Qiang Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6416052/publications.pdf

Version: 2024-02-01

128 papers	9,944 citations	41344 49 h-index	96 g-index
163	163	163	9579
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Carotid arterial wall MRI of apolipoprotein e–deficient mouse at 7ÂT using DANTE-prepared variable-flip-angle rapid acquisition with relaxation enhancement. Magnetic Resonance Imaging, 2022, 86, 1-9.	1.8	1
2	Mechanistic insight into the synergistic Cu/Pd-catalyzed carbonylation of aryl iodides using alcohols and dioxygen as the carbonyl source. Science China Chemistry, 2022, 65, 68-74.	8.2	4
3	Diffusionâ€weighted magnetic resonance imaging in rat kidney using twoâ€dimensional navigated, interleaved echoâ€planar imaging at 7.0ÂT. NMR in Biomedicine, 2022, 35, e4652.	2.8	1
4	Glycyrrhiza acid-Licochalcone A complexes for enhanced bioavailability and anti-melanogenic effect of Licochalcone A: cellular uptake and in vitro experiments. Journal of Drug Delivery Science and Technology, 2022, 68, 103037.	3.0	7
5	Mechanistic investigation of zwitterionic MOF-catalyzed enyne annulation using UNLPF-14-MnIII as catalyst. Chinese Chemical Letters, 2022, 33, 4281-4286.	9.0	12
6	Review of Current Strategies for Delivering Alzheimer's Disease Drugs Across the Blood-Brain Barrier. Focus (American Psychiatric Publishing), 2022, 20, 117-136.	0.8	1
7	Pharmacological Effects and Underlying Mechanisms of Licorice-Derived Flavonoids. Evidence-based Complementary and Alternative Medicine, 2022, 2022, 1-25.	1.2	7
8	Quantitative Structure-Activity Relationship of Enhancers of Licochalcone A and Glabridin Release and Permeation Enhancement from Carbomer Hydrogel. Pharmaceutics, 2022, 14, 262.	4.5	12
9	Using Methanol as a Formaldehyde Surrogate for Sustainable Synthesis of <scp><i>N</i>â€Heterocycles</scp> via <scp>Manganeseâ€Catalyzed</scp> Dehydrogenative Cyclization. Chinese Journal of Chemistry, 2022, 40, 1137-1143.	4.9	16
10	Explore the Anti-Acne Mechanism of Licorice Flavonoids Based on Metabonomics and Microbiome. Frontiers in Pharmacology, 2022, 13, 832088.	3.5	10
11	Synthesis of Substituted Thiophenes through Dehydration and Heterocyclization of Alkynols. Journal of Organic Chemistry, 2022, 87, 3555-3566.	3.2	10
12	Cobalt/Lewis acid cooperative catalysis for reductive etherification of ketones and aldehydes with alcohols. Chem Catalysis, 2022, 2, 883-897.	6.1	4
13	Manganeseâ€Catalyzed Asymmetric Hydrogenation of <i>3H</i> â€Indoles. Angewandte Chemie - International Edition, 2022, 61, .	13.8	38
14	Manganese atalyzed Asymmetric Hydrogenation of <i>3H</i> â€Indoles. Angewandte Chemie, 2022, 134, .	2.0	6
15	Automated Skull Stripping in Mouse Functional Magnetic Resonance Imaging Analysis Using 3D U-Net. Frontiers in Neuroscience, 2022, 16, 801769.	2.8	1
16	Investigative on the Molecular Mechanism of Licorice Flavonoids Anti-Melanoma by Network Pharmacology, 3D/2D-QSAR, Molecular Docking, and Molecular Dynamics Simulation. Frontiers in Chemistry, 2022, 10, 843970.	3.6	12
17	Preparation, characterisation and comparison of glabridin-loaded hydrogel-forming microneedles by chemical and physical cross-linking. International Journal of Pharmaceutics, 2022, 617, 121612.	5.2	19
