Bobby G Sumpter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/641609/publications.pdf

Version: 2024-02-01

535 papers 27,017 citations

7568 77 h-index 9589 142 g-index

554 all docs

554 docs citations

554 times ranked

31997 citing authors

#	Article	IF	CITATIONS
1	Quantum theory of electronic excitation and sputtering by transmission electron microscopy. Nanoscale, 2023, 15, 1053-1067.	5.6	5
2	Learning in continuous action space for developing high dimensional potential energy models. Nature Communications, 2022, 13, 368.	12.8	21
3	Dynamic aspects of graphene deformation and fracture from approximate density functional theory. Carbon, 2022, 190, 183-193.	10.3	8
4	A machine learning inversion scheme for determining interaction from scattering. Communications Physics, 2022, 5, .	5.3	9
5	Deep Generative Models for Materials Discovery and Machine Learning-Accelerated Innovation. Frontiers in Materials, 2022, 9, .	2.4	19
6	Small angle scattering of diblock copolymers profiled by machine learning. Journal of Chemical Physics, 2022, 156, 131101.	3.0	3
7	Bridging microscopy with molecular dynamics and quantum simulations: an atomAl based pipeline. Npj Computational Materials, 2022, 8, .	8.7	10
8	From classical to quantum dynamics of atomic and ionic species interacting with graphene and its analogue. Theoretical and Computational Chemistry, 2022, , 61-86.	0.4	0
9	From ground to excited electronic state dynamics of electron and ion irradiated graphene nanomaterials. Theoretical and Computational Chemistry, 2022, , 87-107.	0.4	O
10	Physically Informed Machine Learning Prediction of Electronic Density of States. Chemistry of Materials, 2022, 34, 4848-4855.	6.7	23
11	Understanding the Impacts of Support–Polymer Interactions on the Dynamics of Poly(ethyleneimine) Confined in Mesoporous SBA-15. Journal of the American Chemical Society, 2022, 144, 11664-11675.	13.7	17
12	Decoding polymer self-dynamics using a two-step approach. Physical Review E, 2022, 106, .	2.1	0
13	Strain-Induced asymmetry and on-site dynamics of silicon defects in graphene. Carbon Trends, 2022, 9, 100189.	3.0	O
14	Nonadiabatic Effects on Defect Diffusion in Silicon-Doped Nanographenes. Nano Letters, 2021, 21, 236-242.	9.1	10
15	Dispersity-Driven Stabilization of Coexisting Morphologies in Asymmetric Diblock Copolymer Thin Films. Macromolecules, 2021, 54, 450-459.	4.8	2
16	An exact inversion method for extracting orientation ordering by small-angle scattering. Physical Chemistry Chemical Physics, 2021, 23, 4120-4132.	2.8	4
17	Machine learned features from density of states for accurate adsorption energy prediction. Nature Communications, 2021, 12, 88.	12.8	108
18	Spatiotemporal mapping of mesoscopic liquid dynamics. Physical Review E, 2021, 103, 022609.	2.1	6

#	Article	IF	CITATIONS
19	Oxidative Dehydrogenation of Propane to Propylene with Soft Oxidants via Heterogeneous Catalysis. ACS Catalysis, 2021, 11, 2182-2234.	11.2	97
20	MX Anti-MXenes from Non-van der Waals Bulks for Electrochemical Applications: The Merit of Metallicity and Active Basal Plane. ACS Nano, 2021, 15, 6233-6242.	14.6	26
21	Strain in Metal Halide Perovskites: The Critical Role of A-Site Cation. ACS Applied Energy Materials, 2021, 4, 2068-2072.	5.1	14
22	Interactions of an Imine Polymer with Nanoporous Silica and Carbon in Hybrid Adsorbents for Carbon Capture. Langmuir, 2021, 37, 4622-4631.	3.5	7
23	New Insights into the Bulk and Surface Defect Structures of Ceria Nanocrystals from Neutron Scattering Study. Chemistry of Materials, 2021, 33, 3959-3970.	6.7	24
24	Revealing the Chemical Bonding in Adatom Arrays via Machine Learning of Hyperspectral Scanning Tunneling Spectroscopy Data. ACS Nano, 2021, 15, 11806-11816.	14.6	13
25	Benchmarking graph neural networks for materials chemistry. Npj Computational Materials, 2021, 7, .	8.7	113
26	Ensemble learning-iterative training machine learning for uncertainty quantification and automated experiment in atom-resolved microscopy. Npj Computational Materials, 2021, 7, .	8.7	26
27	Automated and Autonomous Experiments in Electron and Scanning Probe Microscopy. ACS Nano, 2021, 15, 12604-12627.	14.6	49
28	Topological Effects Near Order–Disorder Transitions in Symmetric Diblock Copolymer Melts. Macromolecules, 2021, 54, 7492-7499.	4.8	9
29	Single-atom catalysts with anionic metal centers: Promising electrocatalysts for the oxygen reduction reaction and beyond. Journal of Energy Chemistry, 2021, 63, 285-293.	12.9	15
30	Spatial correlations of entangled polymer dynamics. Physical Review E, 2021, 104, 024503.	2.1	5
31	Electron-Beam-Induced Molecular Plasmon Excitation and Energy Transfer in Silver Molecular Nanowires. Journal of Physical Chemistry A, 2021, 125, 74-87.	2.5	3
32	Mapping the Interfacial Chemistry and Structure of Partially Fluorinated Bottlebrush Polymers and Their Linear Analogues. Langmuir, 2021, 37, 211-218.	3.5	5
33	Tracking atomic structure evolution during directed electron beam induced Si-atom motion in graphene via deep machine learning. Nanotechnology, 2021, 32, 035703.	2.6	10
34	Structural and Dynamical Roles of Bound Polymer Chains in Rubber Reinforcement. Macromolecules, 2021, 54, 11032-11046.	4.8	17
35	On-surface cyclodehydrogenation reaction pathway determined by selective molecular deuterations. Chemical Science, 2021, 12, 15637-15644.	7.4	11
36	Inverse design of two-dimensional materials with invertible neural networks. Npj Computational Materials, 2021, 7, .	8.7	15

3

#	Article	IF	Citations
37	Structures of Partially Fluorinated Bottlebrush Polymers in Thin Films. ACS Applied Polymer Materials, 2020, 2, 209-219.	4.4	7
38	Understanding Beam-Induced Electronic Excitations in Materials. Journal of Chemical Theory and Computation, 2020, 16, 1200-1214.	5.3	13
39	Generalized Protein-Repellent Properties of Ultrathin Homopolymer Films. Macromolecules, 2020, 53, 6547-6554.	4.8	5
40	Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters. Chemical Science, 2020, 11, 13113-13128.	7.4	19
41	The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. Npj Computational Materials, 2020, 6, .	8.7	181
42	Modulating Microphase Separation of Lamellae-Forming Diblock Copolymers via Ionic Junctions. ACS Macro Letters, 2020, 9, 1667-1673.	4.8	9
43	Double membrane formation in heterogeneous vesicles. Soft Matter, 2020, 16, 8806-8817.	2.7	3
44	Improved Single-Ion Conductivity of Polymer Electrolyte via Accelerated Segmental Dynamics. ACS Applied Energy Materials, 2020, 3, 12540-12548.	5.1	31
45	In situ multimodal imaging for nanoscale visualization of tribofilm formation. Journal of Applied Physics, 2020, 127, 154303.	2.5	4
46	Titelbild: Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts (Angew. Chem. 21/2020). Angewandte Chemie, 2020, 132, 8045-8045.	2.0	0
47	Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. Angewandte Chemie - International Edition, 2020, 59, 8042-8046.	13.8	83
48	Radical Chemistry and Reaction Mechanisms of Propane Oxidative Dehydrogenation over Hexagonal Boron Nitride Catalysts. Angewandte Chemie, 2020, 132, 8119-8123.	2.0	11
49	Addition of Short Polymer Chains Mechanically Reinforces Glassy Poly(2-vinylpyridine)–Silica Nanoparticle Nanocomposites. ACS Applied Nano Materials, 2020, 3, 3427-3438.	5.0	21
50	Reconstruction of effective potential from statistical analysis of dynamic trajectories. AIP Advances, 2020, 10, .	1.3	4
51	Capacitance of thin films containing polymerized ionic liquids. Science Advances, 2020, 6, eaba7952.	10.3	12
52	Electronic band contraction induced low temperature methane activation on metal alloys. Journal of Materials Chemistry A, 2020, 8, 6057-6066.	10.3	28
53	Strain–Chemical Gradient and Polarization in Metal Halide Perovskites. Advanced Electronic Materials, 2020, 6, 1901235.	5.1	19
54	Electron-beam introduction of heteroatomic Pt–Si structures in graphene. Carbon, 2020, 161, 750-757.	10.3	34

#	Article	IF	CITATIONS
55	The role of mid-gap phonon modes in thermal transport of transition metal dichalcogenides. Journal of Physics Condensed Matter, 2020, 32, 025306.	1.8	3
56	Understanding the effects of dipolar interactions on the thermodynamics of diblock copolymer melts. Journal of Chemical Physics, 2019, 151, 054902.	3.0	10
57	Multi-Model Imaging of Local Chemistry and Ferroic Properties of Hybrid Organic-Inorganic Perovskites. Microscopy and Microanalysis, 2019, 25, 2076-2077.	0.4	3
58	The influence of curvature on domain distribution in binary mixture membranes. Soft Matter, 2019, 15, 6642-6649.	2.7	5
59	A dicyanobenzoquinone based cathode material for rechargeable lithium and sodium ion batteries. Journal of Materials Chemistry A, 2019, 7, 17888-17895.	10.3	35
60	Artificial neural network correction for density-functional tight-binding molecular dynamics simulations. MRS Communications, 2019, 9, 867-873.	1.8	40
61	Helium Ion Microscopy Imaging of Bottlebrush Copolymers. Microscopy and Microanalysis, 2019, 25, 908-909.	0.4	0
62	Direct Observation of Symmetry-Dependent Electron–Phonon Coupling in Black Phosphorus. Journal of the American Chemical Society, 2019, 141, 18994-19001.	13.7	21
63	Lightâ€Ferroic Interaction in Hybrid Organic–Inorganic Perovskites. Advanced Optical Materials, 2019, 7, 1901451.	7.3	24
64	Protein Resistance Driven by Polymer Nanoarchitecture. ACS Macro Letters, 2019, 8, 1153-1159.	4.8	9
65	Ab initio investigation of the cyclodehydrogenation process for polyanthrylene transformation to graphene nanoribbons. Npj Computational Materials, 2019, 5, .	8.7	9
66	Decoding Liquid Crystal Oligomer Phase Transitions: Toward Molecularly Engineered Shape Changing Materials. Macromolecules, 2019, 52, 6878-6888.	4.8	12
67	Noncontact tip-enhanced Raman spectroscopy for nanomaterials and biomedical applications. Nanoscale Advances, 2019, 1, 3392-3399.	4.6	7
68	Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study. Science Advances, 2019, 5, eaaw8989.	10.3	70
69	Isotope-Engineering the Thermal Conductivity of Two-Dimensional MoS ₂ . ACS Nano, 2019, 13, 2481-2489.	14.6	42
70	Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. Npj Computational Materials, 2019, 5, .	8.7	113
71	Structural correlations tailor conductive properties in polymerized ionic liquids. Physical Chemistry Chemical Physics, 2019, 21, 14775-14785.	2.8	9
72	Electronically Nonadiabatic Structural Transformations Promoted by Electron Beams. Advanced Functional Materials, 2019, 29, 1901901.	14.9	12

