied Polymer Science, 2012, 126, 697-705.	2.6	18

#	Article	IF	CITATIONS
55	Solid-state synthesis and characterization of polyaniline/multi-walled carbon nanotubes composite. Synthetic Metals, 2011, 161, 2097-2102.	3.9	45
56	Structure and properties of solid-state synthesized poly(3′,4′-ethylenedioxy-2,2′:5′,2″-terthiophene) Synthetic Metals, 2010, 160, 325-332.	·3.9	33
57	Comparative studies of solid-state synthesized poly(o-methoxyaniline) doped with organic sulfonic acids. Journal of Polymer Research, 2008, 15, 75-82.	2.4	31
58	Comparative studies of solidâ€state synthesized poly(<i>o</i> â€methoxyaniline) and poly (<i>o</i> â€toluidine). Polymers for Advanced Technologies, 2008, 19, 1461-1466.	3.2	21
59	Doping effect of organic sulphonic acids on the solid-state synthesized polyaniline. Journal of Applied Polymer Science, 2007, 105, 576-584.	2.6	66
60	Comparative studies of solid-state synthesized polyaniline doped with inorganic acids. Materials Chemistry and Physics, 2005, 90, 367-372.	4.0	271
61	Synthesis and characterization of poly(o-toluidine) doped with organic sulfonic acid by solid-state polymerization. Journal of Applied Polymer Science, 2005, 96, 1630-1634.	2.6	42