18	Natural bioactive constituents from herbs and nutraceuticals promote browning of white adipose tissue. Pharmacological Research, 2022, 178, 106175.	7.1	16

#	Article	lF	CITATIONS
19	Skin microbiome reconstruction and lipid metabolism profile alteration reveal the treatment mechanism of Cryptotanshinone in the acne rat. Phytomedicine, 2022, 101, 154101.	5.3	5
20	Mechanisms of Penetration Enhancement and Transport Utilizing Skin Keratine Liposomes for the Topical Delivery of Licochalcone A. Molecules, 2022, 27, 2504.	3.8	6
21	A green and highly efficient method to deliver hydrophilic polyphenols of Salvia miltiorrhiza and Carthamus tinctorius for enhanced anti-atherosclerotic effect via metal-phenolic network. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112511.	5.0	6
22	Regioselective Synthetic Approach to Higher Alkenes from Lower Alkenes with Sulfoxides in the Fe ³⁺ /H ₂ O ₂ System ⟨i>via Direct Alkylation or Arylation of the Csp ² â€"H Bond on the Câ•€ Bond of Alkenes. Journal of Organic Chemistry, 2022, 87, 7022-7032.	3.2	4
23	Log P Determines Licorice Flavonoids Release Behaviors and Classification from CARBOMER Cross-Linked Hydrogel. Pharmaceutics, 2022, 14, 1333.	4.5	8
24	Recent advances in graphene-family nanomaterials for effective drug delivery and phototherapy. Expert Opinion on Drug Delivery, 2021, 18, 119-138.	5.0	15
25	Manganeseâ€Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π–π Interaction**. Angewandte Chemie, 2021, 133, 5168-5173.	2.0	23
26	Manganeseâ€Catalyzed Asymmetric Hydrogenation of Quinolines Enabled by π–π Interaction**. Angewandte Chemie - International Edition, 2021, 60, 5108-5113.	13.8	93
27	Transition Metalâ€Free Synthesis of Substituted Isothiazoles via Three omponent Annulation of Alkynones, Xanthate and NH 4 I. Advanced Synthesis and Catalysis, 2021, 363, 1059-1068.	4.3	10
28	Single-atom Fe with Fe1N3 structure showing superior performances for both hydrogenation and transfer hydrogenation of nitrobenzene. Science China Materials, 2021, 64, 642-650.	6.3	98
29	Flavonoids from <i>Rosa davurica</i> Pall. fruits prevent high-fat diet-induced obesity and liver injury <i>via</i> modulation of the gut microbiota in mice. Food and Function, 2021, 12, 10097-10106.	4.6	15
30	Notched-Polyoxometalate Strategy to Fabricate Atomically Dispersed Ru Catalysts for Biomass Conversion. ACS Catalysis, 2021, 11, 2669-2675.	11.2	34
31	Homogeneous manganese-catalyzed hydrogenation and dehydrogenation reactions. CheM, 2021, 7, 1180-1223.	11.7	142
32	A Skin Lipidomics Study Reveals the Therapeutic Effects of Tanshinones in a Rat Model of Acne. Frontiers in Pharmacology, 2021, 12, 675659.	3.5	6
33	Effects of ligustrazine on the expression of neurotransmitters in the trigeminal ganglion of a rat migraine model. Annals of Translational Medicine, 2021, 9, 1318-1318.	1.7	11
34	Glycyrrhiza acid micelles loaded with licochalcone A for topical delivery: Co-penetration and anti-melanogenic effect. European Journal of Pharmaceutical Sciences, 2021, 167, 106029.	4.0	13