#	Article	IF	CITATIONS
73	The Fragment Molecular Orbital Method Based on Long-Range Corrected Density-Functional Tight-Binding. Journal of Chemical Theory and Computation, 2019, 15, 3008-3020.	5.3	35
74	Chain conformation of polymer melts with associating groups. Journal of Physics Communications, 2019, 3, 035007.	1.2	10
75	Hierarchical TiO ₂ :Cu ₂ O Nanostructures for Gas/Vapor Sensing and CO ₂ Sequestration. ACS Applied Materials & Sequestration and CO ₂ Sequestration.	8.0	18
76	Light–Ferroic Interaction: Lightâ€Ferroic Interaction in Hybrid Organic–Inorganic Perovskites (Advanced Optical Materials 23/2019). Advanced Optical Materials, 2019, 7, 1970090.	7.3	1
77	Reply to: On the ferroelectricity of CH3NH3Pbl3 perovskites. Nature Materials, 2019, 18, 1051-1053.	27.5	21
78	Design of Atomically Precise Nanoscale Negative Differential Resistance Devices. Advanced Theory and Simulations, 2019, 2, 1800172.	2.8	18
79	Amphiphilic Bottlebrush Block Copolymers: Analysis of Aqueous Self-Assembly by Small-Angle Neutron Scattering and Surface Tension Measurements. Macromolecules, 2019, 52, 465-476.	4.8	56
80	A fast scheme to calculate electronic couplings between P3HT polymer units using diabatic orbitals for charge transfer dynamics simulations. Journal of Computational Chemistry, 2019, 40, 532-542.	3.3	2
81	Prediction of Carbon Dioxide Adsorption via Deep Learning. Angewandte Chemie - International Edition, 2019, 58, 259-263.	13.8	74
82	Direct writing of heterostructures in single atomically precise graphene nanoribbons. Physical Review Materials, 2019, 3, .	2.4	18
83	Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts. Macromolecules, 2018, 51, 2258-2267.	4.8	38
84	Diffusion of Sticky Nanoparticles in a Polymer Melt: Crossover from Suppressed to Enhanced Transport. Macromolecules, 2018, 51, 2268-2275.	4.8	52
85	Ab Initio Predictions of Strong Interfaces in Transition-Metal Carbides and Nitrides for Superhard Nanocomposite Coating Applications. ACS Applied Nano Materials, 2018, 1, 2029-2035.	5.0	17
86	Anomalous interlayer vibrations in strongly coupled layered PdSe ₂ . 2D Materials, 2018, 5, 035016.	4.4	60
87	Interpreting Neutron Reflectivity Profiles of Diblock Copolymer Nanocomposite Thin Films Using Hybrid Particle-Field Simulations. Macromolecules, 2018, 51, 3116-3125.	4.8	4
88	Theoretical investigations of electrical transport properties in CoSb3 skutterudites under hydrostatic loadings. Rare Metals, 2018, 37, 316-325.	7.1	8
89	Bulk and Surface Morphologies of ABC Miktoarm Star Terpolymers Composed of PDMS, PI, and PMMA Arms. Macromolecules, 2018, 51, 1041-1051.	4.8	18
90	Multi-purposed Ar gas cluster ion beam processing for graphene engineering. Carbon, 2018, 131, 142-148.	10.3	18

#	Article	IF	Citations
91	Non-Transition-Metal Catalytic System for N ₂ Reduction to NH ₃ : AÂDensity Functional Theory Study of Al-Doped Graphene. Journal of Physical Chemistry Letters, 2018, 9, 570-576.	4.6	43
92	Structure-induced switching of interpolymer adhesion at a solid–polymer melt interface. Soft Matter, 2018, 14, 1108-1119.	2.7	30
93	Modeling solvent evaporation during thin film formation in phase separating polymer mixtures. Soft Matter, 2018, 14, 1833-1846.	2.7	41
94	Molecular Dynamics Investigation of the Relaxation Mechanism of Entangled Polymers after a Large Step Deformation. ACS Macro Letters, 2018, 7, 190-195.	4.8	39
95	A physical catalyst for the electrolysis of nitrogen to ammonia. Science Advances, 2018, 4, e1700336.	10.3	264
96	Adsorption of Molecular Nitrogen in Electrical Double Layers near Planar and Atomically Sharp Electrodes. Langmuir, 2018, 34, 14552-14561.	3.5	2
97	Interphase Structures and Dynamics near Nanofiller Surfaces in Polymer Solutions. Macromolecules, 2018, 51, 9462-9470.	4.8	21
98	Enhanced scattering induced by electrostatic correlations in concentrated solutions of salt-free dipolar and ionic polymers. Journal of Chemical Physics, 2018, 149, 163336.	3.0	8
99	Selectively Deuterated Poly($\hat{l}\mu$ -caprolactone)s: Synthesis and Isotope Effects on the Crystal Structures and Properties. Macromolecules, 2018, 51, 9393-9404.	4.8	20
100	Dynamical disparity between hydration shell water and RNA in a hydrated RNA system. Physical Review E, 2018, 98, .	2.1	7
101	Performance of Density-Functional Tight-Binding in Comparison to Ab Initio and First-Principles Methods for Isomer Geometries and Energies of Glucose Epimers in Vacuo and Solution. ACS Omega, 2018, 3, 16899-16915.	3.5	12
102	On the morphological behavior of ABC miktoarm stars containing poly(cis 1,4â€isoprene), poly(styrene), and poly(2â€vinylpyridine). Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1491-1504.	2.1	6
103	Theoretical assessment of the nuclear quantum effects on polymer crystallinity via perturbation theory and dynamics. International Journal of Quantum Chemistry, 2018, 118, e25712.	2.0	3
104	Atmospheric and Long-term Aging Effects on the Electrical Properties of Variable Thickness WSe ₂ Transistors. ACS Applied Materials & Interfaces, 2018, 10, 36540-36548.	8.0	31
105	Assessing the Predictive Power of Density Functional Theory in Finite-Temperature Hydrogen Adsorption/Desorption Thermodynamics. Journal of Physical Chemistry C, 2018, 122, 26189-26195.	3.1	5
106	Probing static discharge of polymer surfaces with nanoscale resolution. Nanotechnology, 2018, , .	2.6	0
107	Molecular Structure and Dynamics of Interfacial Polymerized Ionic Liquids. Journal of Physical Chemistry C, 2018, 122, 22494-22503.	3.1	8
108	Studies on the 3-Lamellar Morphology of Miktoarm Terpolymers. Macromolecules, 2018, 51, 7491-7499.	4.8	14

#	Article	IF	Citations
109	Molecular reorganization in bulk bottlebrush polymers: direct observation <i>via</i> nanoscale imaging. Nanoscale, 2018, 10, 18001-18009.	5.6	14
110	Scaling Behavior of Anisotropy Relaxation in Deformed Polymers. Physical Review Letters, 2018, 121, 117801.	7.8	13
111	Theoretical and experimental evidence of conformational transformation in stereoisomers of nucleoside analogues. International Journal of Quantum Chemistry, 2018, 118, e25714.	2.0	0
112	An experimental and computational study of donor–linker–acceptor block copolymers for organic photovoltaics. Journal of Polymer Science, Part B: Polymer Physics, 2018, 56, 1135-1143.	2.1	4
113	Solvate Ionic Liquids at Electrified Interfaces. ACS Applied Materials & Solvate Ionic Liquids at Electrified Interfaces. ACS Applied Materials & Interfaces, 2018, 10, 32151-32161.	8.0	13
114	Machine learning enabled acoustic detection of sub-nanomolar concentration of trypsin and plasmin in solution. Sensors and Actuators B: Chemical, 2018, 272, 282-288.	7.8	28
115	Molecular blends of methylated-poly(ethylenimine) and amorphous porous organic cages for SO ₂ adsorption. Journal of Materials Chemistry A, 2018, 6, 22043-22052.	10.3	24
116	Chemical nature of ferroelastic twin domains in CH3NH3PbI3 perovskite. Nature Materials, 2018, 17, 1013-1019.	27. 5	183
117	Light-Activated Hybrid Nanocomposite Film for Water and Oxygen Sensing. ACS Applied Materials & lnterfaces, 2018, 10, 31745-31754.	8.0	12
118	3D Imaging and Manipulation of Subsurface Selenium Vacancies in <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mrow><mml:mi>PdSe</mml:mi></mml:mrow><mml:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:mrow><mpl:m< td=""><td>nm<mark>7:8</mark>n>2</td><td><!--</td--></td></mpl:m<></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mpl:mrow></mml:mrow></mml:msub></mml:mrow></mml:math>	nm <mark>7:8</mark> n>2	</td
119	Understanding the effects of symmetric salt on the structure of a planar dipolar polymer brush. Journal of Chemical Physics, 2018, 149, 163334.	3.0	3
120	Strain-engineered optoelectronic properties of 2D transition metal dichalcogenide lateral heterostructures. 2D Materials, 2017, 4, 021016.	4.4	72
121	A Computational Approach for Modeling Neutron Scattering Data from Lipid Bilayers. Journal of Chemical Theory and Computation, 2017, 13, 916-925.	5.3	17
122	Unraveling the Agglomeration Mechanism in Charged Block Copolymer and Surfactant Complexes. Macromolecules, 2017, 50, 1193-1205.	4.8	30
123	Aminopolymer functionalization of boron nitride nanosheets for highly efficient capture of carbon dioxide. Journal of Materials Chemistry A, 2017, 5, 16241-16248.	10.3	67
124	Triphasic 2D Materials by Vertically Stacking Laterally Heterostructured 2Hâ€/1T′â€MoS ₂ on Graphene for Enhanced Photoresponse. Advanced Electronic Materials, 2017, 3, 1700024.	5.1	31
125	Linking Silica Support Morphology to the Dynamics of Aminopolymers in Composites. Langmuir, 2017, 33, 5412-5422.	3.5	11
126	New Insights on Electro-Optical Response of Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) Film to Humidity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 15880-15886.	8.0	50

#	Article	IF	Citations
127	Dynamics of Charged Species in Ionic-Neutral Block Copolymer and Surfactant Complexes. Journal of Physical Chemistry B, 2017, 121, 6958-6968.	2.6	9
128	Hydro-deoxygenation of CO on functionalized carbon nanotubes for liquid fuels production. Carbon, 2017, 121, 274-284.	10.3	14
129	Optical signatures of defects in low temperature Raman and photoluminescence spectra of 2D crystals (Conference Presentation). , 2017 , , .		0
130	Ultrafast charge and energy exchanges at hybrid interfaces involving 2D semiconductors (Conference) Tj ETQq0	0 0 rgBT /	Overlock 10
131	Enhancing Ion Migration in Grain Boundaries of Hybrid Organic–Inorganic Perovskites by Chlorine. Advanced Functional Materials, 2017, 27, 1700749.	14.9	74
132	Aminopolymer Mobility and Support Interactions in Silica-PEI Composites for CO ₂ Capture Applications: A Quasielastic Neutron Scattering Study. Journal of Physical Chemistry B, 2017, 121, 6721-6731.	2.6	30
133	Multicomponent Gas Storage in Organic Cage Molecules. Journal of Physical Chemistry C, 2017, 121, 12426-12433.	3.1	15
134	A Rayleighian approach for modeling kinetics of ionic transport in polymeric media. Journal of Chemical Physics, 2017, 146, 064902.	3.0	12
135	An automated analysis workflow for optimization of force-field parameters using neutron scattering data. Journal of Computational Physics, 2017, 340, 128-137.	3.8	10
136	Focus: Structure and dynamics of the interfacial layer in polymer nanocomposites with attractive interactions. Journal of Chemical Physics, 2017, 146, 203201.	3.0	114
137	Nanoporous poly(3-hexylthiophene) thin film structures from self-organization of a tunable molecular bottlebrush scaffold. Nanoscale, 2017, 9, 7071-7080.	5.6	18
138	Controllable conversion of quasi-freestanding polymer chains to graphene nanoribbons. Nature Communications, 2017, 8, 14815.	12.8	58
139	Interfacial Properties of Polymer Nanocomposites: Role of Chain Rigidity and Dynamic Heterogeneity Length Scale. Macromolecules, 2017, 50, 2397-2406.	4.8	115
140	Investigations on the Phase Diagram and Interaction Parameter of Poly(styrene- <i>b</i> -1,3-cyclohexadiene) Copolymers. Macromolecules, 2017, 50, 2354-2363.	4.8	5
141	Emerging materials for lowering atmospheric carbon. Environmental Technology and Innovation, 2017, 7, 30-43.	6.1	13
142	Big Effect of Small Nanoparticles: A Shift in Paradigm for Polymer Nanocomposites. ACS Nano, 2017, 11, 752-759.	14.6	177
143	Ab Initio Predictions of Hexagonal Zr(B,C,N) Polymorphs for Coherent Interface Design. Journal of Physical Chemistry C, 2017, 121, 26007-26018.	3.1	9
144	Ionic liquids-mediated interactions between nanorods. Journal of Chemical Physics, 2017, 147, 134704.	3.0	2

#	Article	IF	CITATIONS
145	Interlayer bond polarizability model for stacking-dependent low-frequency Raman scattering in layered materials. Nanoscale, 2017, 9, 15340-15355.	5.6	38
146	Relevance of the Nuclear Quantum Effects on the Proton/Deuteron Transmission through Hexagonal Boron Nitride and Graphene Monolayers. Journal of Physical Chemistry C, 2017, 121, 24335-24344.	3.1	23
147	Deuteration as a Means to Tune Crystallinity of Conducting Polymers. Journal of Physical Chemistry Letters, 2017, 8, 4333-4340.	4.6	16
148	Building with ions: towards direct write of platinum nanostructures using in situ liquid cell helium ion microscopy. Nanoscale, 2017, 9, 12949-12956.	5.6	8
149	Effects of counterion size and backbone rigidity on the dynamics of ionic polymer melts and glasses. Physical Chemistry Chemical Physics, 2017, 19, 27442-27451.	2.8	22
150	Multi-mode humidity sensing with water-soluble copper phthalocyanine for increased sensitivity and dynamic range. Scientific Reports, 2017, 7, 9921.	3.3	17
151	PdSe ₂ : Pentagonal Two-Dimensional Layers with High Air Stability for Electronics. Journal of the American Chemical Society, 2017, 139, 14090-14097.	13.7	509
152	Perovskites: Enhancing Ion Migration in Grain Boundaries of Hybrid Organic–Inorganic Perovskites by Chlorine (Adv. Funct. Mater. 26/2017). Advanced Functional Materials, 2017, 27, .	14.9	1
153	Attraction between Opposing Planar Dipolar Polymer Brushes. Langmuir, 2017, 33, 9231-9240.	3.5	7
154	UV-activated ZnO films on a flexible substrate for room temperature O2 and H2O sensing. Scientific Reports, 2017, 7, 6053.	3.3	61
155	High Conduction Hopping Behavior Induced in Transition Metal Dichalcogenides by Percolating Defect Networks: Toward Atomically Thin Circuits. Advanced Functional Materials, 2017, 27, 1702829.	14.9	52
156	Influence of Chain Rigidity and Dielectric Constant on the Glass Transition Temperature in Polymerized Ionic Liquids. Journal of Physical Chemistry B, 2017, 121, 11511-11519.	2.6	82
157	Low-Frequency Shear and Layer-Breathing Modes in Raman Scattering of Two-Dimensional Materials. ACS Nano, 2017, 11, 11777-11802.	14.6	179
158	Effects of partial La filling and Sb vacancy defects on <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>CoS</mml:mi><mml:msub>b<mml:mn>3</mml:mn></mml:msub></mml:mrow></mml:math> skutterudites. Physical Review B, 2017, 95, .	ni 3.2	26
159	Isomeric effects on the self-assembly of a plausible prebiotic nucleoside analogue: A theoretical study. International Journal of Quantum Chemistry, 2017, 117, 213-221.	2.0	2
160	Noncovalent Interactions in Nanotechnology. , 2017, , 417-451.		8
161	Engineering the Bacterial Microcompartment Domain for Molecular Scaffolding Applications. Frontiers in Microbiology, 2017, 8, 1441.	3.5	57
162	Development and Modeling of a Novel Self-Assembly Process for Polymer and Polymeric Composite Nanoparticles., 2017,, 143-176.		0

#	Article	IF	Citations
163	Monomer volume fraction profiles in pH responsive planar polyelectrolyte brushes. Journal of Polymer Science, Part B: Polymer Physics, 2016, 54, 956-964.	2.1	28
164	Thermodynamics and Kinetics of Gas Storage in Porous Liquids. Journal of Physical Chemistry B, 2016, 120, 7195-7200.	2.6	64
165	Grain boundary stability and influence on ionic conductivity in a disordered perovskite—a first-principles investigation of lithium lanthanum titanate. MRS Communications, 2016, 6, 455-463.	1.8	11
166	Supramolecular polymerization of a prebiotic nucleoside provides insights into the creation of sequence-controlled polymers. Scientific Reports, 2016, 6, 18891.	3.3	5
167	Directing Matter: Toward Atomic-Scale 3D Nanofabrication. ACS Nano, 2016, 10, 5600-5618.	14.6	99
168	PEDOT:PSS/QCM-based multimodal humidity and pressure sensor. Sensors and Actuators B: Chemical, 2016, 236, 91-98.	7.8	58
169	In-Plane Heterojunctions Enable Multiphasic Two-Dimensional (2D) MoS ₂ Nanosheets As Efficient Photocatalysts for Hydrogen Evolution from Water Reduction. ACS Catalysis, 2016, 6, 6723-6729.	11.2	116
170	Thermoreversible Morphology and Conductivity of a Conjugated Polymer Network Embedded in Block Copolymer Selfâ€Assemblies. Small, 2016, 12, 4857-4864.	10.0	5
171	Highâ€Selectivity Electrochemical Conversion of CO ₂ to Ethanol using a Copper Nanoparticle/Nâ€Doped Graphene Electrode. ChemistrySelect, 2016, 1, 6055-6061.	1.5	251
172	Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces. ACS Nano, 2016, 10, 7821-7829.	14.6	8
173	Understanding How Isotopes Affect Charge Transfer in P3HT/PCBM: A Quantum Trajectory-Electronic Structure Study with Nonlinear Quantum Corrections. Journal of Chemical Theory and Computation, 2016, 12, 4487-4500.	5.3	11
174	Transitionâ€Metal Substitution Doping in Synthetic Atomically Thin Semiconductors. Advanced Materials, 2016, 28, 9735-9743.	21.0	208
175	Vertical Phase Segregation Induced by Dipolar Interactions in Planar Polymer Brushes. Macromolecules, 2016, 49, 7096-7107.	4.8	26
176	Unraveling the Fundamental Mechanisms of Solvent-Additive-Induced Optimization of Power Conversion Efficiencies in Organic Photovoltaic Devices. ACS Applied Materials & Samp; Interfaces, 2016, 8, 20220-20229.	8.0	8
177	Tailoring Vacancies Far Beyond Intrinsic Levels Changes the Carrier Type and Optical Response in Monolayer MoSe _{2â^'<i>x</i>} Crystals. Nano Letters, 2016, 16, 5213-5220.	9.1	121
178	Enhanced Dynamics of Hydrated tRNA on Nanodiamond Surfaces: A Combined Neutron Scattering and MD Simulation Study. Journal of Physical Chemistry B, 2016, 120, 10059-10068.	2.6	14
179	Ultrafast Charge Transfer and Hybrid Exciton Formation in 2D/0D Heterostructures. Journal of the American Chemical Society, 2016, 138, 14713-14719.	13.7	102
180	Nanoforging Single Layer MoSe2 Through Defect Engineering with Focused Helium Ion Beams. Scientific Reports, 2016, 6, 30481.	3.3	82

#	Article	IF	CITATIONS
181	A computational workflow for designing silicon donor qubits. Nanotechnology, 2016, 27, 424002.	2.6	3
182	Harnessing Structure–Property Relationshipsfor Poly(alkyl thiophene)–Fullerene Derivative Thin Filmsto Optimize Performance in Photovoltaic Devices. Advanced Functional Materials, 2016, 26, 1908-1920.	14.9	7
183	Petascale Simulations of the Morphology and the Molecular Interface of Bulk Heterojunctions. ACS Nano, 2016, 10, 7008-7022.	14.6	25
184	Helical Poly(5-alkyl-2,3-thiophene)s: Controlled Synthesis and Structure Characterization. Macromolecules, 2016, 49, 4691-4698.	4.8	23
185	Controlling Interfacial Dynamics: Covalent Bonding <i>versus</i> Physical Adsorption in Polymer Nanocomposites. ACS Nano, 2016, 10, 6843-6852.	14.6	152
186	Mesoscopic Framework Enables Facile Ionic Transport in Solid Electrolytes for Li Batteries. Advanced Energy Materials, 2016, 6, 1600053.	19.5	46
187	Low-Frequency Interlayer Raman Modes to Probe Interface of Twisted Bilayer MoS ₂ . Nano Letters, 2016, 16, 1435-1444.	9.1	177
188	Twisted MoSe ₂ Bilayers with Variable Local Stacking and Interlayer Coupling Revealed by Low-Frequency Raman Spectroscopy. ACS Nano, 2016, 10, 2736-2744.	14.6	117
189	Importance of Ion Packing on the Dynamics of Ionic Liquids during Micropore Charging. Journal of Physical Chemistry Letters, 2016, 7, 36-42.	4.6	78
190	Amidine-Functionalized Poly(2-vinyl-4,4-dimethylazlactone) for Selective and Efficient CO ₂ Fixing. Macromolecules, 2016, 49, 1523-1531.	4.8	10
191	Unraveling the Dynamics of Aminopolymer/Silica Composites. Langmuir, 2016, 32, 2617-2625.	3.5	17
192	Anisotropic Electron-Photon and Electron-Phonon Interactions in Black Phosphorus. Nano Letters, 2016, 16, 2260-2267.	9.1	328
193	Ultrathin nanosheets of CrSiTe ₃ : a semiconducting two-dimensional ferromagnetic material. Journal of Materials Chemistry C, 2016, 4, 315-322.	5.5	235
194	Electronic Transport in Carbon Nanomaterials. , 2016, , 1084-1101.		0
195	Patterning: Atomicâ€Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision (Small 44/2015). Small, 2015, 11, 5854-5854.	10.0	2
196	Observation of two distinct negative trions in tungsten disulfide monolayers. Physical Review B, 2015, 92, .	3.2	44
197	Electronic Properties of Bilayer Graphene Strongly Coupled to Interlayer Stacking and an External Electric Field. Physical Review Letters, 2015, 115, 015502.	7.8	47
198	Alloy Engineering of Defect Properties in Semiconductors: Suppression of Deep Levels in Transition-Metal Dichalcogenides. Physical Review Letters, 2015, 115, 126806.	7.8	81