35	Synthesis of Deuterated (<i>E</i>)-Alkene through Xanthate-Mediated Hydrogen–Deuterium Exchange Reactions. Organic Letters, 2021, 23, 7412-7417.	4.6	10
36	Inhibitory effect of chloroform extracts from Citrus aurantium L. var. amara Engl. on fat accumulation. Phytomedicine, 2021, 90, 153634.	5. 3	12

#	Article	IF	Citations
37	Integrated Proteomics and Metabolomics Link Acne to the Action Mechanisms of Cryptotanshinone Intervention. Frontiers in Pharmacology, 2021, 12, 700696.	3.5	12
38	ATP-Responsive Multifunctional Supramolecular Polymer as a Nonviral Vector for Boosting Cholesterol Removal from Lipid-Laden Macrophages. ACS Biomaterials Science and Engineering, 2021, 7, 5048-5063.	5.2	4
39	Cobalt-Catalyzed Desymmetric Isomerization of Exocyclic Olefins. Journal of the American Chemical Society, 2021, 143, 20633-20639.	13.7	26
40	Bidentate NHC-Cobalt Catalysts for the Hydrogenation of Hindered Alkenes. Organometallics, 2020, 39, 3082-3087.	2.3	17
41	Coordination structure dominated performance of single-atomic Pt catalyst for anti-Markovnikov hydroboration of alkenes. Science China Materials, 2020, 63, 972-981.	6.3	74
42	Manganese-Catalyzed Dehydrogenative/Deoxygenative Coupling of Alcohols. Synlett, 2020, 31, 1464-1473.	1.8	13
43	Formulation and Characterization of a 3D-Printed Cryptotanshinone-Loaded Niosomal Hydrogel for Topical Therapy of Acne. AAPS PharmSciTech, 2020, 21, 159.	3.3	30
44	Metal-Free Oxidative Esterification of Ketones and Potassium Xanthates: Selective Synthesis of α-Ketoesters and Esters. Journal of Organic Chemistry, 2020, 85, 5220-5230.	3.2	10
45	Migratory Hydrogenation of Terminal Alkynes by Base/Cobalt Relay Catalysis. Angewandte Chemie, 2020, 132, 6816-6821.	2.0	2
46	Migratory Hydrogenation of Terminal Alkynes by Base/Cobalt Relay Catalysis. Angewandte Chemie - International Edition, 2020, 59, 6750-6755.	13.8	27
47	Reversible interconversion between methanol-diamine and diamide for hydrogen storage based on manganese catalyzed (de)hydrogenation. Nature Communications, 2020, 11, 591.	12.8	75
48	Potential role of mTORC1 and the PI3K-Akt pathway in anti-acne properties of licorice flavonoids. Journal of Functional Foods, 2020, 70, 103968.	3.4	14
49	Access to 4-substituted isothiazoles through three-component cascade annulation and their application in C–H activation. Chemical Communications, 2020, 56, 5763-5766.	4.1	14
50	Unmasking the Ligand Effect in Manganese-Catalyzed Hydrogenation: Mechanistic Insight and Catalytic Application. Journal of the American Chemical Society, 2019, 141, 17337-17349.	13.7	102
51	General and Phosphineâ€Free Cobaltâ€Catalyzed Hydrogenation of Esters to Alcohols. Chinese Journal of Chemistry, 2019, 37, 1125-1130.	4.9	23
52	Mechanisms of white mustard seed (Sinapis alba L.) volatile oils as transdermal penetration enhancers. FÃ-toterapÃ-â, 2019, 138, 104195.	2,2	14
53	Review of Current Strategies for Delivering Alzheimer's Disease Drugs across the Blood-Brain Barrier. International Journal of Molecular Sciences, 2019, 20, 381.	4.1	145
54	Manganeseâ€Catalyzed Selective Upgrading of Ethanol with Methanol into Isobutanol. ChemSusChem, 2019, 12, 3069-3072.	6.8	43