#	Article	IF	Citations
199	Revealing spatially heterogeneous relaxation in a model nanocomposite. Journal of Chemical Physics, 2015, 143, 194704.	3.0	57
200	A bridge for accelerating materials by design. Npj Computational Materials, 2015, $1, .$	8.7	47
201	Peculiarity of Two Thermodynamically-Stable Morphologies and Their Impact on the Efficiency of Small Molecule Bulk Heterojunction Solar Cells. Scientific Reports, 2015, 5, 13407.	3.3	16
202	Tuning interfacial thermal conductance of graphene embedded in soft materials by vacancy defects. Journal of Chemical Physics, 2015, 142, 244703.	3.0	51
203	Atomicâ€Level Sculpting of Crystalline Oxides: Toward Bulk Nanofabrication with Single Atomic Plane Precision. Small, 2015, 11, 5895-5900.	10.0	73
204	Controlled Nanopatterning of a Polymerized Ionic Liquid in a Strong Electric Field. Advanced Functional Materials, 2015, 25, 805-811.	14.9	13
205	Atomic-Level Fabrication of Crystalline Oxides in STEM. Microscopy and Microanalysis, 2015, 21, 939-940.	0.4	1
206	Highly stable two-dimensional silicon phosphides: Different stoichiometries and exotic electronic properties. Physical Review B, 2015, 91, .	3.2	58
207	Nanoscale Lubrication of Ionic Surfaces Controlled via a Strong Electric Field. Scientific Reports, 2015, 5, 8049.	3.3	23
208	Pancake π–π Bonding Goes Double: Unexpected 4e/All-Sites Bonding in Boron- and Nitrogen-Doped Phenalenyls. Journal of Physical Chemistry Letters, 2015, 6, 2318-2325.	4.6	32
209	Dynamic Charge Storage in Ionic Liquids-Filled Nanopores: Insight from a Computational Cyclic Voltammetry Study. Journal of Physical Chemistry Letters, 2015, 6, 22-30.	4.6	51
210	A Novel and Functional Single-Layer Sheet of ZnSe. ACS Applied Materials & Samp; Interfaces, 2015, 7, 1458-1464.	8.0	38
211	Electric Field Effects on the Intermolecular Interactions in Water Whiskers: Insight from Structures, Energetics, and Properties. Journal of Physical Chemistry A, 2015, 119, 2083-2090.	2.5	17
212	Microphase separation in thin films of lamellar forming polydisperse di-block copolymers. RSC Advances, 2015, 5, 21336-21348.	3.6	19
213	Untangling the Effects of Chain Rigidity on the Structure and Dynamics of Strongly Adsorbed Polymer Melts. Macromolecules, 2015, 48, 4207-4219.	4.8	109
214	Van der Waals Epitaxial Growth of Two-Dimensional Single-Crystalline GaSe Domains on Graphene. ACS Nano, 2015, 9, 8078-8088.	14.6	103
215	Nitrogen Doping Enables Covalent-Like π–π Bonding between Graphenes. Nano Letters, 2015, 15, 5482-5491.	9.1	31
216	Nanostructure enhanced ionic transport in fullerene reinforced solid polymer electrolytes. Physical Chemistry Chemical Physics, 2015, 17, 8266-8275.	2.8	13

#	Article	IF	Citations
217	Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. ACS Nano, 2015, 9, 6333-6342.	14.6	151
218	Low-Frequency Interlayer Breathing Modes in Few-Layer Black Phosphorus. Nano Letters, 2015, 15, 4080-4088.	9.1	182
219	Big–deep–smart data in imaging for guiding materials design. Nature Materials, 2015, 14, 973-980.	27.5	281
220	Recent Advances in Two-Dimensional Materials beyond Graphene. ACS Nano, 2015, 9, 11509-11539.	14.6	2,069
221	Self-assembly and structural relaxation in a model ionomer melt. Journal of Chemical Physics, 2015, 142, 084903.	3.0	6
222	Controlling molecular ordering in solution-state conjugated polymers. Nanoscale, 2015, 7, 15134-15141.	5.6	15
223	Elastic, plastic, and fracture mechanisms in graphene materials. Journal of Physics Condensed Matter, 2015, 27, 373002.	1.8	26
224	Surfactant-Mediated Polyelectrolyte Self-Assembly in a Polyelectrolyte–Surfactant Complex. Macromolecules, 2015, 48, 9050-9059.	4.8	49
225	Surface Structure Dependence of SO ₂ Interaction with Ceria Nanocrystals with Well-Defined Surface Facets. Journal of Physical Chemistry C, 2015, 119, 28895-28905.	3.1	26
226	Enhanced Raman Scattering on In-Plane Anisotropic Layered Materials. Journal of the American Chemical Society, 2015, 137, 15511-15517.	13.7	122
227	Density Functional Studies of Stoichiometric Surfaces of Orthorhombic Hybrid Perovskite CH ₃ NH ₃ Pbl ₃ . Journal of Physical Chemistry C, 2015, 119, 1136-1145.	3.1	7 3
228	Ion transport and softening in a polymerized ionic liquid. Nanoscale, 2015, 7, 947-955.	5.6	18
229	Nonlocal thermal transport across embedded few-layer graphene sheets. Journal of Physics Condensed Matter, 2014, 26, 502101.	1.8	6
230	Quantifying energetics of topological frustration in carbon nanostructures. Physical Review B, 2014, 89, .	3.2	9
231	Exceptional Optoelectronic Properties of Hydrogenated Bilayer Silicene. Physical Review X, 2014, 4, .	8.9	35
232	Extracting physics through deep data analysis. Materials Today, 2014, 17, 416-417.	14.2	4
233	Weak competing interactions control assembly of strongly bonded TCNQ ionic acceptor molecules on silver surfaces. Physical Review B, 2014, 90, .	3.2	11
234	A comparative study of phosphoric acidâ€doped <i>m</i> àâ€PBI membranes. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 26-35.	2.1	65

#	Article	IF	Citations
235	The isotopic effects of deuteration on optoelectronic properties of conducting polymers. Nature Communications, 2014, 5, 3180.	12.8	103
236	Spatially resolved one-dimensional boundary states in graphene–hexagonal boron nitride planar heterostructures. Nature Communications, 2014, 5, 5403.	12.8	71
237	Density-fitted singles and doubles coupled cluster on graphics processing units. Molecular Physics, 2014, 112, 844-852.	1.7	48
238	Electronic Bandgap and Edge Reconstruction in Phosphorene Materials. Nano Letters, 2014, 14, 6400-6406.	9.1	459
239	An integrated approach for structural characterization of complex solid state electrolytes: the case of lithium lanthanum titanate. Journal of Materials Chemistry A, 2014, 2, 2418.	10.3	22
240	Theoretical Predictions of Freestanding Honeycomb Sheets of Cadmium Chalcogenides. Journal of Physical Chemistry C, 2014, 118, 16236-16245.	3.1	48
241	Structure and dynamics of confined flexible and unentangled polymer melts in highly adsorbing cylindrical pores. Journal of Chemical Physics, 2014, 141, 074904.	3.0	18
242	Interfacial Properties and Design of Functional Energy Materials. Accounts of Chemical Research, 2014, 47, 3395-3405.	15.6	14
243	Structural Evolution of Polylactide Molecular Bottlebrushes: Kinetics Study by Size Exclusion Chromatography, Small Angle Neutron Scattering, and Simulations. ACS Macro Letters, 2014, 3, 862-866.	4.8	26
244	Tunable water desalination across graphene oxide framework membranes. Physical Chemistry Chemical Physics, 2014, 16, 8646.	2.8	194
245	Spin-resolved self-doping tunes the intrinsic half-metallicity of AlN nanoribbons. Nano Research, 2014, 7, 63-70.	10.4	13
246	Understanding How Processing Additives Tune the Nanoscale Morphology of High Efficiency Organic Photovoltaic Blends: From Casting Solution to Spun ast Thin Film. Advanced Functional Materials, 2014, 24, 6647-6657.	14.9	39
247	Enhanced Phase Segregation Induced by Dipolar Interactions in Polymer Blends. Macromolecules, 2014, 47, 6491-6502.	4.8	42
248	Duality of the interfacial thermal conductance in graphene-based nanocomposites. Carbon, 2014, 75, 169-177.	10.3	67
249	Solvent-type-dependent polymorphism and charge transport in a long fused-ring organic semiconductor. Nanoscale, 2014, 6, 449-456.	5.6	59
250	Dynamics of electrical double layer formation in room-temperature ionic liquids under constant-current charging conditions. Journal of Physics Condensed Matter, 2014, 26, 284109.	1.8	28
251	Integrating Advanced Materials Simulation Techniques into an Automated Data Analysis Workflow at the Spallation Neutron Source., 2014,, 297-308.		1
252	Morphologies of ABC Triblock Terpolymer Melts Containing Poly(Cyclohexadiene): Effects of Conformational Asymmetry. Langmuir, 2013, 29, 1995-2006.	3.5	23

#	Article	IF	Citations
253	Poly(3-hexylthiophene) Molecular Bottlebrushes via Ring-Opening Metathesis Polymerization: Macromolecular Architecture Enhanced Aggregation. ACS Macro Letters, 2013, 2, 761-765.	4.8	48
254	A reversible strain-induced electrical conductivity in cup-stacked carbon nanotubes. Nanoscale, 2013, 5, 10212.	5.6	12
255	Nitrogenâ€Doped Graphitic Nanoribbons: Synthesis, Characterization, and Transport. Advanced Functional Materials, 2013, 23, 3755-3762.	14.9	31
256	Assembly and organization of poly(3-hexylthiophene) brushes and their potential use as novel anode buffer layers for organic photovoltaics. Nanoscale, 2013, 5, 9357.	5.6	23
257	Understanding the origin of high-rate intercalation pseudocapacitance in Nb2O5 crystals. Journal of Materials Chemistry A, 2013, 1, 14951.	10.3	134
258	New insights into the dynamics and morphology of P3HT:PCBM active layers in bulk heterojunctions. Physical Chemistry Chemical Physics, 2013, 15, 17873.	2.8	53
259	Electro-Induced Dewetting and Concomitant Ionic Current Avalanche in Nanopores. Journal of Physical Chemistry Letters, 2013, 4, 3120-3126.	4.6	13
260	Structures, Energetics, and Electronic Properties of Layered Materials and Nanotubes of Cadmium Chalcogenides. Journal of Physical Chemistry C, 2013, 117, 25817-25825.	3.1	26
261	Molecular Heterogeneity of Polystyrene-Modified Fullerene Core Stars. Macromolecules, 2013, 46, 7451-7457.	4.8	3
262	Molecular Dynamics Simulations of Graphene Oxide Frameworks. Journal of Chemical Theory and Computation, 2013, 9, 4890-4900.	5.3	35
263	Grafting density effects, optoelectrical properties and nano-patterning of poly(para-phenylene) brushes. Journal of Materials Chemistry A, 2013, 1, 13426.	10.3	5
264	Effects of backbone rigidity on the local structure and dynamics in polymer melts and glasses. Physical Chemistry Chemical Physics, 2013, 15, 4604.	2.8	51
265	Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages. Particle and Particle Systems Characterization, 2013, 30, 76-82.	2.3	9
266	Nanodrilling: Iron Particle Nanodrilling of Few Layer Graphene at Low Electron Beam Accelerating Voltages (Part. Part. Syst. Charact. 1/2013). Particle and Particle Systems Characterization, 2013, 30, 75-75.	2.3	0
267	Synthesis, characterization (molecular–morphological) and theoretical morphology predictions of linear triblock terpolymers containing poly(cyclohexadiene). Polymer, 2013, 54, 1480-1489.	3.8	7
268	Surface-Induced Orientation Control of CuPc Molecules for the Epitaxial Growth of Highly Ordered Organic Crystals on Graphene. Journal of the American Chemical Society, 2013, 135, 3680-3687.	13.7	125
269	Electronic, Thermal, and Structural Properties of Graphene Oxide Frameworks. Journal of Physical Chemistry C, 2013, 117, 8276-8281.	3.1	26
270	High-temperature transformation of Fe-decorated single-wall carbon nanohorns to nanooysters: a combined experimental and theoretical study. Nanoscale, 2013, 5, 1849-1857.	5.6	10

#	Article	IF	CITATIONS
271	Edge–Edge Interactions in Stacked Graphene Nanoplatelets. ACS Nano, 2013, 7, 2834-2841.	14.6	25
272	Effect of Macromolecular Architecture on the Morphology of Polystyrene–Polyisoprene Block Copolymers. Macromolecules, 2013, 46, 2023-2031.	4.8	27
273	Quantum Trajectory-Electronic Structure Approach for Exploring Nuclear Effects in the Dynamics of Nanomaterials. Journal of Chemical Theory and Computation, 2013, 9, 5221-5235.	5.3	29
274	Tuning from Half-Metallic to Semiconducting Behavior in SiC Nanoribbons. Journal of Physical Chemistry C, 2013, 117, 15447-15455.	3.1	26
275	Self-Organized and Cu-Coordinated Surface Linear Polymerization. Scientific Reports, 2013, 3, 2102.	3.3	23
276	lonic Disproportionation of Charge Transfer Salt Driven by Surface Epitaxy. Journal of Physical Chemistry C, 2013, 117, 19402-19408.	3.1	5
277	Theory of the Miscibility of Fullerenes in Random Copolymer Melts. Macromolecules, 2013, 46, 8732-8743.	4.8	9
278	Modeling and Simulation of Electron Transport at the Nanoscale: Illustrations in Low-Dimensional Carbon Nanostructures. Advances in Atom and Single Molecule Machines, 2013, , 123-133.	0.0	0
279	Charge regulation and local dielectric function in planar polyelectrolyte brushes. Journal of Chemical Physics, 2012, 136, 234901.	3.0	41
280	Morphology diagrams for <i>A</i> ₂ <i>B</i> <copolymer 012042.<="" 2012,="" 402,="" conference="" field="" journal="" melts:="" of="" physics:="" real-space="" self-consistent="" series,="" td="" theory.=""><td>0.4</td><td>1</td></copolymer>	0.4	1
281	Electronic Control over Attachment and Self-Assembly of Alkyne Groups on Gold. ACS Nano, 2012, 6, 9267-9275.	14.6	25
282	Voltage Dependent Charge Storage Modes and Capacity in Subnanometer Pores. Journal of Physical Chemistry Letters, 2012, 3, 1732-1737.	4.6	77
283	Electrospinning. , 2012, , 769-775.		2
284	Supramolecular Self-Assembly of π-Conjugated Hydrocarbons <i>via</i> 2D Cooperative CH/π Interaction. ACS Nano, 2012, 6, 566-572.	14.6	63
285	Electrostatic RF MEMS Switches. , 2012, , 783-783.		0
286	Morphologies of poly(cyclohexadiene) diblock copolymers: Effect of conformational asymmetry. Polymer, 2012, 53, 5155-5162.	3.8	12
287	In Situ Formation of Pyridyl-Functionalized Poly(3-hexylthiophene)s via Quenching of the Grignard Metathesis Polymerization: Toward Ligands for Semiconductor Quantum Dots. Chemistry of Materials, 2012, 24, 4459-4467.	6.7	38
288	Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges. ACS Nano, 2012, 6, 2261-2272.	14.6	54

#	Article	IF	CITATIONS
289	Structure and Electronic Properties of Edge-Functionalized Armchair Boron Nitride Nanoribbons. Journal of Physical Chemistry C, 2012, 116, 15675-15681.	3.1	40
290	Morphologies of block copolymers composed of charged and neutral blocks. Soft Matter, 2012, 8, 3036.	2.7	95
291	Advancing Understanding and Design of Functional Materials Through Theoretical and Computational Chemical Physics., 2012,, 209-278.		3
292	Modeling Charge Transfer in Fullerene Collisions via Real-Time Electron Dynamics. Journal of Physical Chemistry Letters, 2012, 3, 1536-1542.	4.6	23
293	Geometric and Electronic Structure of Closed Graphene Edges. Journal of Physical Chemistry Letters, 2012, 3, 2097-2102.	4.6	19
294	Electrowetting-on-Dielectric (EWOD)., 2012,, 789-789.		0
295	Can computational approaches aid in untangling the inherent complexity of practical organic photovoltaic systems?. Journal of Polymer Science, Part B: Polymer Physics, 2012, 50, 1071-1089.	2.1	29
296	Covalently bonded three-dimensional carbon nanotube solids via boron induced nanojunctions. Scientific Reports, 2012, 2, 363.	3.3	329
297	Ternary behavior and systematic nanoscale manipulation of domain structures in P3HT/PCBM/P3HT-b-PEO films. Journal of Materials Chemistry, 2012, 22, 13013.	6.7	53
298	Nanoscale Ferroelectricity in Crystalline γâ€Glycine. Advanced Functional Materials, 2012, 22, 2996-3003.	14.9	119
299	Asymmetrical self-assembly from fluorinated and sulfonated block copolymers in aqueous media. Soft Matter, 2011, 7, 7960.	2.7	19
300	The importance of ion size and electrode curvature on electrical double layers in ionic liquids. Physical Chemistry Chemical Physics, 2011, 13, 1152-1161.	2.8	173
301	Phosphorus and phosphorus–nitrogen doped carbon nanotubes for ultrasensitive and selective molecular detection. Nanoscale, 2011, 3, 1008-1013.	5.6	102
302	Theoretical modeling on the kinetics of the arsenate-ester hydrolysis: implications to the stability of As-DNA. Physical Chemistry Chemical Physics, 2011, 13, 10869.	2.8	9
303	Assembly and Characterization of Well-Defined High-Molecular-Weight Poly(<i>p</i> polymer Brushes. Chemistry of Materials, 2011, 23, 4367-4374.	6.7	12
304	Cyclo-biphenalenyl Biradicaloid Molecular Materials: Conformation, Tautomerization, Magnetism, and Thermochromism. Chemistry of Materials, 2011, 23, 874-885.	6.7	17
305	On the Geometry and Electronic Structure of the As-DNA Backbone. Journal of Physical Chemistry Letters, 2011, 2, 389-392.	4.6	9
306	Breakdown of Inverse Morphologies in Charged Diblock Copolymers. Journal of Physical Chemistry B, 2011, 115, 3330-3338.	2.6	20

#	Article	IF	Citations
307	Boron Nitride Nanoribbons Become Metallic. Nano Letters, 2011, 11, 3267-3273.	9.1	120
308	Structural, Dynamical, and Electronic Transport Properties of Modified DNA Duplexes Containing Size-Expanded Nucleobases. Journal of Physical Chemistry A, 2011, 115, 11344-11354.	2.5	16
309	Combatting ionic aggregation using dielectric forces—combining modeling/simulation and experimental results to explain end-capping of primary amine functionalized polystyrene. Polymer Chemistry, 2011, 2, 2481.	3.9	1
310	On the Stabilization of Ribose by Silicate Minerals. Astrobiology, 2011, 11, 115-121.	3.0	23
311	Complex Capacitance Scaling in Ionic Liquids-Filled Nanopores. ACS Nano, 2011, 5, 9044-9051.	14.6	188
312	Structural, magnetic, and transport properties of substitutionally doped graphene nanoribbons from first principles. Physical Review B, $2011,83,\ldots$	3.2	124
313	Quantum Transport in Graphene Nanonetworks. Nano Letters, 2011, 11, 3058-3064.	9.1	71
314	High-Performance Field-Effect Transistors Based on Polystyrene- <i>b</i> -Poly(3-hexylthiophene) Diblock Copolymers. ACS Nano, 2011, 5, 3559-3567.	14.6	122
315	Role of Conformation in π–π Interactions and Polymer/Fullerene Miscibility. Journal of Physical Chemistry B, 2011, 115, 8989-8995.	2.6	24
316	Ultrathin Planar Graphene Supercapacitors. Nano Letters, 2011, 11, 1423-1427.	9.1	1,145
317	A "counter-charge layer in generalized solvents―framework for electrical double layers in neat and hybrid ionic liquid electrolytes. Physical Chemistry Chemical Physics, 2011, 13, 14723.	2.8	90
318	Theory of zwitterionic molecular-based organic magnets. Chemical Physics Letters, 2011, 511, 294-298.	2.6	7
319	Controlling Non-Covalent Interactions to Modulate the Dispersion of Fullerenes in Polymer Nanocomposites. Macromolecules, 2011, 44, 7737-7745.	4.8	22
320	Density-functional approaches to noncovalent interactions: A comparison of dispersion corrections (DFT-D), exchange-hole dipole moment (XDM) theory, and specialized functionals. Journal of Chemical Physics, 2011, 134, 084107.	3.0	607
321	Polymer Nanoparticle Superlattices for Organic Photovoltaic Applications. Journal of Physical Chemistry Letters, 2011, 2, 3085-3091.	4.6	45
322	PSâ€ <i>b</i> à€P3HT Copolymers as P3HT/PCBM Interfacial Compatibilizers for High Efficiency Photovoltaics. Advanced Materials, 2011, 23, 5529-5535.	21.0	110
323	Structure and charging kinetics of electrical double layers at large electrode voltages. Microfluidics and Nanofluidics, 2010, 8, 703-708.	2.2	23
324	Theoretical Studies on the Intermolecular Interactions of Potentially Primordial Baseâ€Pair Analogues. Chemistry - A European Journal, 2010, 16, 3057-3065.	3.3	13