#	Article	IF	CITATIONS
55	Fe-Catalyzed enaminone synthesis from ketones and amines. Organic and Biomolecular Chemistry, 2019, 17, 6753-6756.	2.8	13
56	NH ₄ I-Promoted and H ₂ O-Controlled Intermolecular Bis-sulfenylation and Hydroxysulfenylation of Alkenes via a Radical Process. Journal of Organic Chemistry, 2019, 84, 8750-8758.	3.2	27
57	A Practical and Stereoselective In Situ NHC-Cobalt Catalytic System for Hydrogenation of Ketones and Aldehydes. CheM, 2019, 5, 1552-1566.	11.7	51
58	<p>Pulmonary delivery of transferrin receptors targeting peptide surface-functionalized liposomes augments the chemotherapeutic effect of quercetin in lung cancer therapy</p> . International Journal of Nanomedicine, 2019, Volume 14, 2879-2902.	6.7	68
59	Base-Metal-Catalyzed Olefin Isomerization Reactions. Synthesis, 2019, 51, 1293-1310.	2.3	64
60	Altered metabolites in guinea pigs with allergic asthma after acupoint sticking therapy: New insights from a metabolomics approach. Phytomedicine, 2019, 54, 182-194.	5.3	7
61	Hydride Transfer Reactions Catalyzed by Cobalt Complexes. Chemical Reviews, 2019, 119, 2876-2953.	47.7	320
62	Mechanistic insight into cobalt-catalyzed stereodivergent semihydrogenation of alkynes: The story of selectivity control. Journal of Catalysis, 2018, 362, 25-34.	6.2	55
63	A general and efficient Mn-catalyzed acceptorless dehydrogenative coupling of alcohols with hydroxides into carboxylates. Organic Chemistry Frontiers, 2018, 5, 1248-1256.	4.5	72
64	Cu-Catalyzed Redox-Neutral Ring Cleavage of Cycloketone <i>O</i> Acyl Oximes: Chemodivergent Access to Distal Oxygenated Nitriles. Organic Letters, 2018, 20, 409-412.	4.6	100
65	Transparent Polymeric Strain Sensors for Monitoring Vital Signs and Beyond. ACS Applied Materials & Lamp; Interfaces, 2018, 10, 3895-3901.	8.0	85
66	Glycyrrhiza flavonoids and its major component, licochalcone A, inhibit melanogenesis through MAPK/ERK pathway by activating ERK phosphorylation. Journal of Dermatological Science, 2018, 91, 222-225.	1.9	10
67	Modulation of the Gut Microbiota in Rats by Hugan Qingzhi Tablets during the Treatment of High-Fat-Diet-Induced Nonalcoholic Fatty Liver Disease. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-14.	4.0	99
68	Manganeseâ€Catalyzed Dualâ€Deoxygenative Coupling of Primary Alcohols with 2â€Arylethanols. Angewandte Chemie, 2018, 130, 15363-15367.	2.0	13
69	Manganeseâ€Catalyzed Dualâ€Deoxygenative Coupling of Primary Alcohols with 2â€Arylethanols. Angewandte Chemie - International Edition, 2018, 57, 15143-15147.	13.8	66
70	Cobalt-Catalyzed Regioselective Olefin Isomerization Under Kinetic Control. Journal of the American Chemical Society, 2018, 140, 6873-6882.	13.7	99
71	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie, 2018, 130, 11432-11436.	2.0	24
72	Ordered Porous Nitrogenâ€Doped Carbon Matrix with Atomically Dispersed Cobalt Sites as an Efficient Catalyst for Dehydrogenation and Transfer Hydrogenation of Nâ€Heterocycles. Angewandte Chemie - International Edition, 2018, 57, 11262-11266.	13.8	165

#	Article	IF	Citations
73	Isoliquiritigenin suppresses human melanoma growth by targeting miR-301b/LRIG1 signaling. Journal of Experimental and Clinical Cancer Research, 2018, 37, 184.	8.6	40