#	Article	IF	CITATIONS
325	Controllable stacked disk morphologies of charged diblock copolymers. Chemical Physics Letters, 2010, 487, 272-278.	2.6	7
326	Effect of diffuse layer and pore shapes in mesoporous carbon supercapacitors. Journal of Materials Research, 2010, 25, 1469-1475.	2.6	53
327	Computational modeling of carbon nanostructures for energy storage applications. , 2010, , .		1
328	Modern Theories of Carbon-Based Electrochemical Capacitors: A Short Review., 2010,,.		3
329	Anomalous chain diffusion in polymer nanocomposites for varying polymer-filler interaction strengths. Physical Review E, 2010, 81, 041801.	2.1	28
330	Ion Distribution in Electrified Micropores and Its Role in the Anomalous Enhancement of Capacitance. ACS Nano, 2010, 4, 2382-2390.	14.6	183
331	Atomistic Insight on the Charging Energetics in Subnanometer Pore Supercapacitors. Journal of Physical Chemistry C, 2010, 114, 18012-18016.	3.1	53
332	Controlling Edge Morphology in Graphene Layers Using Electron Irradiation: From Sharp Atomic Edges to Coalesced Layers Forming Loops. Physical Review Letters, 2010, 105, 045501.	7.8	56
333	An Assessment of Density Functional Methods for Potential Energy Curves of Nonbonded Interactions: The XYG3 and B97-D Approximations. Journal of Chemical Theory and Computation, 2010, 6, 727-734.	5.3	91
334	Curvature effects in carbon nanomaterials: Exohedral versus endohedral supercapacitors. Journal of Materials Research, 2010, 25, 1525-1531.	2.6	142
335	Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 11200-11204.	7.1	117
336	The importance of chain connectivity in the formation of non-covalent interactions between polymers and single-walled carbon nanotubes and its impact on dispersion. Soft Matter, 2010, 6, 2801.	2.7	34
337	Tunable morphologies from charged block copolymers. Soft Matter, 2010, 6, 6146.	2.7	38
338	Structure and dynamics of electrical double layers in organic electrolytes. Physical Chemistry Chemical Physics, 2010, 12, 5468.	2.8	107
339	The Role of Sulfur in the Synthesis of Novel Carbon Morphologies: From Covalent Yâ€Junctions to Seaâ€Urchinâ€Like Structures. Advanced Functional Materials, 2009, 19, 1193-1199.	14.9	51
340	Assessment of standard force field models against highâ€quality <i>ab initio</i> potential curves for prototypes of π–π, CH/Ï€, and SH/Ï€ interactions. Journal of Computational Chemistry, 2009, 30, 2187-2193.	3.3	93
341	Bright Photoluminescence from the Inner Tubes of "Peapodâ€â€Derived Doubleâ€Walled Carbon Nanotubes. Small, 2009, 5, 2678-2682.	10.0	38
342	A theoretical and experimental study on manipulating the structure and properties of carbon nanotubes using substitutional dopants. International Journal of Quantum Chemistry, 2009, 109, 97-118.	2.0	70

#	Article	IF	Citations
343	The importance of defects for carbon nanoribbon based electronics. Physica Status Solidi - Rapid Research Letters, 2009, 3, 181-183.	2.4	11
344	Benzotrifuranone: Synthesis, Structure, and Access to Polycyclic Heteroaromatics. Organic Letters, 2009, 11, 4314-4317.	4.6	27
345	Properties of One-Dimensional Molybdenum Nanowires in a Confined Environment. Nano Letters, 2009, 9, 1487-1492.	9.1	43
346	Ab initio Study of the Structural, Tautomeric, Pairing, and Electronic Properties of Seleno-Derivatives of Thymine. Journal of Physical Chemistry B, 2009, 113, 14465-14472.	2.6	15
347	Controlled Formation of Sharp Zigzag and Armchair Edges in Graphitic Nanoribbons. Science, 2009, 323, 1701-1705.	12.6	655
348	Effect of polymer-filler interaction strengths on the thermodynamic and dynamic properties of polymer nanocomposites. Journal of Chemical Physics, 2009, 130, 134910.	3.0	50
349	Synthesis, Electronic Structure, and Raman Scattering of Phosphorus-Doped Single-Wall Carbon Nanotubes. Nano Letters, 2009, 9, 2267-2272.	9.1	134
350	Spin Polarized Conductance in Hybrid Graphene Nanoribbons Using 5â^'7 Defects. ACS Nano, 2009, 3, 3606-3612.	14.6	60
351	Heterojunctions between metals and carbon nanotubes as ultimate nanocontacts. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4591-4595.	7.1	110
352	Electronic Transport and Mechanical Properties of Phosphorus- and Phosphorusâ-'Nitrogen-Doped Carbon Nanotubes. ACS Nano, 2009, 3, 1913-1921.	14.6	228
353	New Insight into Carbonâ€Nanotube Electronicâ€Structure Selectivity. Small, 2008, 4, 2035-2042.	10.0	21
354	A Universal Model for Nanoporous Carbon Supercapacitors Applicable to Diverse Pore Regimes, Carbon Materials, and Electrolytes. Chemistry - A European Journal, 2008, 14, 6614-6626.	3.3	545
355	Theoretical Study on the Factors Controlling the Stability of the Borate Complexes of Ribose, Arabinose, Lyxose, and Xylose. Chemistry - A European Journal, 2008, 14, 9990-9998.	3.3	34
356	Theoretical Model for Nanoporous Carbon Supercapacitors. Angewandte Chemie - International Edition, 2008, 47, 520-524.	13.8	526
357	An Atomistic Branching Mechanism for Carbon Nanotubes: Sulfur as the Triggering Agent. Angewandte Chemie - International Edition, 2008, 47, 2948-2953.	13.8	76
358	Heterodoped Nanotubes: Theory, Synthesis, and Characterization of Phosphorusâ^'Nitrogen Doped Multiwalled Carbon Nanotubes. ACS Nano, 2008, 2, 441-448.	14.6	192
359	Ab Initio Study of Naphtho-Homologated DNA Bases. Journal of Physical Chemistry B, 2008, 112, 2179-2186.	2.6	23
360	Links between through-bond interactions and assembly structure in simple piperidones. New Journal of Chemistry, 2008, 32, 1924.	2.8	10

#	Article	IF	Citations
361	Electrical Rectification in Betaine Derivatives. Journal of Physical Chemistry C, 2008, 112, 12008-12011.	3.1	10
362	A combined theoretical and experimental study of the polymer inter-chain structure in poly(phenylene) Tj ETQqC	0 0 <u>0 t</u> gBT	Overlock 10
363	A single molecule rectifier with strong push-pull coupling. Journal of Chemical Physics, 2008, 129, 204701.	3.0	17
364	Morphology and Dynamics of Polymer Nanocomposites for Varying Polymer Filler Interactions. , 2008, , .		1
365	Solid-State Combustion of Metallic Nanoparticles: New Possibilities for an Alternative Energy Carrier. Journal of Energy Resources Technology, Transactions of the ASME, 2007, 129, 29-32.	2.3	50
366	Nonvolatile Memory Elements Based on the Intercalation of Organic Molecules Inside Carbon Nanotubes. Physical Review Letters, 2007, 98, 056401.	7.8	24
367	Tuning the conductance of carbon nanotubes with encapsulated molecules. Nanotechnology, 2007, 18, 424032.	2.6	4
368	Structure and Stability of Small Boron and Boron Oxide Clusters. Journal of Physical Chemistry A, 2007, 111, 6539-6551.	2.5	65
369	Nitrogen-Mediated Carbon Nanotube Growth: Diameter Reduction, Metallicity, Bundle Dispersability, and Bamboo-like Structure Formation. ACS Nano, 2007, 1, 369-375.	14.6	207
370	Unique chemical reactivity of a graphene nanoribbon's zigzag edge. Journal of Chemical Physics, 2007, 126, 134701.	3.0	423
371	Selective Tuning of the Electronic Properties of Coaxial Nanocables through Exohedral Doping. Nano Letters, 2007, 7, 2383-2388.	9.1	43
372	Benzo-homologated nucleobases in a nanotube-electrode set-up for DNA sequencing. Nanotechnology, 2007, 18, 424019.	2.6	8
373	A Toxicity Evaluation and Predictive System Based on Neural Networks and Wavelets. Journal of Chemical Information and Modeling, 2007, 47, 676-685.	5.4	17
374	Use of Drug Discovery Tools in Rational Organometallic Catalyst Design. Inorganic Chemistry, 2007, 46, 8613-8624.	4.0	20
375	Electronic Structure of xDNA. Journal of Physical Chemistry B, 2007, 111, 9057-9061.	2.6	31
376	Electronic Structure Investigation of Surfaceâ^'Adsorbate and Adsorbateâ^'Adsorbate Interactions in Multilayers of CH4on MgO(100). Journal of Physical Chemistry C, 2007, 111, 966-976.	3.1	14
377	Theoretical Study on the Structure, Stability, and Electronic Properties of the Guanineâ°'Znâ°'Cytosine Base Pair in M-DNA. Journal of Physical Chemistry B, 2007, 111, 870-879.	2.6	55
378	First principles study of magnetism in nanographenes. Journal of Chemical Physics, 2007, 127, 124703.	3.0	191

#	Article	IF	Citations
379	Investigation of the nanoscale self-assembly of donor- if -acceptor molecules. International Journal of Quantum Chemistry, 2007, 107, 2233-2242.	2.0	7
380	A New Class of Supramolecular Wires. Journal of Physical Chemistry C, 2007, 111, 18912-18916.	3.1	12
381	Density functional investigation of the adsorption of a methane monolayer on an MgO(100) surface. Physical Review B, 2006, 73, .	3.2	16
382	Excited state quantum-classical molecular dynamics. Physica Scripta, 2006, T124, 101-107.	2.5	12
383	Olefin Adsorption on Silica-Supported Silver Salts â^ A DFT Study. Langmuir, 2006, 22, 5716-5722.	3.5	21
384	Structure and Bonding between an Aryl Group and Metal Surfaces. Journal of the American Chemical Society, 2006, 128, 6030-6031.	13.7	131
385	How Do Aryl Groups Attach to a Graphene Sheet?. Journal of Physical Chemistry B, 2006, 110, 23628-23632.	2.6	191
386	Size-Expanded yDNA Bases:Â An Ab Initio Study. Journal of Physical Chemistry B, 2006, 110, 6379-6384.	2.6	49
387	Aromaticity-induced changes in electronic properties of size-expanded DNA bases: Case of xC. International Journal of Quantum Chemistry, 2006, 106, 2339-2346.	2.0	17
388	Density functional theory studies of quantum transport in molecular systems. International Journal of Quantum Chemistry, 2006, 106, 3334-3342.	2.0	4
389	Confinement effects on the structure and dynamics of polymer systems from the mesoscale to the nanoscale. Journal of Polymer Science, Part B: Polymer Physics, 2005, 43, 1571-1590.	2.1	11
390	Electron transport in molecular systems. Journal of Physics: Conference Series, 2005, 16, 283-286.	0.4	2
391	Computational Study of the Structure, Dynamics, and Photophysical Properties of Conjugated Polymers and Oligomers under Nanoscale Confinement. Journal of Physical Chemistry B, 2005, 109, 7671-7685.	2.6	77
392	Size-Expanded DNA Bases:Â An Ab Initio Study of Their Structural and Electronic Properties. Journal of Physical Chemistry B, 2005, 109, 21135-21139.	2.6	64
393	Amphoteric doping of carbon nanotubes by encapsulation of organic molecules: Electronic properties and quantum conductance. Journal of Chemical Physics, 2005, 123, 024705.	3.0	62
394	Electronic structure and properties of isoreticular metal-organic frameworks: The case of M-IRMOF1 (M=Zn, Cd, Be, Mg, and Ca). Journal of Chemical Physics, 2005, 123, 124713.	3.0	147
395	Feature Article: Experimental Design and Molecular Modeling of Novel Graft Copolymers. Polymer News, 2004, 29, 302-310.	0.1	6
396	Formation of Oriented Nanostructures from Single Molecules of Conjugated Polymers in Microdroplets of Solution:Â The Role of Solvent. Macromolecules, 2004, 37, 6132-6140.	4.8	32