74	Copper-catalysed regioselective sulfenylation of indoles with sodium sulfinates. Royal Society Open Science, 2018, 5, 180170.	2.4	9
75	Liposomes equipped with cell penetrating peptide BR2 enhances chemotherapeutic effects of cantharidin against hepatocellular carcinoma. Drug Delivery, 2017, 24, 986-998.	5.7	42
76	Iridium Clusters Encapsulated in Carbon Nanospheres as Nanocatalysts for Methylation of (Bio)Alcohols. ChemSusChem, 2017, 10, 4748-4755.	6.8	39
77	Manganese-Catalyzed Upgrading of Ethanol into 1-Butanol. Journal of the American Chemical Society, 2017, 139, 11941-11948.	13.7	269
78	Effect of stimulating the acupoints Feishu (BL 13) and Dazhui (GV 14) on transdermal uptake of sinapine thiocyanate in asthma gel. Journal of Traditional Chinese Medicine, 2017, 37, 503-509.	0.2	0
79	Cryptotanshinone-Loaded Cerasomes Formulation: In Vitro Drug Release, in Vivo Pharmacokinetics, and in Vivo Efficacy for Topical Therapy of Acne. ACS Omega, 2016, 1, 1326-1335.	3.5	12
80	Preparation of \hat{l}_{\pm} -Acyloxy Ketones via Visible-Light-Driven Aerobic Oxo-Acyloxylation of Olefins with Carboxylic Acids. Organic Letters, 2016, 18, 5256-5259.	4.6	40
81	High-Performance Strain Sensors with Fish-Scale-Like Graphene-Sensing Layers for Full-Range Detection of Human Motions. ACS Nano, 2016, 10, 7901-7906.	14.6	500
82	Mild and Selective Cobaltâ€Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie, 2016, 128, 14873-14877.	2.0	31
83	Mild and Selective Cobaltâ€Catalyzed Chemodivergent Transfer Hydrogenation of Nitriles. Angewandte Chemie - International Edition, 2016, 55, 14653-14657.	13.8	145
84	Ligand-Controlled Cobalt-Catalyzed Transfer Hydrogenation of Alkynes: Stereodivergent Synthesis of <i>Z</i> - and <i>E-</i> Alkenes. Journal of the American Chemical Society, 2016, 138, 8588-8594.	13.7	269
85	A Radical Bidirectional Fragment Coupling Route to Unsymmetrical Ketones. Journal of the American Chemical Society, 2016, 138, 8404-8407.	13.7	32
86	Selective upgrading of ethanol with methanol in water for the production of improved biofuel—isobutanol. Green Chemistry, 2016, 18, 2811-2818.	9.0	28
87	Visible-light photoredox intramolecular difluoroacetamidation: facile synthesis of 3,3-difluoro-2-oxindoles from bromodifluoroacetamides. Organic and Biomolecular Chemistry, 2016, 14, 2195-2199.	2.8	23
88	Ligand-Controlled Palladium-Catalyzed Alkoxycarbonylation of Allenes: Regioselective Synthesis of $\hat{l}_{+},\hat{l}^{2}_{-}$ and \hat{l}^{2},\hat{l}^{3} -Unsaturated Esters. Journal of the American Chemical Society, 2015, 137, 8556-8563.	13.7	84
89	Regioselective Pdâ€Catalyzed Methoxycarbonylation of Alkenes Using both Paraformaldehyde and Methanol as CO Surrogates. Angewandte Chemie - International Edition, 2015, 54, 4493-4497.	13.8	71
90	(E)- \hat{l} ±, \hat{l} 2-unsaturated amides from tertiary amines, olefins and CO via Pd/Cu-catalyzed aerobic oxidative N-dealkylation. Chemical Communications, 2015, 51, 3247-3250.	4.1	67

#	Article	IF	Citations
91	Using carbon dioxide as a building block in organic synthesis. Nature Communications, 2015, 6, 5933.	12.8	1,581
92	Highly regioselective osmium-catalyzed hydroformylation. Chemical Communications, 2015, 51, 3080-3082.	4.1	23
93	Recent Progress in Carbon Dioxide Reduction Using Homogeneous Catalysts. Topics in Organometallic Chemistry, 2015, , 279-304.	0.7	21
94	Ruthenium-catalyzed alkoxycarbonylation of alkenes using carbon monoxide. Organic Chemistry Frontiers, 2015, 2, 771-774.	4.5	26
95	Optimization of paeonol-loaded microparticle formulation by response surface methodology. Journal of Microencapsulation, 2015, 32, 677-686.	2.8	9
96	Ruthenium-catalysed alkoxycarbonylation of alkenes with carbon dioxide. Nature Communications, 2014, 5, 3091.	12.8	185
97	Development of a Ruthenium/Phosphite Catalyst System for Domino Hydroformylation-Reduction of Olefins with Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 6809-6809.	3.3	6
98	Phosphine―and Hydrogenâ€Free: Highly Regioselective Rutheniumâ€Catalyzed Hydroaminomethylation of Olefins. Angewandte Chemie - International Edition, 2014, 53, 7320-7323.	13.8	48
99	Development of a Ruthenium/Phosphite Catalyst System for Domino Hydroformylation–Reduction of Olefins with Carbon Dioxide. Chemistry - A European Journal, 2014, 20, 6888-6894.	3.3	79
100	Carbonylations of Alkenes with CO Surrogates. Angewandte Chemie - International Edition, 2014, 53, 6310-6320.	13.8	376
101	Visibleâ€Lightâ€Mediated Decarboxylation/Oxidative Amidation of αâ€Keto Acids with Amines under Mild Reaction Conditions Using O ₂ . Angewandte Chemie - International Edition, 2014, 53, 502-506.	13.8	375
102	Visible-Light-Driven Difluoroacetamidation of Unactive Arenes and Heteroarenes by Direct C–H Functionalization at Room Temperature. Organic Letters, 2014, 16, 5842-5845.	4.6	121
103	Using Aqueous Ammonia in Hydroaminomethylation Reactions: Ruthenium atalyzed Synthesis of Tertiary Amines. ChemSusChem, 2014, 7, 3260-3263.	6.8	20
104	Direct Câ€"H difluoromethylenephosphonation of arenes and heteroarenes with bromodifluoromethyl phosphonate via visible-light photocatalysis. Chemical Communications, 2014, 50, 15916-15919.	4.1	70
105	Direct self-condensation of bio-alcohols in the aqueous phase. Green Chemistry, 2014, 16, 3971-3977.	9.0	63
106	Rutheniumâ€Catalyzed Alkoxycarbonylation of Alkenes with Paraformaldehyde as a Carbon Monoxide Substitute. ChemCatChem, 2014, 6, 2805-2809.	3.7	27
107	Palladium-Catalyzed Carbonylative Transformation of C(sp ³)–X Bonds. ACS Catalysis, 2014, 4, 2977-2989.	11.2	154
108	Towards a Sustainable Synthesis of Formate Salts: Combined Catalytic Methanol Dehydrogenation and Bicarbonate Hydrogenation. Angewandte Chemie - International Edition, 2014, 53, 7085-7088.	13.8	67

#	Article	IF	Citations
109	Synthesis of 2-substituted pyrimidines and benzoxazoles via a visible-light-driven organocatalytic aerobic oxidation: enhancement of the reaction rate and selectivity by a base. Green Chemistry, 2014, 16, 3752.	9.0	62
110	A Novel Intermolecular Synthesis of \hat{I}^3 -Lactones via Visible-Light Photoredox Catalysis. Organic Letters, 2013, 15, 6054-6057.	4.6	95
111	Oxidative Catalytic Coupling Reactions: Selective Formation of Cī£¿C and Cī£¿X Bonds Using Radical Processes. Angewandte Chemie - International Edition, 2013, 52, 13871-13873.	13.8	97