#	Article	IF	CITATIONS
397	Photon Antibunching from Oriented Semiconducting Polymer Nanostructures. Journal of the American Chemical Society, 2004, 126, 3376-3377.	13.7	56
398	Dynamics of Nanomechanical Devices. ACS Symposium Series, 2004, , 97-122.	0.5	0
399	Theory of Unimolecular Reactions in Confined Volumes. ACS Symposium Series, 2004, , 205-215.	0.5	0
400	Multiscale Simulations of Carbon Nanotube Nucleation and Growth: Electronic Structure Calculations. Journal of Nanoscience and Nanotechnology, 2004, 4, 414-422.	0.9	5
401	Computational simulation of polymer particle structures: vibrational normal modes using the time averaged normal coordinate analysis method. Polymer, 2003, 44, 3761-3767.	3.8	3
402	Recent developments in the formation, characterization, and simulation of micron and nano-scale droplets of amorphous polymer blends and semi-crystalline polymers. Polymer, 2003, 44, 4389-4403.	3.8	26
403	Oriented Nanostructures from Single Molecules of a Semiconducting Polymer:  Polarization Evidence for Highly Aligned Intramolecular Geometries. Nano Letters, 2003, 3, 603-607.	9.1	46
404	Narrow-Bandwidth Spontaneous Luminescence from Oriented Semiconducting Polymer Nanostructures. Journal of Physical Chemistry B, 2003, 107, 6252-6257.	2.6	45
405	Oriented Luminescent Nanostructures From Single Molecules Of Conjugated Polymers. Materials Research Society Symposia Proceedings, 2003, 771, 981.	0.1	0
406	Molecular Simulation and Modeling of the Structure and Properties of Polymer Nano-Particles. , 2002, , 93-105.		0
407	Large-Scale Normal Coordinate Analysis on Distributed Memory Parallel Systems. International Journal of High Performance Computing Applications, 2002, 16, 409-424.	3.7	1
408	Vibrational Normal Modes of Polymer Nanoparticle Dimers Using the Time-Averaged Normal Coordinate Analysis Method. Journal of Physical Chemistry A, 2002, 106, 9174-9180.	2.5	5
409	Photonic polymers: a new class of photonic wire structure from intersecting polymer-blend microspheres. Optics Letters, 2002, 27, 610.	3.3	10
410	Molecular Dynamics Simulation of Polymer Nanoparticle Collisions:Â Internal Reorganization and Translationâ [^] Vibration Coupling. Macromolecules, 2002, 35, 1102-1108.	4.8	7
411	Normal Coordinate Analysis for Polymer Systems: Capabilities and New Opportunities. Macromolecular Theory and Simulations, 2002, 11, 711-728.	1.4	2
412	Shock and Pressure Wave Propagation in Nano-Fluidic Systems. , 2002, , 171-176.		0
413	Theory of the Production and Properties of Polymer Nanoparticles: Quantum Drops., 2002,, 107-116.		0
414	Nanoscale Optical Probes of Polymer Dynamics in Ultrasmall Volumes. , 2002, , 79-91.		0

#	Article	IF	CITATIONS
415	Large-Scale Normal Coordinate Analysis for Molecular Structures. SIAM Journal of Scientific Computing, 2001, 23, 563-582.	2.8	11
416	Molecular Dynamics Simulation of Collinear Polymer Nanoparticle Collisions:  Reaction and Scattering. Journal of Physical Chemistry B, 2001, 105, 11468-11473.	2.6	6
417	Analysis of eigenvalues and eigenvectors of polymer particles: random normal modes. Computational and Theoretical Polymer Science, 2001, 11, 191-196.	1.1	11
418	Internal coordinate phase space analysis of macromolecular systems. Computational and Theoretical Polymer Science, 2001, 11, 35-47.	1.1	2
419	On the Distribution of Fragment Sizes in the Fragmentation of Polymer Chains. Macromolecular Theory and Simulations, 2001, 10, 587-591.	1.4	8
420	An Efficient Algorithm for Calculating the Heat Capacity of a Large-Scale Molecular System. Macromolecular Theory and Simulations, 2001, 10, 756-761.	1.4	2
421	Quantum mechanical model of localized electrons on the surface of polymer nanospheres. Chemical Physics Letters, 2001, 333, 308-313.	2.6	3
422	Generation, Characterization, and Modeling of Polymer Micro- and Nano-Particles. Advances in Polymer Science, 2001, , 1-86.	0.8	14
423	Contribution of restricted rotors to quantum sieving of hydrogen isotopes. Physical Review A, 2001, 64, .	2.5	44
424	Three-Dimensional Photonic "Molecules―from Sequentially Attached Polymer-Blend Microparticles. Physical Review Letters, 2001, 88, 015508.	7.8	36
425	Computation of internal coordinates, derivatives, and gradient expressions: torsion and improper torsion. Journal of Computational Chemistry, 2000, 21, 553-561.	3.3	11
426	Calculating the density of states for large-scale molecular systems. Macromolecular Theory and Simulations, 2000, 9, 428-432.	1.4	0
427	Spectra analysis for macromolecular systems: Chain-length effects in polymer particles. Journal of Polymer Science, Part B: Polymer Physics, 2000, 38, 1812-1823.	2.1	10
428	Development of Nanosensors and Bioprobes. Journal of Nanoparticle Research, 2000, 2, 17-27.	1.9	35
429	Refractive index dispersion functions of solid-phase polymers by multicolor optical diffraction. Applied Physics Letters, 2000, 77, 2515-2517.	3.3	12
430	Atomistic Dynamics of Nanoscale Polymer Particles. Macromolecules, 2000, 33, 5982-5987.	4.8	16
431	Domain-Size Effects in Optical Diffraction from Polymer/Composite Microparticles. Journal of Physical Chemistry B, 2000, 104, 495-502.	2.6	15
432	Large-Scale Normal Coordinate Analysis of Macromolecular Systems: Thermal Properties of Polymer Particles and Crystalsâ€. Journal of Physical Chemistry B, 2000, 104, 526-531.	2.6	15

#	Article	IF	CITATIONS
433	Prediction of quantum dot-like behavior in polymer nanoparticles: Quantum drops. Journal of Chemical Physics, 1999, 110, 594-597.	3.0	8
434	Computational simulation and modeling of polymer-composite nanoparticles: New insights and directions for advanced materials. Materials Today, 1999, 2, 3-6.	14.2	5
435	Molecular dynamics studies of the structure and properties of polymer nano-particles. Computational and Theoretical Polymer Science, 1999, 9, 245-254.	1.1	27
436	Collision dynamics and surface wetting of nano-scale polymer particles on substrates. Chemical Physics, 1999, 244, 339-349.	1.9	16
437	Chemical potential and symmetry properties for excess electrons on polymer nanoparticles: quantum drops. Chemical Physics Letters, 1999, 299, 352-357.	2.6	7
438	Semi-empirical study of a prototype rotaxane-based molecular shuttle. Computational and Theoretical Chemistry, 1999, 491, 281-286.	1.5	19
439	Molecular dynamics simulation of the thermal properties of nano-scale polymer particles. Macromolecular Theory and Simulations, 1999, 8, 38-45.	1.4	28
440	Molecular Dynamics Simulation of Polymer Fine Particles. Physical and Mechanical Properties. Polymer Journal, 1999, 31, 664-671.	2.7	21
441	Probing Phase-Separation Behavior in Polymer-Blend Microparticles:Â Effects of Particle Size and Polymer Mobility. Macromolecules, 1999, 32, 7183-7189.	4.8	40
442	Homogeneous polymer blend microparticles with a tunable refractive index. Optics Letters, 1999, 24, 121.	3.3	38
443	Gas atomization of polymers. II. Computational neural network modeling. Advances in Polymer Technology, 1998, 17, 161-173.	1.7	1
444	Computational neural networks and the rational design of polymeric materials: the next generation polycarbonates. Computational and Theoretical Polymer Science, 1998, 8, 311-321.	1.1	55
445	Continuum methods of mechanics as a simplified approach to structural engineering of nanostructures. Nanotechnology, 1998, 9, 30-36.	2.6	87
446	Docking envelopes for the assembly of molecular bearings. Nanotechnology, 1998, 9, 37-48.	2.6	20
447	Electron propagation along a nanowire: a study in chattering. Nanotechnology, 1998, 9, 365-368.	2.6	0
448	Full three-body primitive semiclassical treatment of H2+. Physical Review A, 1998, 57, 906-913.	2.5	12
449	Application of rigid-body dynamics and semiclassical mechanics to molecular bearings. Nanotechnology, 1997, 8, 103-111.	2.6	36
450	Dynamics of flow inside carbon nanotubes. Nanotechnology, 1997, 8, 112-118.	2.6	57

#	Article	lF	CITATIONS
451	On the importance of quantum mechanics for nanotechnology. Nanotechnology, 1997, 8, 119-125.	2.6	23
452	Prediction of Complexation Properties of Crown Ethers Using Computational Neural Networks. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 1997, 27, 201-213.	1.6	19
453	On the determination and ramifications of chaos in many-body systems: A model study of polyethylene. Macromolecular Theory and Simulations, 1997, 6, 577-590.	1.4	5
454	Recent advances in polymer molecular dynamics simulation and data analysis. Macromolecular Theory and Simulations, 1997, 6, 855-880.	1.4	4
455	Treatment of multibody interactions in molecular simulations of systems with general bond networks. Journal of Computational Chemistry, 1997, 18, 1513-1522.	3.3	10
456	Efficient treatment of out-of-plane bend and improper torsion interactions in MM2, MM3, and MM4 molecular mechanics calculations. Journal of Computational Chemistry, 1997, 18, 1804-1811.	3.3	15
457	On the Design, Analysis, and Characterization of Materials Using Computational Neural Networks. Annual Review of Materials Research, 1996, 26, 223-277.	5.5	67
458	Dynamics of fluid flow inside carbon nanotubes. Nanotechnology, 1996, 7, 241-246.	2.6	176
459	On the use of computational neural networks for the prediction of polymer properties. Journal of Thermal Analysis, 1996, 46, 833-851.	0.6	21
460	Thermal analysis via molecular dynamics simulation. Journal of Thermal Analysis, 1996, 46, 853-869.	0.6	12
461	Quantum-Monte-Carlo simulations on linear chains. Macromolecular Theory and Simulations, 1996, 5, 365-380.	1.4	4
462	Efficient computation of potential energy first and second derivatives for molecular dynamics, normal coordinate analysis, and molecular mechanics calculations. Macromolecular Theory and Simulations, 1996, 5, 771-788.	1.4	29
463	An internal coordinate quantum Monte Carlo method for calculating vibrational ground state energies and wave functions of large molecules: A quantum geometric statement function approach. Journal of Chemical Physics, 1996, 105, 5494-5502.	3.0	12
464	The origins of avoided crossings in polymer dispersion curves. Macromolecular Theory and Simulations, 1995, 4, 709-723.	1.4	1
465	Molecular dynamics treatment of torsional interactions accompanied by dissociation. Macromolecular Theory and Simulations, 1995, 4, 909-920.	1.4	14
466	Estimation of the properties of hydrofluorocarbons by computer neural networks. Journal of Fluorine Chemistry, 1995, 73, 107-111.	1.7	10
467	Structure and mass transport in constrained polymer crystals via molecular dynamics simulations. Polymer, 1995, 36, 109-127.	3.8	10
468	Modeling of binary molten-salt phase diagrams via neural networks. Journal of Phase Equilibria and Diffusion, 1995, 16, 493-500.	0.3	3