112	Visibleâ€Light Photocatalytic Radical Alkenylation of αâ€Carbonyl Alkyl Bromides and Benzyl Bromides. Chemistry - A European Journal, 2013, 19, 5120-5126.	3.3	109
113	Domino Catalysis: Palladiumâ€Catalyzed Carbonylation of Allylic Alcohols to β,γâ€Unsaturated Esters. Angewandte Chemie - International Edition, 2013, 52, 8064-8068.	13.8	80
114	Goldâ€Catalyzed Multicomponent Reaction: Facile Strategy for the Synthesis of <i>N</i> â€Substituted 1,4â€Dihydropyridines by Using Activated Alkynes, Aldehydes, and Methanamine. European Journal of Organic Chemistry, 2013, 2013, 7300-7304.	2.4	18
115	Evaluation of Paeonol Skin-Target Delivery from Its Microsponge Formulation: In Vitro Skin Permeation and In Vivo Microdialysis. PLoS ONE, 2013, 8, e79881.	2.5	34
116	A trans diacyloxylation of indoles. Chemical Communications, 2012, 48, 3239.	4.1	46
117	Roomâ€Temperature Copperâ€Catalyzed Oxidation of Electronâ€Deficient Arenes and Heteroarenes Using Air. Angewandte Chemie - International Edition, 2012, 51, 4666-4670.	13.8	151
118	Reactivity and Mechanistic Insight into Visible‣ightâ€Induced Aerobic Crossâ€Dehydrogenative Coupling Reaction by Organophotocatalysts. Chemistry - A European Journal, 2012, 18, 620-627.	3.3	254
119	Oxidative Carbonylation Reactions: Organometallic Compounds (RM) or Hydrocarbons (RH) as Nucleophiles. Angewandte Chemie - International Edition, 2011, 50, 10788-10799.	13.8	439
120	Pdâ€Catalyzed Direct and Selective CH Functionalization: C3â€Acetoxylation of Indoles. Chemistry - A European Journal, 2011, 17, 2353-2357.	3.3	57
121	Palladiumâ€Catalyzed Aerobic Oxidative Carbonylation of Arylboronate Esters under Mild Conditions. Angewandte Chemie - International Edition, 2010, 49, 3371-3374.	13.8	88
122	Simultaneous Determination of Six Compounds in Licorice and Related Chinese Herbal Preparations. Chromatographia, 2009, 69, 229-235.	1.3	10
123	Revealing a Second Transmetalation Step in the Negishi Coupling and Its Competition with Reductive Elimination: Improvement in the Interpretation of the Mechanism of Biaryl Syntheses. Journal of the American Chemical Society, 2009, 131, 10201-10210.	13.7	179
124	An Electronâ€Deficient Diene as Ligand for Palladiumâ€Catalyzed Crossâ€Coupling Reactions: An Efficient Alkylation of Aryl Iodides by Primary and Secondary Alkylzinc Reagents. Advanced Synthesis and Catalysis, 2008, 350, 1349-1354.	4.3	26
125	A Convenient Synthesis and the Asymmetric Hydrogenation of <i>N</i> -Phthaloyl Dehydroamino Acid Esters. Organic Letters, 2008, 10, 3033-3036.	4.6	26
126	Rational oxidation of cyclohexane to cyclohexanol, cyclohexanone and adipic acid with air over metalloporphyrin and cobalt salt. Journal of Porphyrins and Phthalocyanines, 2008, 12, 27-34.	0.8	33

QIANG LIU

#	Article	IF	CITATIONS
127	Rh-catalyzed highly enantioselective formation of functionalized cyclopentanes and cyclopentanones. Organic and Biomolecular Chemistry, 2007, 5, 3531.	2.8	25
128	Superior Effect of a Ï€-Acceptor Ligand (Phosphineâ^'Electron-Deficient Olefin Ligand) in the Negishi Coupling Involving Alkylzinc Reagents. Organic Letters, 2007, 9, 4571-4574.	4.6	122