#	Article	IF	CITATIONS
469	The dynamics of molecular bearings. Nanotechnology, 1995, 6, 64-74.	2.6	81
470	Dynamics of a laser driven molecular motor. Nanotechnology, 1995, 6, 52-63.	2.6	84
471	The onset of instability in nanostructures: The role of nonlinear resonance. Journal of Chemical Physics, 1995, 102, 6619-6622.	3.0	20
472	Dynamical analysis of linear polymers using mode-specific trajectories. Molecular Physics, 1994, 82, 597-616.	1.7	2
473	Symplectic integrators for large scale molecular dynamics simulations: A comparison of several explicit methods. Journal of Chemical Physics, 1994, 101, 4062-4072.	3.0	149
474	A molecular dynamics method for obtaining the vibrational spectra of macromolecules. Journal of Chemical Physics, 1994, 100, 3520-3531.	3.0	12
475	The existence of nonlinear resonances in collective modes of linear macromolecules. Journal of Chemical Physics, 1994, 100, 8540-8541.	3.0	6
476	Semiclassical theory of group vibrations for linear polymer chains. Macromolecular Theory and Simulations, 1994, 3, 347-362.	1.4	6
477	Neural networks and graph theory as computational tools for predicting polymer properties. Macromolecular Theory and Simulations, 1994, 3, 363-378.	1.4	42
478	Computational experiments on the migration of internal energy in macromolecular systems. Chemical Physics, 1994, 186, 323-353.	1.9	9
479	Atomistic dynamics of macromolecular crystals. , 1994, , 27-72.		81
480	Gauche Defects, Positional Disorder, Dislocations, and Slip Planes in Crystals of Long Methylene Sequences. The Journal of Physical Chemistry, 1994, 98, 11739-11744.	2.9	28
481	Neural Network-Graph Theory Approach to the Prediction of the Physical Properties of Organic Compounds. Journal of Chemical Information and Computer Sciences, 1994, 34, 832-839.	2.8	76
482	Theory and Applications of Neural Computing in Chemical Science. Annual Review of Physical Chemistry, 1994, 45, 439-481.	10.8	111
483	Opening Up the Black Box of Artificial Neural Networks. Journal of Chemical Education, 1994, 71, 406.	2.3	38
484	Computer Simulation of Macromolecular Crystals and Their Defects. , 1994, , 35-49.		0
485	Atomistic details of disordering processes in superheated polymethylene crystals. Acta Polymerica, 1993, 44, 219-224.	0.9	14
486	Computer simulations of atomic force microscopy: crystalline polymers and the effects of surface contaminants. Die Makromolekulare Chemie Theory and Simulations, 1993, 2, 55-76.	1.0	5

#	Article	IF	CITATIONS
487	Dynamics of a paraffin crystal. Die Makromolekulare Chemie Theory and Simulations, 1993, 2, 245-255.	1.0	13
488	Molecular dynamics simulations of the hexagonal structure of crystals with long methylene sequences. Journal of Polymer Science, Part B: Polymer Physics, 1993, 31, 1909-1921.	2.1	23
489	Atomistic Details Of Disordering Processes in Superheated Polymethylene Crystals II. Effects of Surface Constraints. Materials Research Society Symposia Proceedings, 1993, 321, 93.	0.1	0
490	Neural network simulations on massively parallel computers: Applications in chemical physics. Lecture Notes in Computer Science, 1993, , 454-458.	1.3	0
491	Computational studies of submicron probing of polymer surfaces. I. Journal of Chemical Physics, 1992, 96, 7072-7085.	3.0	10
492	A neural network approach to the study of internal energy flow in molecular systems. Journal of Chemical Physics, 1992, 97, 293-306.	3.0	13
493	Neural network predictions of energy transfer in macromolecules. The Journal of Physical Chemistry, 1992, 96, 2761-2767.	2.9	18
494	Computational experiments on the motion and generation of defects in polymer crystals. Macromolecules, 1992, 25, 7247-7255.	4.8	35
495	Dynamics of charged polymers. 1. Macromolecules, 1992, 25, 331-336.	4.8	3
496	Conformational changes in a polyethylene model under tension and compression. Polymer Engineering and Science, 1992, 32, 1278-1285.	3.1	2
497	Computational experiments on the intramolecular energy flow in macromolecules. Chemical Physics, 1992, 160, 393-403.	1.9	11
498	Potential energy surfaces for macromolecules. A neural network technique. Chemical Physics Letters, 1992, 192, 455-462.	2.6	78
499	Title is missing!. Die Makromolekulare Chemie Rapid Communications, 1992, 13, 169-172.	1.1	11
500	Existence of nonlinear resonances in polyethylene. Die Makromolekulare Chemie Theory and Simulations, 1992, 1, 359-374.	1.0	5
501	Molecular dynamics simulation of twist motion in polyethylene. Macromolecules, 1991, 24, 4148-4151.	4.8	52
502	Infrared laser induced ablation and melting in model polymer crystals. Lecture Notes in Physics, 1991, , 334-343.	0.7	1
503	Novel methods for spectral analysis. Physics Reports, 1991, 205, 109-152.	25.6	53
504	Computer simulation of molecular collisions with a polymer surface. The Journal of Physical Chemistry, 1990, 94, 809-814.	2.9	22

#	Article	IF	CITATIONS
505	Estimation of dispersion relations from short-duration molecular dynamics simulations. The Journal of Physical Chemistry, 1990, 94, 5720-5729.	2.9	17
506	Defect Generation and Motion in Polyethylene-Like Crystals, Analyzed by Simulation With Supercomputers. Materials Research Society Symposia Proceedings, 1990, 209, .	0.1	3
507	Intramolecular and reactive dynamics of OH-overtone excited HOOH (D): A classical trajectory study on a quasiseparable potential surface. Chemical Physics, 1990, 145, 1-17.	1.9	19
508	Molecular dynamics simulations of polymers: Methods for optimal Fortran programming. Journal of Computational Chemistry, 1990, 11, 236-241.	3.3	71
509	The correlation of rotational isomers in polyethylene-like crystals. Die Makromolekulare Chemie, 1990, 191, 2261-2270.	1.1	4
510	Molecular dynamics calculations of energy transfer to polymer surfaces. Chemical Physics Letters, 1990, 169, 103-108.	2.6	6
511	Molecular dynamics calculation of the density of states for poly(ethylene): collective versus local modes. Analytica Chimica Acta, 1990, 235, 143-153.	5.4	17
512	Theoretical studies of the effects of anharmonicity on polymer dynamics: temperature dependence of heat capacity. Polymer, 1990, 31, 1254-1259.	3.8	16
513	Ab initio study of stretch-bend coupling in hydrogen peroxide. The Journal of Physical Chemistry, 1990, 94, 3995-4000.	2.9	17
514	Molecular dynamics simulation of the condis state of polyethylene. Macromolecules, 1990, 23, 664-669.	4.8	61
515	Molecular dynamics study of the rate of melting of a crystalline polyethylene molecule: effect of chain folding. Macromolecules, 1990, 23, 4671-4677.	4.8	30
516	Computer experiments on the internal dynamics of crystalline polyethylene: Mechanistic details of conformational disorder. Journal of Chemical Physics, 1990, 93, 6875-6889.	3.0	95
517	Infrared laserâ€induced chaos and conformational disorder in a model polymer crystal: Melting vs ablation. Journal of Chemical Physics, 1990, 93, 6081-6091.	3.0	10
518	Unimolecular decay lifetimes and intramolecular energy redistribution in hydrogen peroxide: sensitivity to potential energy surface. The Journal of Physical Chemistry, 1989, 93, 3877-3880.	2.9	33
519	Molecular dynamics results for a polyethylene-like crystal. Die Makromolekulare Chemie Rapid Communications, 1989, 10, 377-381.	1.1	23
520	Comparison of classical and quantum phase space structure of nonrigid molecules, LiCN. Chemical Physics Letters, 1989, 161, 60-66.	2.6	54
521	Influence of rotation on the intramolecular dynamics of hydrogen peroxide. Chemical Physics Letters, 1988, 153, 243-252.	2.6	17
522	Exact semiclassical calculation of eigenvalues for multidimensional systems using SOS. Computer Physics Communications, 1988, 51, 11-15.	7.5	6

#	Article	IF	Citations
523	Interaction of molecular rotation with large-amplitude internal motions: a rigid twister model of hydrogen peroxide. The Journal of Physical Chemistry, 1988, 92, 7193-7204.	2.9	27
524	Unimolecular reaction dynamics of dimethylnitramine. Journal of Chemical Physics, 1988, 88, 6889-6897.	3.0	38
525	Studies of the intramolecular dynamics of model polyatomic molecules. Journal of Chemical Physics, 1987, 86, 2805-2817.	3.0	48
526	Intramolecular dynamics of the overtoneâ€induced isomerization of methyl isocyanide. Journal of Chemical Physics, 1987, 87, 5809-5819.	3.0	38
527	The effect of resonances on collisional energy transfer. Journal of Chemical Physics, 1987, 87, 1012-1021.	3.0	11
528	Intramolecular vibrational relaxation from CH stretching modes in dimethylnitramine. Journal of Chemical Physics, 1987, 86, 3301-3310.	3.0	26
529	Semiclassical rotation-vibration energies for a triatomic molecule: H2O. Chemical Physics Letters, 1987, 142, 142-146.	2.6	8
530	Method for semiclassical calculation of grid of eigenvalues. Chemical Physics Letters, 1986, 126, 181-184.	2.6	31
531	New method to calculate surfaces of section. Chemical Physics Letters, 1985, 121, 187-190.	2.6	30
532	Intramolecular vibrational energy flow in model fourâ€atom systems. Journal of Chemical Physics, 1985, 82, 4557-4565.	3.0	48
533	Optimizing the Electronic Properties of Carbon Nanotubes using Amphoteric Doping., 0,, 29-46.		0
534	Using Order and Nanoconfinement to Tailor Semiconducting Polymers: A Combined Experimental and Multiscale Computational Study., 0,, 47-72.		0
535	Phase Morphology and Molecular Structure Correlations in Model Fullerene-Polymer Nanocomposites. Materials Science Forum, 0, 714, 63-66.	0.3	3